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Abstract

Team logic is the logic of functional dependencies. We define the
basic logical operations of team logic, establish its relationship with
independence friendly and second order logic, and give it a game
theoretic characterization.

1 Introduction

Let a vocabulary! L and an L-structure M with universe M be given. In
this paper we study functional dependencies in M. This is in contrast to the
traditional approach in logic of studying relational dependencies in M. Our
atomic dependence relations state the existence of a functional dependence
without giving any definition for the function that carries the dependence.
This gives the whole topic a second order flavor. It seems to the author that
although functional dependence in databases has been studied (starting with
[Ar74]), a general theory of more complex types of dependence is new. (For
a more detailed recent study, see [VA07].) Our theory is based on [Ho;97b]
and [VaHo;00].

If L has an n-ary function symbol f, there is immediately an apparent de-

pendence relation in M, namely the dependence of each a = fM(ay, ..., a,)
on ai,...,a,. If the function f™ is constant, the dependence is of a sin-
gular kind, not commonly called dependence on ai,...,a, at all. On the

* This paper was written while the author was a guest in the Newton Institute (Cam-
bridge, U.K.) as part of the special program Logic and Computation. The author
is grateful to the Newton Institute for its support. Research was also partially sup-
ported by grant 40734 of the Academy of Finland. I am indebted to the referee for
pointing out some inaccuracies and suggesting improvements, and to Fred Oakley for
permission to use the photo in Figure 2.

1 The vocabulary may contain constant, relation and function symbols.

Johan van Benthem, Dov Gabbay, Benedikt Lowe (eds.). Interactive Logic. Proceedings of
the 7Tth Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 281-302.



282 J. Vaananen

other hand, if the function is one to one, we have a dependence that is so
perfect that it can even be reversed. In this case dependence is carried by a
function that has a name in the vocabulary. In general we have completely
abstract functions carrying the dependence with no name in the vocabulary
and even no definition in the language, what so ever.

If L has an n-ary relation symbol R, there is a relational dependence rela-

tion in M, namely the mutual dependence of ai,...,a, such that
(a1,...,ay) € RM on each other. However, even if such a relation be-
tween the elements aq,...,a, binds the elements together in an obvious

sense, it need not in general be a (functional) dependence in the sense of
the current approach.

Team logic is the logic of (functional) dependence. We define the basic
concepts of team logic and use it to analyze dependence. The negation-
free part of team logic turns out to correspond naturally to independence
friendly logic and thereby to the existential part of second order logic. Team
logic itself can be seen as being the natural closure of independence friendly
logic under (classical) negation. In expressive power team logic is in a
natural sense equivalent to full second order logic. We give a game-theoretic
characterization of team logic by means of an appropriate Ehrenfeucht-
Fraissé game.

2 Agents and teams

An agent is any finite mapping s from a domain dom(s) into M. Elements
of dom(s) are called features or fields, sometimes attributes, depending on
the application?. Unless stated otherwise, to be specific, the domain of an
agent is a finite set of natural numbers. The modification s(a/n) of an agent
s maps n to a but agrees otherwise with s. The wvalue of a term ¢, built up
from variables z,, and symbols of L, on an agent s is the element ¢(s) of M
defined in the usual way by c(s) = ¢, z,(s) = s(n), and ft;...t,(s) =
fM(t1(s), ..., ta(s)). For this to make sense the domain of s has to contain
n whenever z,, occurs in t.

Building on [Ho;97a] and [Ho197b] we take the position that dependence,
just like any other pattern, cannot be manifested by one event, observation
or agent (which is our terminology) but needs a series or a group of events,
observations or agents. We call these series or groups manifesting depen-
dence teams.

A team (see Figure 1) is any set X of agents with the same domain
dom(X). Table 1 presents a generic team in the form of a table. Here are
some examples of teams:

2 Agents are also called assignments or tuples. If we think of an agent s as an assignment,
the elements of the domain are variables z, or their indexes n, depending on how values
of terms are defined.
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TABLE 1. A generic team as a table.

FIGURE 1. A model with an assignment and a model with a team.

Team 1 A team of human genomes (Figure 2). Here the agents are in-
dividual genomes of individual people. The fields (or features) are
the individual genes that are observed. Potentially there are tens of
thousands of possible fields to consider, and billions of agents. If we
add to such a team new fields related to medical data of the person
in question, we get a team the dependencies of which may give cru-
cial data about the role of hereditary factors in medical science. For
example, we may ask:

1. Does a certain gene or gene combination (significantly) determine
a given hereditary disease in the sense that a patient with (a fault
in) those genes has a high risk of the disease?

2. Is a disease totally dependent on a gene in the sense that ev-
ery gene combination that (significantly) determines the disease
contains that particular gene.

3. Is a gene (merely) dependent on a gene in the sense that the
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disease is (significantly) determined by some gene combination
with the gene but not without.

4. Is a disease totally independent of a gene in the sense that no gene
combination that (significantly) determines the disease contains
that particular gene.

5. Is a gene (merely) independent of a gene in the sense that some
gene combinations (significantly) determine the disease without
containing that particular gene.

FIGURE 2. A piece of a team of genomes.

Team 2 Game history team: Imagine a game, any game. Game moves
are the features of this team, plays are the agents, and a collection of
plays is a team. Thus a player is identified with his or her behavior in
the game. It may be relevant to know answers to the following kinds
of questions:

1. What is the strategy that a player (e.g. “Nature”) is following,
or is he or she following any strategy at all?

2. Is a player using information about his or her (or other players’)
moves that he or she is committed not to use?

Team 3 Every formula ¢(z1,...,2,) of any logic and structure M give
rise to the team of all assignments that satisfy ¢(z1,...,2,) in M.
This is a definable team and perhaps the most obvious team arising in
logic. It may manifest functional dependencies on the structure, and
depending on the logic, these dependencies can or cannot be expresses
in the logic.
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Team 4 Every first order sentence ¢ and structure M give rise to teams

consisting of assignments that arise in the semantic game of ¢ and M.
If M = ¢ and the winning strategy of I is 7, a particularly coherent
team consists of all plays of the semantic game in which II uses 7.
The same holds of independence friendly logic of [Hi;96].

Team 5 A team of robots building a car. Each agent s, i.e. robot, has

features encoded by the function s. For example, if the domain of the
agents is

{reach, payload, joint range, speed, weight, paints, welds},

we can have a team as in Table 2. Here weight depends on the payload

N O Utk W N

robot | reach payload range speed weight paints welds
(mm) (kg) () [ (fsec) | (kg)
653 2.5 170 328 28 true false
653 2.5 170 328 28 true false
653 2.5 190 328 28 true false
653 5 170 328 35 true false
653 5 170 300 35 false true
653 5 170 300 35 false true
653 5 360 328 35 false true

TABLE 2. A team of robots

but not on speed as robots 3 and 4 have the same speed but different
weight. Note that the team can be divided into two subteams one of
which paints and the other does welding. This team raises the issue
whether a team can have two agents with exactly the same values on
all features. According to our definition the two agents are in such a
case the same. So the above table describing the team is misleading.
Robots 1 and 2 are the same, as are robots 5 and 6. If we added the
robot number to the domain, the robots would all be different agents.
This indicates an extensionality phenomenon in our approach.

3 Dependence types

Our starting point was the idea that teams can manifest dependencies. The
different ways that this happens give rise to the concept of a dependence

type?

that we now define. Some dependence types are of an atomic nature

in that they are not decomposed further into smaller dependence types. The
atomic types are

3 Types correspond to formulas. We use the word ‘type’ to emphasize the difference
between truth and dependence.
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t =t": Every agent s € X satisfies t(s) = t'(s). The team of Table 3
is of type x3 = x4.

-t = t': Every agent s € X satisfies t(s) # t'(s). The team of Table 3
is of type —xo = x4.

Rty ...t,: Every agent s € X satisfies (t1(s),...,tn(s)) € RM. The
team of Table 3 is of type z2 < z4.

- Rty ...t,: Every agent s € X satisfies (t1(s),...,tn(s)) ¢ R™. The
team of Table 3 is of type —z4 < z2.

=(t1,...,ty): Every two agents s, s’ € at satisfy
t t E t t "€ X that satisf

tn-1(s) = tn_1(s'),

also satisfy t,(s) = t,(s’). This type is called the dependence type.
The team of Table 3 is of type =(x1,z2) but not of type =(z2,21).
There are two special cases. The first is =(¢). This is the type of
teams in which the value of ¢ is constant. Team 5 above is of type
=(reach). The second special case is the type =(). This is the type
of all teams what so ever and is given a special symbol T.

—=(t1,...,t,): This is the type of the empty team &. This should
be distinguished from the type of an “impossible” team, that is, the
type which is not the type of any team what so ever. We shall return
to this type later. The reason for allowing only the empty team to
be of the type = =(t1,...,t,) is the following: We want types to be

closed downwards. If a non-empty team was of type ==(t1,...,tn),
there would have to be a singleton team {s} of the same type. But
singleton teams are always of type =(t1,...,t,).

The typest =t', -t =t/, Rty ...t, and =Rty .. .t, occur in [Ho197a] and

[Ho197b]. The dependence type =(t1,...,t,) is introduced in [VaHo;o0].
The empty team is of every atomic type, in particular both of type ¢t = t/
and =t = /. From atomic dependence types we can build more complex
ones with team operations, which are the following:

e Negation ~¢: The team is not of type ¢. The team of Table 3 is

of type ~=(x2,21). Note that ~ Rt;...t, is quite different from
=Rty ...t,. The former says some agent s in the team fails to satisfy
(t1(s),...,ta(s)) € RM, while the latter says all fail. Even more
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Domain
Agent | 1 2 3 4
S1 100 9 10 10
52 20 9 10 10
53 21 1 10 10
S4 1 2 11 11
S5 101 1 11 11

TABLE 3. A team in (N, <).

Domain

Agent 1 2 3 4
51 100 9 10 10
S9 20 9 10 10
S5 101 1 11 11

Domain

Agent | 1 2 3 4
S3 21 1 10 10
54 1 2 11 11

TABLE 4. Two teams in (N, <).

dramatic is the difference between ~ =(t1,...,t,) and = =(t1,...,t,).
The former says some s and s’ in the team give the same value to
(t1,...,tn—1) but a different value to t,, while the latter says there
are no agents in the team at all. Finally ~=() is the type of no team.
Thus we have two negations, = and ~, but the former can be applied
to atomic types only. Its range of applicability can be extended to
what we call ~-free part of team logic.

Conjunction ¢ A ¢: The team is both of type ¢ and of type ¥. The
team of Table 3 is of type x3 = x4 A 22 = 24.

Tensor ¢ ® 1: The team is the union of a team of type ¢ and a team
of type . Team 5 is of type paints ®welds. This indicates the role
of ® in expressing co-operation skills of teams. The team of Table 3 is
of type =(z3,z2) ® =(x3,x2), as Table 4 shows. Note that that team
is not of type =(x3,x2). So tensor is not idempotent as conjunction
is.

Existential quantifier 3x,,¢: The agents s € X can be modified to
s(as/n) in such a way that the team {s(as/n);s € X} is of type
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. The team of Table 3 is of type Jz1(z1 < x2) and also of type
dus (2135 < 132).

e Shriek quantifier !z, p: A team X is of this type if the team of all
agents s(a/n), where a € M and s € X, is of type ¢. The team of
Table 3 is of type ! z1(z1 < 23 ® 22 < x1). but not of type ! z1(z2 <
xl).

More formally:

Definition 3.1. Let L be a vocabulary. The set of types is defined as
follows: If ¢,t',t1,...,t, are terms of the vocabulary L, and R is a relation
symbol in L, then the following are types

t=t.

-t =1t

Rty.. .ty
~Rty ... tn.
—(t1,... tn)
=t tn)

If ¢ and v are types, then so are:

PN
P @ .
Jxne.
.

The concept “team X is of type ¢” is defined as follows:
o X is of type t = ¢ iff for all s € X (¢(s) = t/(s)).

X is of type —t = ¢’ iff for all s € X (t(s) # t'(s)).

X is of type Rty ...t, iff for all s € X (¢t1(s),...,t,(s)) € RM.

X is of type =Rty .. .t, iff for all € X (t1(s),...,ta(s)) ¢ RM.

X is of type =(t1,...,t,) iff for all s,s" € X([t1(s) = t1(s')&
o &tn_1(s) = tn—1(s")] implies t,(s) = t,(s)).

X is of type = =(t1,...,t,) iff X = 2.

X is of type ~ ¢ iff X is not of type ¢.

X is of type ¢ A9 iff X is both of type ¢ and of type .
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e X isof type p @ ¢ iff X =Y UZ, where Y is of type ¢ and Z is of
type .

e X is of type 3z, iff there is a function s — as from X to M so that
the team {s(as/n);s € X} is of type ¢.

e X is of type lz, ¢ iff the team {s(a/n):a € M,s € X} is of type .
We can define further types from the above ones:

e Disjunction ¢ V 4: This is the type ~(~ @ A ~1), i.e. the type of
teams that are of type ¢ or of type ¥ (or both).

e Universal quantifier Vz,,: This is the type ~ 3z, ~ ¢, i.e. the type of
teams X such that whenever the agents s € X are modified to some
s(as/n), then the new team {s(as/n);s € X} is of type ¢.

e Implication ¢ — v: This is the type ~ ¢ V 1.

e Lollipop ¢ —o 1: This is the type ~(¢ ® ~1), i.e. if whenever it is
represented as the union of two teams the first of which is of type ¢,
then the other one is of type .

There are exactly two teams with empty domain, namely & and {@}.
From these we get exactly four different types of teams with empty domain:

Symbol | Type | Teams
T =0 |@.{z}

1
L |~==0| {2}
0 -=() 1%}
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Definition 3.2. Suppose ¢ is a type of a team with empty domain.* We
define M = ¢ to mean that the team {@} is of type ¢ in M. We then say
M is of type .

In a sense, team logic is a four-valued logic. The dependence values of
types p ® ¥, p A, and ~ @ for types ¢ and ¥ of teams with empty domain
can be readily given in terms of truth-tables:

o r - H®
— 4= -4
HFHEFEHE
e e
or- o
o= >
=R e
FHEFEHE
=2
oo o

=
= o - |2

Here are some examples of types: The type
=(z0,21) ® =(20, 71)

is the type of teams in which field 1 depends on field 0 in the weaker sense
than functional dependence that the values of field 0 determine at most
two values one of which is the value in field 1. Table 5 is an example of

R

=

Salary
2000
2100
2150
2220
2340
2440
2500
3100
3200
3710

ZEOTQQwWE > |8

TABLE 5. Does salary depend on rank?

a team which is of type =(Rank, Salary) ® =(Rank, Salary). If we denote
=(zg, 1) by p, we get weaker and weaker forms of functional dependence
by considering the types

PR
PRPYRY
PRPYR®PR P

4 That is, ¢ is a ‘sentence’, it has no free variables.
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The type
=(wo, 1) A =(21,T0)

is the type of teams in which field 0 depends functionally on field 1 and
conversely field 1 depends functionally on field 0. We could say that fields
0 and 1 are mutually functionally dependent. The type

Xy =T1 Q T2 = T3

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3). The type

—Xo = T1 ® Ty = T3

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3). The type

(m70 =71 @ ¥2 = 23) A\ (-T2 = T3 ® T0 = 71)

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3) and vice versa. The type

—(wo = 1)

(
(

! $()E|J?1 ! $QE|ZZ?3(=(ZZ?2, 133) N
A —|$0=$2®$1=$3)

A (w1 =29 ® 13 = T0))

is the type of teams which are non-empty if and only the underlying set M
is either infinite or finite and of even cardinality. The type

=t !$2§|$3(=(ZIJ2,$3) A (_‘PZIJO ® (Q;El A
(mwg =12 ®@ 11 = T3)

(mz1 =23 ® B0 = 72))))

is the type of teams which are non-empty if and only if in the underlying
structure M the predicate P and Q satisfy |PM| < |QM].

4 Modes of dependence and independence

We shall now use the above concept of dependence type to analyze in more
general terms different concepts of dependence and independence.

Let X be a team with domain {m4,...,m,} in a domain M, as in
Table 1. There is an obvious partial order in the powerset of {m1, ..., my},
namely the set-theoretical subset-relation C. We now define a new relation,
called the pre-order of functional dependence:
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V<W  Vis functionally dependent on W, i.e. features in V' can be
determined if the values of the features in W are known.
In symbols, Vs, s’ € X((Vy € W(s(y) = s'(y)) — (Vz €
V(s(z) = s'(x))))). Equivalently: V is functionally depen-
dent on {wy, ..., w,}, if for all y € V there is a function f,
such that for all s in X: s(y) = fy(s(w1),...,s(wn)).

It is evident from the definition that the pre-order of functional depen-
dence is weaker than the partial order of inclusion in the sense that every
subset of a set obviously depends functionally on the set itself. It is more
interesting that sometimes a set is functionally dependent on a set disjoint
from itself, and a singleton set may be functionally dependent of another
singleton set. Some sets may be functionally dependent on the empty set
(in that case the feature has to have a constant value). Every set is certainly
functionally dependent on the whole universe.

Note that the Armstrong Axioms of functional dependence (see [Ar74])
state exactly the following:

1. V < W is a pre-order, i.e. reflexive and transitive.

2. If VCW, then V <W.

3. f V <W and U is arbitrary, then VUU < W UU.

4. If V. < W, then there is a minimal U C W such that V < U.

These axioms characterize completely when a functional dependence V< W
follows from given functional dependencies V; < Wh,...,V, < W,.

Now we can define two versions of dependence, by using the pre-order
of determination. Suppose for W NV = &. We define:

V is dependent on W There is some minimal U > V such
that UNV =g and W CU.

V is totally dependent on W For every U > V such that UNV =
& we have W C U.

V is independent of W There is some U > V such that U N
V=gand WNU = 2.

V is totally independent of W  For every minimal U > V such that
UNV =2 we have WNU = 2.

V is non-determined Thereisno U > V such that UNV =

@. In the opposite case V is called
determined.
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star food | drink | music
Marlon | pasta | wine classical
Jack pasta | beer classical
Robert | steak | wine rock
Julia steak | beer rock

TABLE 6. Team of favorites.

Note, that it is quite conceivable that two sets V and W of features are
mutually dependent in the sense that both depend on each other. In the
team of Table 6 we can make the following observations: star depends on
food, since {star}<{food, drink}. On the other hand, star depends also
on music, since {star}<{drink, music}. So star is not totally dependent
on either food or music but it is totally dependent on drink.

Note that the above concepts are defined with respect to the fields that
we have in the domain. Indeed, it seems meaningless to define what inde-
pendence means in a domain where any new fields can be introduced. The
new fields can change independence to dependence completely.

Here are some immediate relationships between the introduced concepts
of dependence and independence:

1. Every V is totally dependent and totally independent on &.

2. If V is (totally) dependent on W, then V is (totally) dependent on
every subset of W.

3. If V is dependent on W, it can still be also independent of W, but
not totally, unless W = &.

4. V is independent of {x} if and only if V is not totally dependent on
{z}.

5. V is totally independent of {x} if and only if V' is not dependent on
{z}.

IfU ={uy,...,up} and V ={v1,..., 0}, let =(U, V) be the type

=(U1, ..., Up, V).

-

i=1

This is the type of teams in which V is functionally dependent on U. It is
clear that we can define dependence, independence total dependence, total
independence, and non-determinedness in terms of the basic types =(U, V).
We suggest that the types of team logic provide a proper framework for an
analysis of the variety of different concepts related to dependence.
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5 Team algebra

Let D be a fixed domain and 7 the set of all teams with domain D. Let us
is of type ¢ and vice versa. We call
Boolean operations A, V,~ together
with T and L obey usual laws of Boolean algebras, and the mapping

write ¢ < 1 if every team of type ¢
this relation logical equivalence. The

hp) ={X € T : X is of type ¢}.

is a homomorphism between dependence types, endowed with the operations

A,V and ~, and the Boolean algebra of subsets of 7:

h(p A ¥)
h(p V)
h(~p) =
h(T) =
h(L) =

The operation ® satisfies the laws

Y
o ® (Y 0)
o ® (Y Vo)
pR L1
p®0
191
TRT

KR A R

but
P @(WA0D)
A ®0)
eV (P ®0)
YR
For quantifiers we have
Ve, (p AY) &
YV, Ve, e =
<~

Jzn (o V1)
Jxpdxme =

te e

h(v) N ()

h(p) Uh()
T — h(yp)

Ve, o AVr,
Ve, Ve, p
Jxne V Iz,
e N

The shriek ! commutes with every team operation except 3:

lxn ~

! zn(‘? Y 1/))
Lo (o A1)
Lo (o V)
V2, VT, @
R

o000

~lz,p

Lz AN apt)
'z Vizgy
VT ! 2ne
)
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Obviously, there is a lot more one can say about team algebra.

6 Some translations

We show that the ~-free fragment of team logic is equivalent to indepen-
dence friendly logic. To make our result exact we choose what we believe
is the best behaving version of independence friendly logic. This is the
dependence friendly logic in which the quantifier

Fz,\t1 ..t

has the meaning “there is a value for z,, functionally depending on what
the values of tq,...,t,, are, such that ¢”. In the original independence
friendly logic the quantifier

Jx, Ve .. Ve,

had the meaning “there is a value for z,,, independently of what the values
of x1,...,x,, are, such that ¢”. An attempt to understand what “indepen-
dently” might mean here led the author to the considerations of Section 4
and eventually to the more basic concept of functional dependence.

We can easily define a translation ¢ — ¢* of dependence friendly logic
into team logic, but we have to assume that the formula ¢ of dependence
friendly logic is in negation normal form:

(t=t)* = t=t

(=t = t')* = —t=t

(Rty .. .tn)" = Rty...t,

(=Rt ... ty)* = -Rty...t,

(o V) = " @Y

(o A1) = " NY*

(Fzp\t1, .. tap)* = Fxu(=(t1,. - b, Tn) A @*)
(Vz,p)* = lz,p*

It is an immediate consequence of the definitions that for all M, all ¢, and
all X we have

M Ex ¢ in dependence friendly logic if and only if X is of type ¢*.

So we may consider dependence friendly logic a fragment of team logic, and
team logic an extension of dependence friendly logic obtained by adding
classical negation.
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Conversely, we can define a translation ¢ — ¢ of the ~-free fragment
of team logic into dependence friendly logic:

(t=t)* = t=t

(-t =1t)" = —t=t

(Rty...tn)" = Riy...t,

(=Rty ...tn)" = =Rty...ty

(=(t1,- - tn))T = Jzpu\t1,. .., tn1(tn = ), where
Ty 1s not free in ¢

(ﬁ :(tl, ey tn))+ = Hl'o(ﬁl'o = 1‘0)

(p @)t = ptvyt

(pAp)* = ¢t Ayt

(Fzpe)t = 3T, \Tmys s T, where Ty, ..., T,
are the free variables of ¢ other than z,,

(lznp)* = Vet

It is again an immediate consequence of the definitions that for all M, all
v, and all X we have

X is of type ¢ if and only if M |=x T in dependence friendly logic.

The two translations ¢ — ¢* and ¢ — @7 demonstrate clearly that team
logic is built on top of dependence friendly logic, and a fortiori, on top of
independence friendly logic. The addition team logic brings to independence
friendly logic is classical negation. As this paper shows this addition calls
for rather substantial revision of independence friendly logic.

It is well-known® that independence friendly logic can be presented in
the existential fragment X of second order logic. If the same presentation
is applied to team logic, we go up from %1 to the unrestricted second or-
der logic. The proof of the following theorem is an easy adaption of the
corresponding result for independence friendly logic in [Ho97a]:

Theorem 6.1. We can associate with every type ¢(z;,,...,x;, ) in vocab-
ulary L a second order sentence 7, (U), where U is n-ary, such that for all
L-structures M and teams X with dom(X) = {i1,...,4,} the following
conditions are equivalent

1. X is of type ¢ in M.
2. (M, X) E n,(U).

Corollary 6.2. For every type ¢ there is a second order sentence 7, such
that for all models M we have M |= ¢ if and only if M = n,.

5 For details, we refer to [Ho197a].
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With the translation ¢ — 7, we can consider team logic a fragment of
second order logic, even if the origin of team logic in the dependence relation
=(t1,...,tn) is totally different from the origin of second order logic, and
even if the logical operations of team logic are totally different from those
of second order logic.

We could draw many immediate conclusions from Corollary 6.2 and from
what is known about second order logic.

We have given a translation of team logic into second order logic. Now
we give an implicit translation of second and higher order logic in team
logic. The translation is implicit in the sense that it uses new predicates
and an extension of the universe. However, the new predicates and the new
universe are unique up to isomorphism. We omit the quite standard proof
of the following result, which is essentially contained already in [En70] and
[KI’QL&Q79].

Theorem 6.3. Suppose L is a vocabulary and n € N. There is a type ¢
in the vocabulary L' = L U {P, E} such that for all L-structures M there
is a unique (mod =) N of type ¢ with (V' | L)P") = M. Moreover,
we can associate with every sentence 1 of second order logic in vocabulary
L, with no second order variables of arity > n, a dependence type &, in
the vocabulary L’ such that the following conditions are equivalent for all
L-structures M:

1. ME
2. N = & for the unique (mod =) N such that N = ¢ and (N |
L)FY) = M.

Corollary 6.4. A second order sentence 9 has a model if and only if p A&y
is the type of {@} in some model.

With the translation ¢ +— £, we can consider second order logic an
implicitly defined fragment of team logic. An explicit translation, following
Harel [Ha;79], has been constructed by Ville Nurmi.

The decision problem of a logic is the problem, with a sentence ¢ as
input, whether M = ¢ for all M. The consistency problem of a logic is the
problem, with a sentence ¢ as input, whether M = ¢ for some M. The
Léwenheim number of a logic is the smallest cardinal x such that for any
sentence @, if M = ¢ for some M, then M | ¢ for some M of cardinality
< k. The Hanf number of a logic is the smallest cardinal x such that for
any sentence ¢, if M = ¢ for some M of cardinality > &, then M = ¢ for
models M of arbitrarily large cardinality. A logic satisfies the Suslin-Kleene
Interpolation Theorem if every model class which is a relativized reduct of
a definable model class and whose complement has the same property is
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itself a definable model class. The A-extension of a logic is the smallest
extension of it to a logic with the Suslin-Kleene Interpolation Theorem. For
more details concerning these concepts we refer to [BagFe(85].

Corollary 6.5. The decision problems of team logic and second order logic
are recursively isomorphic (and IIo-complete, see [Va01] and Footnote 6).
They have the same Lowenheim and Hanf numbers. They have the same
A-extension.

Note that the corresponding corollary for independence friendly logic
says: The decision problems of independence friendly logic and second order
logic are recursively isomorphic. The consistency problem of independence
friendly logic is co-r.e. while that of second order logic is Xa-complete®. The
Léwenheim and Hanf number of independence friendly logic is Ry, while the
Lowenheim number of second order logic is between the first measurable
and the first supercompact cardinals, if such exist, and the Hanf number of
second order logic is between the first supercompact and the first extendible
cardinal, if such exist (see [Mag71]).

7 Ehrenfeucht-Fraissé game

We now introduce an Ehrenfeucht-Fraissé game adequate for team logic and
use this game to characterize team logic. This game is nothing else than a
“two-directional” version of the Ehrenfeucht-Fraissé game of independence
friendly logic presented in [V&02].

Definition 7.1. Let M and N be two structures of the same vocabulary.
The game EF." has two players and n moves. The position after move m is
a pair (X,Y), where X C M and Y C N%» for some i,,. In the beginning
the position is (&, @) and ip = 0. Suppose the position after move number
m is (X,Y"). There are the following possibilities for the continuation of the
game:

Splitting move: Player I represents X (or Y) as a union X = Xy U X;.
Then player IT represents Y (respectively, X) as a union Y = Yy U Y.
Now player I chooses whether the game continues from the position
(Xo,Yp) or from the position (X7, Y7).

6 We use the notation of Lévy [Lé65]. The Xo-formulas, which are at the same time called
IIp-formulas, are all formulas in the vocabulary {€} obtained from atomic formulas by
the operations —, V, A and the bounded quantifiers 3zo(zo € x1Ap) and Vao(xo € T1 —
¢). The X, 41-formulas are obtained from II,-formulas by existential quantification.
The II,,4+1-formulas are obtained from X,-formulas by existential quantification. A
set P C N is called ¥,-definable if there is a 3, -formula ¢(z¢) of set theory such that
n € P <= ¢(n). A problem is called X, -complete if the set itself is X,,-definable and,
moreover, for every ¥,-definable set X C N there is a recursive function f : N — N such
that n € X <= f(n) € P. The concepts of a II,-definable set and a II,-complete
set are defined analogously.
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FIGURE 3. A splitting move

Duplication move: Player I decides that the game should continue from
the new position
(X (M/im),Y (N/im))-

X(M/n)

‘

FIGURE 4. A duplication move

Supplementing move: Player I chooses a function ' : X — M (or
F :Y — N). Then player II chooses a function G : ¥ — N (re-
spectively, G : X — M). Then the game continues from the position
(X(F/im), Y (Gfim).

After n moves the position (X,,Y,,) is reached and the game ends. Player
IT is the winner, if

X, is of type ¢ in M & Y, is of type ¢ in N
holds for all atomic types ¢(zg,...,z;, —1). Otherwise player I wins.

This is a game of perfect information and the concept of winning strategy
is defined as usual. The game is determined by the Gale-Stewart theorem.
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FIGURE 5. A supplementing move

Define
art(e) = 0if ¢ is atomic,
M eey) = max(qr(p),qr () +1,
aMeAy) = max(qr(p), qr(¥)),
artGrnp) = artt(e)+1,
art(lzne) = artt(e)+1,
at(~p) = a ().

Let Type!” be the set of types ¢ with qr™™(p) < m and with free variables
among xo, . . . , tn—1. We write M =l N, if M = ¢ is equivalent to N |= ¢
for all ¢ in Typeg, and M =71, N if M =l N for all n. Note that there
are for each n and m, up to logical equivalence, only finitely many types in
Type,".

Theorem 7.2. Suppose M and N are models of the same vocabulary.
Then the following conditions are equivalent:

(1) Player IT has a winning strategy in the game EF"(M,N).
(2) M=p, N.

Proof. 1t is easy to prove by induction on m the equivalence, for all n, of
the following two statements:

(3);, Player IT has a winning strategy in the game EF,.- (M, N) in position
(X,Y), where X C M" and Y C N™.

(4)m If ¢ is a type in Type]', then X is of type ¢ in M if and only if V is
of type ¢ in V.

Q.E.D.



Team Logic 301

Corollary 7.3. Suppose M and N are models of the same vocabulary.
Then the following conditions are equivalent:

(1) M =1, N.

(2) For all natural numbers n, player IT has a winning strategy in the game

EFT (M, N).

Using the fact that there are for each n and m, up to logical equivalence,
only finitely many types in Type]"', it is easy to prove that a model class K
is the class of models of a type in Typeg if and only if K is closed under
the relation =}.

From this and the above theorem we get:

Corollary 7.4. Suppose K is a model class. Then the following conditions
are equivalent:

(1) K is the class of models of a type of team logic.
(2) There is a natural number n such that K is closed under the relation

MRN <= Player II has a winning strategy in EF." (M, N).

We have obtained, after all, a purely game-theoretic definition of team logic.
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