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a b s t r a c t

Wedefine a logicD capable of expressing dependence of a variable on designated variables
only. Thus D has similar goals to the Henkin quantifiers of [4] and the independence
friendly logic of [6] that it much resembles. The logic D achieves these goals by realizing
the desired dependence declarations of variables on the level of atomic formulas. By [3]
and [17], ability to limit dependence relations between variables leads to existential second
order expressive power. OurD avoids somedifficulties arising in the original independence
friendly logic from coupling the dependence declarations with existential quantifiers. As is
the case with independence friendly logic, truth ofD is definable insideD. We give such a
definition forD in the spirit of [11,2] and [1].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is an attempt to make the independence friendly logic of [6] and the related compositional semantics in [8]
more transparent.
Consider the sentence

∀x1 . . . ∀xn(∃y/x2) ψ(x1, . . . , xn, y). (1)

This sentence says that if you choose elements x1, . . . , xn, then on the basis of just x1 and x3, . . . , xn I can choose an element
y so that ψ(x1, . . . , xn, y). The formal semantics says that y can be chosen as a function of x1, x3, . . . , xn. Now arguably the
notation (∃y/x2)mentions exactly the wrong thing. It expresses that I don’t need x2 for choosing y; what it should be saying
is rather that I can choose y using the other chosen elements. In other words, the hidden fact behind the quantifier is that
there is a y determined by x1, x3, . . . , xn, such that ψ(x1, . . . , xn, y).
For this and other reasons, one of us (Väänänen) proposed a different syntax which detaches the dependence from the

quantifier and expresses it as a separate clause. In this paper we develop this idea. Our quantifiers will be just the classical
∀ and ∃, but we introduce new atomic formulas, called dependence formulas, as follows. When n > 2, the atomic formula

=(x1, . . . , xn−1, xn) (2)
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will have the intuitive meaning

xn is determined by x1, . . . , xn−1. (3)

Wewill call the resulting formalism dependence logic. The semantics for the dependence formulas seems to usmore intuitive
than the semantics for slash quantifiers (1). One reason for this may be that natural languages have expressions that are like
dependence formulas, but to the best of our knowledge they rarely or never have expressions that behave like (∃x/y) or
(∃x\y) (see (6)).
Most of this paper will recast facts about IF-logic within dependence logic. At the end we make some remarks about

expressing dependence in English.
An elementary presentation of dependence logic has appear in [16].

2. At least three different syntaxes

Before we go to details, we need to mention a slight glitch in the definition of the semantics in [6]. Page 365 describes
a semantics in terms of Skolem functions. In effect, the sentence (1) above is defined to be true if and only if a function F
exists so that

∀x1 . . . ∀xn ψ(x1, . . . , xn, F(x1, x3, . . . , xn)) (4)

is true. Page 364 describes a game-theoretic semantics: Player ∀ chooses elements a1, . . . , an to assign to the variables
x1, . . . , xn, and thenplayer∃ chooses an element b to assign to y. Player∃wins if the assigned elementsmakeψ(x1, . . . , xn, y)
true. The sentence (1) is defined to be true if and only if player ∃ has a winning strategy that chooses b as a function of all
previously chosen elements except the one chosen for x2.
For the sentence (1) these two conditions are obviously equivalent; player ∃ can take the function F from the first

definition as a winning strategy in the second, and vice versa. But they can come apart if the quantifier prefix contains
two or more existential quantifiers. A Skolem function for the second existential quantifier will never have the variable
from the first existential quantifier as one of its arguments, because skolemising removes all the existentially quantified
variables. But in the game semantics there is no reason why player ∃ should not use her second choice as a function of her
first choice (unless the quantifier explicitly forbids this).
The quantifier notation (∃y/∀x) of [6] strongly suggests that the author intended the Skolem function semantics

throughout. Hintikka has confirmed this orally and in several later writings, for example page 63f of [6] and page 413 of [7].
From the game-theoretic point of view it is more natural to allow strategies to depend on previous moves of either player;
it certainly leads to a cleaner compositional semantics too. So following [8,15] we adopt the game-theoretic semantics for
IF-logic, rather than the Skolem function semantics. One should bear this in mind when comparing our languages with
Hintikka’s.
Now consider the sentence

∀x0∀x2(x0 6= x2 ∨ (∃x1/x0)(x0 = x1)) (5)

which is one of a number of similar sentences considered in [10]. The sentence is always true. If the domain contains more
than one element, then when player ∃ chooses a disjunct at ∨, she looks to see whether the elements a0 and a2 chosen for
x0 and x2 are equal or unequal. If unequal, she chooses the left disjunct and wins. If equal, she chooses the right; then she
chooses a1 as a function of a2, namely a1 = a2, and again shewins. (So she uses the∨ to signal to herself at the ∃.) Translating
into dependence formulas, we want to express that x1 can be chosen as a function of x2. But x2 is not mentioned anywhere
in (∃x1/x0)(x0 = x1). The moral is that we cannot expect a compositional translation from IF-logic to dependence-logic.
To compare the two logics it will be helpful to introduce a third kind of logic. The quantifier

(∃y\x1, . . . , xn) (6)

will mean that y can be chosen as a function of x1, . . . , xn. The game-theoretic semantics is easy to write down: a strategy
for player ∃ at this quantifier must express y as a function of x1, . . . , xn. We can do the same for universal quantifiers. (Our
notation followsHintikka [7]. But bewarned that he is talking Skolem functions, not games; so his formulameans something
a little different from ours.) Let us call the resulting logic backslash-logic.
Now sentences of IF-logic do translate into sentences of backslash-logic, and vice versa, though again the translations are

not compositional. Given an IF-sentence φ, we look at each subformula occurrence of the form

(∃y/x1, . . . , xn)ψ, (7)

and we list as z1, . . . , zk all the variables z such that (i) the subformula occurrence is within the scope of a quantifier (∃z . . .)
or (∀z . . .), and (ii) z is not one of y, x1, . . . , xn. Then we replace the subformula by

(∃y\z1, . . . , zk)ψ. (8)
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Doing this with every quantifier occurrence in φ, the result is a backslash-logic sentence φ?. One easily checks that the game
conditions for φ to be true (resp. false) are exactly the same as those for φ? to be true (resp. false). The translation in the
other direction, from backslash-logic to IF-logic, goes just the same way.
There are compositional translations between backslash-logic and dependence-logic—though we will have to check this

in detail later (see Proposition 3). Namely:

=(t1, . . . , tn−1, tn) ≡ ∃x1 . . . ∃xn−1(x1 = t1 ∧ · · · ∧ xn−1 = tn−1 ∧ ∃xn\x1 . . . xn−1(xn = tn)). (9)

And conversely:

(∃xn\x1 . . . xn−1)φ ≡ ∃xn(=(x1, . . . , xn−1, xn) ∧ φ). (10)

To illustrate, we translate the sentence (5) first into backslash-logic:

∀x0∀x2(x0 6= x2 ∨ (∃x1\x2)(x0 = x1)) (11)

and then into dependence-logic:

∀x0∀x2(x0 6= x2 ∨ ∃x1(=(x2, x1) ∧ (x0 = x1))). (12)

If this sentence seems less paradoxical than (5), this suggests that the move to dependence-logic is going to be helpful for
intuition.
Assume for themoment that our formal semanticswill confirm the translation between backslash-logic and dependence-

logic. Then it follows that dependence-logic has, on sentences, the same expressive power as IF-logic and hence the same
expressive power of existential second order logic. (More precisely, for every sentence of dependence-logic there is an
existential second order sentence that has exactly the samemodels, and vice versa.) In particular dependence-logic is in the
strongest terms non-axiomatizable. Not only is there no arithmetically complete definable axiom-system, but to axiomatize
this logic completely one would have to solve a whole range of questions undecidable in set theory, such as the Continuum
Hypothesis. In other words, any axiomatizationwill be open ended, subject to endless future extensions, like the ZFC axioms
for set theory. We will see that another characteristic feature of dependence-logic is that it does not have a negation in the
classical sense. It is not only that some new sentences do not have a negation. The failure of negation is so complete that not
a single sentence containing a non-eliminable occurrence of a dependence formula has a negation.
The reason for these consequences of giving the said meaning to =(x1, x2) is that the ability to talk about arbitrary

functional dependence between x1 and x2 allows us to refer to the surrounding mathematical world. For example, we can
ask whether there is a one–one correspondence between two unary predicates. Being thus able to talk about cardinalities,
we can talk about well-orderings and thereby about transitive models of set theory.

3. The interpretation of dependence formulas

The sentence

xn is determined by x1, . . . , xn−1

is meaningless if the variables x1, . . . , xn stand for particular things. For example is 5 dependent on 2 and ω? This way lies
nonsense.
The proper setting for using this notion ‘determined by’ iswherewe have a range of assignments to the variables. Suppose

for example that n = 3 and the relevant assignments (a1, a2, a3) to (x1, x2, x3) are listed as

(1, 2, 3), (1, 4, 3), (2, 2, 7), (4, 1, 6). (13)

Within this range, x3 is determined by x1, because there is a function yielding x3 in terms of x1. But x2 is not determined by
x1 and x3, because the values x1 = 1 and x3 = 3 allow x2 to be either 2 or 4.
So accordingly we define when a formula is satisfied, not by an assignment to its variables, but to a set X of assignments.

More formally, if X is a set of assignments of elements of the structureM to the variables in the terms t1, . . . , tn, then X
satisfies the formula=(t1, . . . , tn) inM if and only if there is a function f such that for each assignment s in X ,

tMn (s) = f (t
M
1 (s), . . . , t

M
n−1(s)). (14)

If φ(x1, . . . , xn) is a formula with no dependence formulas in it, then X satisfies φ inM if and only if every assignment in X
satisfies φ inM in the usual sense.

4. Syntax and semantics

We allow arbitrary vocabularies, containing relation, constant and function symbols. Terms are built up from variable,
constant and function symbols in the ordinary way.
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Definition 1. A formula ofD has one of the following forms:

t = t ′ t 6= t ′
R(t1, . . . , tn) ¬R(t1, . . . , tn)
=(t1, . . . , tn−1, tn) 6=(t1, . . . , tn−1, tn)
φ ∧ ψ φ ∨ ψ
∀xφ ∃xφ

where t, t ′, t1, . . . , tn are terms, R is a relation symbol, φ and ψ are formulas ofD, and x is a variable.

For the definition of semantics1 we consider a structureM and assignments smapping some variables to elements of the
universeM ofM. The assignmentwith empty domain is denoted by ∅. The value tM〈s〉 of a term t inM under the assignment
s is defined as usual. We adopt the notation s[a : x] for the modification of s obtained by changing (or adding) the value of s
at x to a. If X is a set of assignments, let X[M; x] be the set of all s[a : x], where a ∈ M and s ∈ X .

Definition 2. TruthM |HX φ of aD-formula φ in the structureM under an assignment set X is defined as follows:
M �X t1 = t2 iff ∀s ∈ X(tM1 〈s〉 = t

M
2 〈s〉).

M �X t1 6= t2 iff ∀s ∈ X(tM1 〈s〉 6= t
M
2 〈s〉).

M �X R(t1, . . . , tn) iff ∀s ∈ X((tM1 〈s〉, . . . , t
M
n 〈s〉) ∈ ValM(R))

M �X ¬R(t1, . . . , tn) iff ∀s ∈ X((tM1 〈s〉, . . . , t
M
n 〈s〉) /∈ ValM(R)).

M �X =(t1, . . . , tn−1, tn) iff ∀s, s′ ∈ X(tM1 〈s〉 6= t
M
1 〈s
′
〉 or

. . . or tMn−1〈s〉 6= t
M
n−1〈s

′
〉 or tMn 〈s〉 = t

M
n 〈s
′
〉).

M �X 6=(t1, . . . , tn−1, tn) iff X = ∅.

M �X φ ∧ ψ iff M �X φ andM �X ψ.
M �X φ ∨ ψ iff there are X0 and X1 such that

M �X0 φ,M �X1 ψ , and X ⊆ X0 ∪ X1.

M �X ∀xφ iff there is Y such thatM �Y φ and for every
s ∈ X we have s[a : x] ∈ Y for every a ∈ M .

M �X ∃xφ iff there is Y such thatM �Y φ and for every
s ∈ X we have s[a : x] ∈ Y for some a ∈ M .

As special cases we define
M �X =( ) iff X = X
M �X 6=( ) iff X = ∅ .

The formula 6=(t1, . . . , tn−1, tn) is a kind of De Morgan dual of =(t1, . . . , tn−1, tn), got by changing disjunctions to
conjunctions and by interchanging identities and non-identities. So:

M �X 6=(t1, . . . , tn−1, tn) iff ∀s, s′ ∈ X(tM1 〈s〉 = t
M
1 〈s
′
〉 and

. . . and tMn−1〈s〉 = t
M
n−1〈s

′
〉 and tMn 〈s〉 6= t

M
n 〈s
′
〉).

This amounts to the condition X = ∅. One may wonder why introduce 6=(t1, . . . , tn, t) at all. The answer will emerge
later. An immediate consequence of the definition is

IfM |HX φ and Y ⊆ X , thenM |HY φ. (15)
M |H∅ φ for all φ ∈ D. (16)

We illustrate with the formula ∃y(=(x1, . . . , xn, y) ∧ φ) from (10):

M |HX ∃y(=(x1, . . . , xn, y) ∧ φ)
⇔ there is Y such thatM |HY (=(x1, . . . , xn, y) ∧ φ) and for every

s ∈ X we have s[a : y] ∈ Y for some a ∈ M
⇔ there is Y such that

M |HY =(x1, . . . , xn, y) andM |HY φ and for every
s ∈ X we have s[a : y] ∈ Y for some a ∈ M

⇔ for some function f ,M |H{s[f (s):y]:s∈X} φ

1 Following [9].
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where smeans the restriction of s to (at most) the variables x1, . . . , xn. For comparison, the trump semantics for IF-logic [8]
yields the following semantics in backslash-logic:

M |HX (∃y\x1, . . . , xn)φ
⇔ for some Y ,M |HY φ and for every subset W

of X which is constant on x1, . . . , xn, there is a ∈ M such that all
w[a : y] withw ∈ W are in Y .

These are clearly the same condition onM, X and φ, so the equivalence (10) above holds. The equivalence (9) can be checked
likewise:

Proposition 3. The following conditions are equivalent:
(a) M |HX =(t1, . . . , tn−1, tn)
(b) M |HX ∃x1 . . . ∃xn−1(x1 = t1 ∧ · · · ∧ xn−1 = tn−1 ∧ ∃xn\x1 . . . xn−1(xn = tn))

Proof. SupposeM |HX =(t1, . . . , tn−1, tn). Let for each s ∈ X an extension s̄ be defined by

s̄(x1) = tM1 〈s〉
...

s̄(xn−1) = tMn−1〈s〉.

Let Y be the collection of all s̄, where s ∈ X . Clearly,

M |HY (x1 = t1 ∧ · · · ∧ xn−1 = tn−1).

For s ∈ X let š extend s̄ by š(xn) = tMn 〈s〉. Let Z be the set of š, where s ∈ X . NowM |HZ (xn = tn) and the mapping s̄ 7→ š
satisfies, by assumption (a), the uniformity condition that š(xn) is a function of (s̄(x1), . . . , s̄(xn−1)), when s̄ ∈ Y . For the
converse, suppose

M |HY (x1 = t1 ∧ · · · ∧ xn−1 = tn−1 ∧ ∃xn\x1 . . . xn−1(xn = tn))

so that each s ∈ X has an extension s̄ ∈ Y with {x1, . . . , xn−1} ⊆ dom(s̄). Let for each s̄ ∈ Y a further extension š be defined,
with š(xn) a function of (s̄(x1), . . . , s̄(xn−1)), so that their family Z satisfiesM |HZ (xn = tn). It follows that tMn 〈s〉 is a function
of (tM1 〈s〉, . . . , t

M
n−1〈s〉) for s ∈ X . �

Hence as we anticipated in Section 2:

EveryD-sentence is definable in existential second order logic, (17)

that is, it is possible to associate every D-sentence φ with a first order sentence Φ(R) with a new predicate symbol R such
that the following are equivalent for all modelsM:

(a) M |H{∅} φ
(b) M |H ∃RΦ(R).

On the other hand, it follows from [3,17] that the converse is true

Every existential second order sentence is definable inD, (18)

that is, we can associate every first order sentence Φ(R) with an D-sentence φ without R such that the above (a) and (b)
are equivalent for all modelsM. The familiar properties of existential second order logic and of independence friendly logic
then follow:

(a) D satisfies the Compactness Theorem.
(b) D satisfies the Downward and the Upward Löwenheim–Skolem theorems.
(c) D satisfies the Separation Theorem: if φ ∈ D andψ ∈ D have no commonmodels, there is a first order θ in the common
vocabulary such that every model of φ is a model of θ , and θ and ψ have no common models. In particular, only first
order definable formulas inD have a negation.

It also follows from this that in infinite models D is closed under infinite recursive conjunctions (see Corollary 10),
indicating the subtle infinitary nature ofD.

5. Game-theoretic semantics for D

An equivalent game-theoretic definition for the semantics of D is given below. This game appears to be a perfect
information game. However, we are only interested in the question whether the second player has what we call a uniform
winning strategy. The effect of the uniformity constraint is that the game becomes actually a game of imperfect information.
The only way player II can win with a uniformwinning strategy is that she bases her strategy on information that is in game
theory appropriately called imperfect.
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Definition 4. The semantic gameG(φ, s) of the logicD in amodelM is the following game (of imperfect information): There
are two players, I and II. In the beginning player II holds the pair (φ, s) consisting of the formula φ of D and an assignment
s of the free variables of φ.
(a) If φ is t1 = t2, t1 6= t2, R(t1, . . . , tn), or ¬R(t1, . . . , tn), and s satisfies it inM, then II wins the game, otherwise player I
wins.

(b) If φ is=(t1, . . . , tn−1, tn), then II wins.
(c) If φ is 6=(t1, . . . , tn−1, tn), then I wins.
(d) If φ = ψ ∧ θ , then II switches to hold (ψ, s) or (θ, s), and player I decides which.
(e) If φ = ψ ∨ θ , then II switches to hold (ψ, s) or (θ, s), and can herself decide which.
(f) If φ = ∀xψ , then II switches to hold (ψ, s[a : x]) for some a ∈ M , and player I decides for which.
(g) If φ = ∃xψ , then II switches to hold (ψ, s[a : x]) for some a ∈ M , and can herself decide for which.
Thus=(t1, . . . , tn−1, tn) is a safe haven for II. Respectively, 6=(t1, . . . , tn−1, tn) is a safe haven for I. However, we are not

so much interested in who has a winning strategy in this determined game, but who has a winning strategy with extra
uniformity, as defined below:
Definition 5. We call a strategy τ of player I or II in the game G(φ,∅) uniform if the following condition holds: Suppose
s and s′ are assignments arising from the game when II plays τ and the game ends in the same2 dependence formula
=(t1, . . . , tn−1, tn). Suppose furthermore that s and s′ agree about the values of t1, . . . , tn−1. Then s and s′ agree about the
value of tn.
Theorem 6. Suppose φ is a sentence ofD. ThenM |H{∅} φ if and only if player II has a uniform winning strategy in the semantic
game, starting with (φ,∅).
Proof. This is as in [8]. Consider the following strategy of player II: She keeps pointing to a set X (in the beginning she points
to X = {∅}) such that after every move of the game:

(?) If (φ, s) is the pair she holds and she points to X , then s ∈ X andM |HX φ.
Let us check that II can actually follow this strategy and win. In the beginningM |H{∅} φ, so (?) holds.
(a) Suppose φ is t1 = t2, R(t1, . . . , tn), t1 6= t2, or¬R(t1, . . . , tn). SinceM |HX φ and s ∈ X , we may conclude that s satisfies

φ inM. So II wins.
(b) Suppose φ is=(t1, . . . , tn−1, tn). II wins outright.
(c) Suppose φ is 6=(t1, . . . , tn−1, tn). If the game comes to this point, II is holding (φ, s) and (?) holds, so X 6= ∅. Thus the
game never comes to this point.

(d) Suppose φ is ψ ∧ θ . It follows fromM |HX φ thatM |HX ψ andM |HX θ . Whether II has to switch to (ψ, s) or to (θ, s),
she knows where to point to maintain condition (?).

(e) Suppose φ is ψ ∨ θ . SinceM |HX φ, X ⊆ X0 ∪ X1 withM |HX0 ψ andM |HX1 θ . Now s ∈ X0 or s ∈ X1. In the first case II
moves to point to X0, in the second case she moves to point to X1. Condition (?) remains valid.

(f) Suppose φ is ∀xψ . SinceM |HX φ,M |HY φ for some Y with X[M; x] ⊆ Y . Whichever a player I chooses, II can continue
by pointing to Y , knowing that s[a : x] ∈ Y .

(g) Suppose φ is ∃xψ . SinceM |HX φ, there is Y such thatM �Y ψ and for every s′ ∈ X we have s′[a : x] ∈ Y for some
a ∈ M . In particular, since s ∈ X , there is a ∈ M such that s[a : x] ∈ Y . Condition (?) remains valid, if II points to Y .

We claim that the strategy is uniform. Suppose s and s′ are assignments arising from the game when II plays her
winning strategy and the game ends in the same dependence formula =(t1, . . . , tn−1, tn). It is easy to prove that the set
X that II points to is uniquely determined by her strategy. Suppose s and s′ agree about the values of t1, . . . , tn−1. Since
M |HX =(t1, . . . , tn−1, tn) and s, s′ ∈ X , it follows that s and s′ agree about the value of tn. This strategy gives one direction
of the theorem.
For the other direction, suppose player II has a uniform winning strategy τ in the semantic game starting from (φ,∅).

Let Xφ′ be the set of s such that II has held (φ′, s) in some play where she followed τ . We show by induction on the length of
subformulas φ′ of φ thatM |HXφ′ φ

′.

(a) Suppose φ′ is t1 = t2, R(t1, . . . , tn), t1 6= t2, or ¬R(t1, . . . , tn). In this caseM |Hs φ
′ for s ∈ Xψ ′ holds by definition.

(b) Supposeφ′ is=(t1, . . . , tn−1, tn). Suppose s and s′ are in Xφ′ and agree about the values of t1, . . . , tn−1. Since τ is uniform,
s and s′ agree also about the value of tn. ThusM |HXφ′ =(t1, . . . , tn−1, tn).

(c) Suppose φ′ is 6=(t1, . . . , tn−1, tn). Now Xφ′ = ∅. ThusM |HXφ′ 6=(t1, . . . , tn−1, tn) by (16).
(d) Suppose φ′ is ψ ∧ θ . By induction hypothesisM |HXψ ψ andM |HXθ θ . Now Xφ′ ⊆ Xψ ∩ Xθ . ThusM |HXφ′ φ

′.
(e) Suppose φ′ is ψ ∨ θ . By induction hypothesisM |HXψ ψ andM |HXθ θ . Clearly, Xφ′ ⊆ Xψ ∪ Xθ . ThusM |HXφ′ φ

′.
(f) Suppose φ′ is ∀xψ . By induction hypothesisM |HXψ ψ . For every s ∈ Xφ′ and every a ∈ M we have s[a : x] ∈ Xψ .
ThereforeM |HXφ′ φ

′.
(g) Suppose φ′ is ∃xψ . By induction hypothesisM |HXψ ψ . For every s ∈ Xφ′ there is an a ∈ M such that s[a : x] ∈ Xψ .
ThereforeM |HXφ′ φ

′. �

2 Two dependence formulas are here considered the same only if they are identical and in the same place in the original formula φ.



J. Väänänen, W. Hodges / Annals of Pure and Applied Logic 161 (2010) 817–828 823

An equivalent game-theoretic definition using a determined game of perfect information can be easily devised along the
lines of [15].

6. An algebraic truth definition

Alternatively, the truth definition can be given algebraically, emphasizing the compositionality of our semantics. Let us
first recall the algebraic representation of the semantics of first order logic: If t is a term, let var(t) denote the set of n for
which the variable xn occurs in t . The value tM〈s〉 of a term t in a structureM under the assignment s : var(t) → M is
defined inductively, as usual, by xMn 〈s〉 = s(n), c

M
〈s〉 = cM and f (t1, . . . , tn)M〈s〉 = fM(tM1 〈s〉, . . . , t

M
n 〈s〉). Let Asg(M) be

the set of all assignments of variables intoM . Let for any set Y of assignments in a structureM:
Y [a : n] = {s : s[a : n] ∈ Y }.

The truth value [φ]M of a first order logic formula φ inM is defined inductively, as usual, by:
[t1 = t2]M = {s : dom(s) = var(t1) ∪ var(t2) and tM1 〈s〉 = t

M
2 〈s〉}

[t1 6= t2]M = {s ∈ Asg(M) : dom(s) = var(t1) ∪ var(t2) and tM1 〈s〉 6= t
M
2 〈s〉}

[R(t1, . . . , tn)]M = {s ∈ Asg(M) : dom(s) =
⋃
1≤n≤n

var(ti) and

(tM1 〈s〉, . . . , t
M
n 〈s〉) ∈ ValM(R))}

[¬R(t1, . . . , tn)]M = {s ∈ Asg(M) : dom(s) =
⋃
1≤n≤n

var(ti) and

(tM1 〈s〉, . . . , t
M
n 〈s〉) /∈ ValM(R))}

[φ ∧ ψ]M = [φ]M ∩ [ψ]M
[φ ∨ ψ]M = [φ]M ∪ [ψ]M

[∀xnφ]M =

⋂
a∈M

[φ]M[a : n]

[∃xnφ]M =

⋃
a∈M

[φ]M[a : n]

and then for first order φ:
M |Hs φ ⇐⇒ s ∈ [φ]M.

ForD the algebraic definition is remarkably similar, but involves the power-set operation:
Definition 7. The truth value [[φ]]M of a formula φ inM can be defined as follows:

[[ t1 = t2]]M = P ([t1 = t2]M)
[[ t1 6= t2]]M = P ([t1 6= t2]M)
[[ R(t1, . . . , tn)]]M = P ([R(t1, . . . , tn]M)
[[ ¬R(t1, . . . , tn)]]M = P ([¬R(t1, . . . , tn)]M)
[[ =(t1, . . . , tn)]]M = {X ⊆ {s ∈ Asg(M) : dom(s) =

⋃
1≤n≤n

var(ti)} :

X × X ⊆ {(s, s′) : tM1 〈s〉 6= t
M
1 〈s
′
〉 or

. . . or tMn−1〈s〉 6= t
M
n−1〈s

′
〉 or tM〈s〉 = tM〈s′〉}}

[[φ ∧ ψ]]M =

⋃
X0∈[[φ]]M,X1∈[[ψ]]M

P (X0 ∩ X1)

[[φ ∨ ψ]]M =

⋃
X0∈[[φ]]M,X1∈[[ψ]]M

P (X0 ∪ X1)

[[ ∀xnφ]]M =

⋃
Y∈[[φ]]M

P (
⋂
a∈M

Y [a : n])

[[ ∃xnφ]]M =

⋃
Y∈[[φ]]M

P (
⋃
a∈M

Y [a : n]).

It is obvious that
M |HX φ ⇐⇒ X ∈ [[φ]]M.

Example 8. Below we identify an element (a0, . . . , an) of Mn+1 with the function (x0, . . . , xn) 7→ (a0, . . . , an). Moreover,
we let

Idi = {((a0, . . . , an), (b0, . . . , bn)) ∈ Mn+1 ×Mn+1 : ai = bi}.

• [[=( )]]M = {∅, {∅}} = P ({∅})
• [[=(x0)]]M = [[=(x0, . . . , x0, x0)]]M = P (M)
• [[=(x0, x1)]]M = {X ⊆ M2 : X is a function}.
• [[ x0 = x1]]M = {X ⊆ M2 : X is an identity function}.
• [[=(x0, f (x0))]]M = P (M).
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• [[=(f (x0), x0)]]M = {X ⊆ M : fM is one to one on X}.
• [[=(x0, . . . , xn−1, xn)]]M = {X ⊆ Mn+1 : X × X ⊆ (Mn+1 \ Id0)∪, . . . ,∪(Mn+1 \ Idn−1) ∪ Idn}.

There is a perfect symmetry between disjunction and conjunction on the one hand, and existential and universal
quantifiers on the other hand, just as in the first order case. If φ happens to be first order (i.e. does not contain subformulas
of the form=(t1, . . . , tn) or of the form 6=(t1, . . . , tn)), then [[φ]]M has a largest element, namely [φ]M. If φ is in first order
logic, then for allM and X we have

M |HX φ ⇐⇒ (∀s ∈ X)(M |Hs φ)

i.e.

X ∈ [[φ]]M ⇐⇒ X ⊆ [φ]M.

In this sense the semantics ofD is a conservative extension of the semantics of first order logic. The definition of [[φ]]M also
demonstrates the compositionality ofD.

7. Definability of truth

Some systems can define their own truth, see e.g. [13]. Since D is able to express all existential second order sentences,
it is in principle clear that it, too, can express its own truth definition, as is pointed out in [5] and proved in [6, Appendix].
On the basis of the inductive truth definition of D it is possible to write down the truth definition explicitly in D. For this
end, let us work in a modelM which has enough coding to code the basic syntactic concepts as well as all assignments by
elements of the model. Let us denote the Gödel number of φ by pφq. We denote the term denoting the natural number n in
our model by n. Let ∅ be the term denoting the singleton set of the empty assignment. We construct a sentence θ(P) in D

with a new binary predicate symbol P , and a formulaΘ(x) inD such that:

Theorem 9. The following conditions are equivalent for all sentences φ ofD:
(a) M |H{∅} φ
(b) M |H{∅} ∃P(θ(P) ∧ P(pφq,∅))
(c) M |H{∅} Θ(pφq).

As in [11], we get

Corollary 10. D is closed under recursive conjunctions in infinite models.

Clearly, D is not closed under recursive disjunctions: the disjunction of the sentences ‘‘P contains at most n elements",
n = 1, 2, . . ., would lead to a contradiction with the Compactness Theorem ofD.
For the proof of Theorem 9, we introduce some notation, following [1]. Let Vł(t, x1) denote the value of a term t inM

under the assignment coded by x1. Let E(x1, x2, x3) code the assignment s[a : n], where s is the assignment coded by x1, n is
the value of x2, and a is the value of x3.

Definition 11. Let θ ′(x0, x1, x2) be the conjunction of the following formulaswith free variables x0, x1, and x2, and the binary
predicate symbol P:

(a) Either x0 is not the Gödel number of an identity of two terms t and t ′, or ¬P(x0, x1) or the terms t and t ′ have the same
value under the assignment x1.

(b) Either x0 is not the Gödel number of a negated identity of two terms t and t ′, or ¬P(x0, x1) or the terms t and t ′ have
different value under the assignment x1.

(c) Either x0 is not the Gödel number of an atomic formula P(t1, . . . , tn) of terms t1, . . . , tn, or¬P(x0, x1) or the terms values
of the terms t1, . . . , tn under the assignment x1 satisfy the predicate P .

(d) Either x0 is not the Gödel number of a negated atomic formula ¬P(t1, . . . , tn) of terms t1, . . . , tn, or ¬P(x0, x1) or the
values of the terms t1, . . . , tn under the assignment x1 fail to satisfy the predicate P .

(e) Either x0 is not the Gödel number of a dependence formula =(t1, . . . , tn) of terms t1, . . . , tn, or ¬P(x0, x1) or
=(Vł(t1, x1), . . . ,Vł(tn, x1)).

(f) Either x0 is not the Gödel number pφ ∧ ψq of a conjunction, or ¬P(x0, x1) or (P(pφq, x1) and P(pψq, x1)).
(g) Either x0 is not the Gödel number pφ ∨ ψq of a disjunction, or¬P(x0, x1) or P(pφq, x1) or P(pψq, x1).
(h) Either x2 is not a natural number, or x0 is not p∀zφq, where z is the variable number x2, or ¬P(x0, x1), or
∀x3P(pφq, E(x1, x2, x3)).

(i) Either x2 is not a natural number, or x0 is not p∃zφq, where z is the variable number x2, or ¬P(x0, x1), or
∃x3P(pφq, E(x1, x2, x3)).

Let θ(P) be the formula ∀x0∀x1∀x2θ ′(x0, x1, x2).

Proposition 12. There is a formula Θ(x4, x5) of D such that the following conditions are equivalent for all natural numbers n
and all X:

(a) (M, S) |H{∅} θ(P) ∧ P(n,∅) for some interpretation S of P inM.
(b) M |H{∅} Θ(n,∅).
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Proof. Since the proof is essentially in [3,17], we give just an outline in a special case. Suppose θ(P)were just

∀x0∀x1( (¬P(x0, x1) ∨=(f (x0, x1), g(x0, x1))) ∧
(¬P(x0, x1) ∨ ∃x2P(x0, h(x1, x2)))).

We would then letΘ(x4, x5) be the formula

∀x0∀x1∀y0∀y1∃u∃x2∃v(=(x0, x1, u)∧
=(y0, y1, v)∧
=(x0, x1, x2)∧
(x0 6= y0 ∨ x1 6= y1 ∨ u = v)∧
(u 6= 1 ∨=(f (x0, x1), g(x0, x1)))∧
(u 6= 1 ∨ x0 6= y0 ∨ y1 6= h(x1, x2) ∨ v = 1)∧
(x0 6= x4 ∨ x1 6= x5 ∨ u = 1)).

Suppose now (M, S) |Hs0 θ ∧ P(x4,∅), where s0(x4) = n. Let X be the set of all assignments s interpreting x0 and x1 in M .
Thus X ⊆ X0 ∪ X1 such that

s ∈ X0 implies ¬S(s(x0), s(x1)) (19)
s, s′ ∈ X1 implies f (s(x0), s(x1)) 6= f (s′(x0), s′(x1)) or (20)

g(s(x0), s(x1)) = g(s′(x0), s′(x1)). (21)

Moreover, X ⊆ X2 ∪ X3 such that

s ∈ X2 implies ¬S(s(x0), s(x1)) (22)
s ∈ X3 implies there is an as ∈ M such that S(s(x0), h(s(x1), as)). (23)

To proveM |H{∅} Θ(n) let X ′ be the set of all assignments s interpreting x0, x1, y0, and y1 in M . Let Y be obtained from
X ′ by extending each s ∈ X ′ by the assignments s(u) = 1 ⇐⇒ S(s(x0), s(x1)), s(v) = 1 ⇐⇒ S(s(y0), s(y1)), and
s(x2) = as�{x0,x1}, if s � {x0, x1} ∈ X3 and otherwise= 1. We prove

M |HY =(x0, x1, u)∧
=(y0, y1, v)∧
=(x0, x1, x2)∧
(x0 6= y0 ∨ x1 6= y1 ∨ u = v)∧
(u 6= 1 ∨=(f (x0, x1), g(x0, x1)))∧
(u 6= 1 ∨ x0 6= y0 ∨ y1 6= h(x1, x2) ∨ v = 1)∧
(x0 6= x4 ∨ x1 6= ∅ ∨ u = 1).

(24)

The first four conjuncts of (24) are trivially satisfied. Let Y0 = {s ∈ Y : ¬S(s(x0), s(x1))} and Y1 = {s ∈ Y : S(s(x0), s(x1))}.
Then Y = Y0 ∪ Y1 and M |HY0 u 6= 1. To prove M |HY1 =(f (x0, x1), g(x0, x1)) let s, s

′
∈ Y1. Then by (20) and (21)

f (s(x0), s(x1)) 6= f (s′(x0), s′(x1)) or g(s(x0), s(x1)) = g(s′(x0), s′(x1)). We have proved the fifth conjunct of (24). Next we
prove

M |HY1 (x0 6= y0 ∨ y1 6= h(x1, x2) ∨ v = 1)). (25)

Assume then s ∈ Y1 is such that s(x0) = s(y0) and s(y1) = h(s(x1), s(x2)). By (23), S(s(y0), s(y1)) holds, whence s(v) = 1.
Finally, we prove

M |HY x0 6= x4 ∨ x1 6= ∅ ∨ u = 1. (26)

Assume s ∈ Y is such that s(x0) = n and s(x1) = ∅. By our assumption (M, S) |Hs0 P(x4,∅). So (26) follows immediately
from the definition of s(u). For the converse, supposeM |Hs0 Θ(x4). Let X

′ be the set of all possible assignments defined on
{x0, x1, y0, y1}, and let Z consist of an extension E(s) of each s ∈ X ′ by a definition of s(u), s(x2), s(v) ∈ M so that

M |HZ =(x0, x1, u)∧
=(y0, y1, v)∧
=(x0, x1, x2)∧
(x0 6= y0 ∨ x1 6= y1 ∨ u = v)∧
(u 6= 1 ∨=(f (x0, x1), g(x0, x1)))∧
(u 6= 1 ∨ x0 6= y0 ∨ y1 6= h(x1, x2) ∨ v = 1)∧
(x0 6= x4 ∨ x1 6= ∅ ∨ u = 1).

(27)

Let

S = {(a0, a1) : there is an s ∈ Z, with s(x0) = a0, s(x1) = a1, s(u) = 1}.
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We show that (M, S) |H∅ θ . LetW the set of all assignments s interpreting x0 and x1 inM . Because of the first four conjuncts
of (27) there are functions Eu and Ex2 onW such that if s ∈ X

′, then

E(s)(u) = Eu(s � {x0, x1}) (28)
E(s)(v) = Eu(s � {y0, y1}) (29)
E(s)(x2) = Ex2(s � {x0, x1}). (30)

The fifth conjunct of (27) shows Z ⊆ Z0 ∪ Z1, whereM |HZ0 u 6= 1 andM |HZ1 =(f (x0, x1), g(x0, x1)). Let W0 consist of
all s ∈ W with some extension s̄ ∈ Z0, and W1 = W \ W0. If s ∈ W0 with an extension s̄ ∈ Z0, then s̄(u) 6= 1, whence
¬S(s(x0), s(x1)). If s, s′ ∈ W1, and the extensions s̄, s̄′ ∈ Z are chosen arbitrarily (e.g. s̄(y0) = s̄(y1) = s̄(u) = s̄′(y0) =
s̄′(y1) = s̄′(u) = 1), then s̄, s̄′ ∈ Z1. This impliesM |HW1 =(f (x0, x1), g(x0, x1)). We have proved thatW satisfies the first
conjunct of θ .
We next prove thatW satisfies the second conjunct of θ . Let Z ⊆ Z2 ∪ Z3 ∪ Z4 ∪ Z5 such that

M |HZ2 u 6= 1 (31)
M |HZ3 x0 6= y0 (32)
M |HZ4 y1 6= h(x1, x2) (33)
M |HZ5 v = 1. (34)

LetW2 consist of all s ∈ W with some extension s′ ∈ Z2, andW3 = W \W2. If s ∈ W2 with an extension s′ ∈ Z2, then
s(u) = s′(u) 6= 1, whence ¬S(s(x0), s(x1)). If s ∈ W3, let G(s) extend s by the definition G(s)(x2) = Ex2(s). Let V consist of
all G(s) with s ∈ W3. We aim at provingM |HV P(x0, h(x1, x2)). Let G(s) ∈ V with s ∈ W3. Let a0 = s(x0), a1 = s(x1), and
a2 = G(s)(x2). Let us consider the following two assignments in X ′:

s1 s2
x0 a0 a0
x1 a1 h(a1, a2)
y0 a0 a0
y1 h(a1, a2) h(a1, a2)

Then E(s1), E(s2) ∈ Z . As s ∈ W3 and s1 extends s,
E(s1)(u) = 1. (35)

As s1(x0) = s1(y0), E(s1) /∈ Z3. As
s1(y1) = h(a1, a2) = h(E(s1)(x1), E(s1)(x2)),

we have E(s1) /∈ Z4. Thus E(s1) ∈ Z5, whence
E(s1)(v) = 1. (36)

As s2(x0) = s2(y0) and s2(x1) = s2(y1),

E(s2)(u) = E(s2)(v) by (27)
= Eu(s2 � {y0, y1}) by (29)
= Eu(s1 � {y0, y1}) as s2 and s1 agree on y0 and y1
= E(s1)(v) by (29)
= 1 by (36).

We have found s2 ∈ Z such that s2(x0) = a0, s2(x1) = h(a1, a2), and s2(u) = 1. This implies S(a0, a1). We have proved that
W satisfies the second conjunct of θ .
The last conjunct of (27) shows that (M, S) |H{∅} P(n,∅). �

8. Dependence in English

There are a number of English phrases which allow definite noun phrases, but seem to yield nonsense if the definite noun
phrases are read as names of individual objects. For example:
(a) x is determined by y.
(b) x is a function of y.
(c) x depends on y.
(d) x is independent of y.
(e) x varies with y.

All these five examples allow interpretation along the following lines. A family X of paired assignments (a, b) (with a
assigned to x and b assigned to y) is given, and the phrase expresses some property of X which cannot be paraphrased
as a property of any single pair (a, b) in X . We call an interpretation of this kind a family interpretation.
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Three questions arise at once. First, what property ofX is expressed? Second, how isX determined? Third, givenX , howdo
these phrases express properties of X , given that a typical English sentence ‘x does such-and-such to y’ expresses a property
of a single x and a single y?

8.1. What property of X?

There is an easy answer in case (a): x is determined by y if and only if for any two pairs (a1, b1) and (a2, b2) in X , if b1 = b2
then a1 = a2. In case (e) we nearly have the opposite answer: for any two pairs (a1, b1) and (a2, b2) in X , if b1 6= b2 then
a1 6= a2. If this were exactly true then we would expect (e) to have the paraphrase

y is determined by x

and vice versa. In practice this is not how the phrases are used. There seems to be a causal implication; in case (a) the
implication is that the choice of second coordinate acts so as to decide the first coordinate, and in case (e) the implication is
that a change in the second coordinate causes a change in the first. Examples from google.com (the poor man’s corpus) are

(For (a)) Hip bone density is determined by teenage exercise patterns.
(For (e)) Pet insurance varies with breed of dog.

To be sure of avoiding any causal implications, we probably need to takemathematical examples; but then we are in danger
of leaving ordinary English usage behind.
The usage of (b) is harder to pin down. Mathematicians often assume that it means what we said (a) means, in other

words that for some function f , X is the set of all pairs of the form (f (b), b). But sometimes this is clearly not so. One we
found on google.com some years ago was:

The quality of your essay is a function of the work you put into it.

The clear implication here is that you can improve your essay by putting inmore work; this looks more like (e), and it would
certainly be false if the quality was a constant function of the work! It’s not entirely clear here whether the speaker means
to rule out that other factors might be relevant too, because the class X is not spelt out. For example the implied class might
be the class of all possible pairs

(the quality of your essay, how hard you try to improve your essay)

on the assumption that other factors are kept constant.
There is also aGricean factor. Someonewho tells you (b)would presumably have said so if xwasdeterminedby something

less than y. The same applies to (a). This Gricean implication goes some way towards (e), but easy examples show that it is
weaker than (e).
(c) is perhaps closer to the Gricean implication of (b). A typical use of (c) is where we have a bundle of factors, and y

describes the values of some of them. In this case (c) expresses that x is not determined by any set of factors unless the set
contains all the factors reported in y. So here we have an extra multiplicity: not just the family X , but a set of factors, some
of which are involved in X . An example from google.com is

Your security depends on your workers’ habits.

(d) seems to be a negation of (c); for example ‘Your security is independent of your workers’ habits’ (in other words, it is
entirely determined by other factors).

8.2. How is X given?

There is probably nothing useful that we can say here about the cases where X is given by the context of utterance. More
important for us are the cases where no X seems to be given, even though one is needed for the interpretation.
Here is one of several similar examples in the books of Serge Lang [12]:
Let 0 < a ≤ 1, andm an integer with |m| ≥ 2. Let s = σ + iTm with−a ≤ σ ≤ 1+ a and Tm as above. Then

|ξ ′/ξ(s)| ≤ b(log |m|)2,
where b is a number depending on a but not onm and σ .

Nevermind that this is heavilymathematical; students seem to have no trouble understanding the idiomwithout needing to
have it explained to them. (One of us used this same example on page 545 of [8] tomake the point that IF-like phenomena do
occur quite naturally in mathematical writing. Here we make the further point that Lang’s text is closer to the dependence-
of-variables formulation of the present paper than it is to slashed quantifiers.)
The form of Lang’s statement is roughly:
For all a,m and σ there is b such that ψ(a,m, σ , b) and b depends on a but not onm and σ .

There is an obvious family X here, namely the family of 4-tuples (a,m, σ , b) such thatψ(a,m, σ , b) holds. Three factors are
relevant for finding b, namely a,m and σ . Lang’s final clause tells us we do not need the second and third factors in order to
determine b. But that leaves only the first factor, and Lang is certainly not telling us that b is determined by the first factor.
He neither says nor implies anything about b being unique.
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There are at least twoways to read this example. Perhapsmorework and awider range of examples are needed to decide
which if either of them is right.

(A) The first reading is that Lang means that b is determined by a, but he does not intend this X as the relevant family.
Rather his sentencemeans that there is a family X ′ such that certain things hold, andwithin this family b is determined
by a. This reading will probably appeal to mathematicians who detect a function quantifier hidden under Lang’s text.
(B) The second reading is that we got the right family X , but Lang is not saying anything about functional dependence.
Rather he is saying first that for every choice of a, m and σ there is a b with (a,m, σ , b) in X (this is his first clause),
and second that given a,m and σ we can choose the bwithoutmaking any use ofm and σ , but there is no b that works
for all a.

If we try to build up a formal semantics for the relevant fragment of English, (B) will probably be easier to handle than (A),
because (A) involves an existential quantification over sets.

8.3. How to shift from individuals to families?

There is amuch-quoted paper of Barbara Partee [14]which helps us here. She describes someways inwhich nounphrases
can come to have interpretations not of type e (individuals) but of type 〈e, t〉 (functions from individuals to truth values, i.e.
predicates), or even of type 〈〈e, t〉, t〉 (predicates of predicates). For example the noun phrase ‘an introvert’ can stand for an
individual introvert; but in the context

Mary considers John an introvert.

the verb ‘considers’ has the effect of raising the type of ‘an introvert’ from e to 〈e, t〉, so that it operates as a predicate. (This
is an oversimplified version of one of her remarks.)
Our phrases seem to demand something similar, though not exactly any of the devices that Partee mentions. We need

to say, for Lang’s example above, that the word ‘depending’ has the effect of creating a semantic component of type
〈e, 〈e, 〈e, 〈e, t〉〉〉〉, i.e. a property of 4-tuples. Note that the first part of Lang’s sentence, up to but excluding theword ‘where’,
has a conventional semantics that does not require any higher-type object like the component we have just proposed.
Nevertheless this first part contains all the raw materials used to construct the component. It seems that this type raising
occurs after the first processing of the first part of the sentence. Partee makes the point that facts at a low type level can
be translated into facts at a higher level, and in this case there is no problem about recasting Lang’s first clause so that it
involves the higher type component.
Dependence logic does something similar to what we have just described. Sentences of dependence logic with no

occurrences of =(. . .) or 6=(. . .) can be interpreted exactly as ordinary first-order sentences; but there is a uniform
paraphrase of the first-order interpretation in terms of sets of assignments. When a =(. . .) appears, it forces the
interpretation into the higher-type form, using sets of assignments.
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