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I have argued elsewhere [8] that second order logic provides a foundation
for mathematics much in the same way as set theory does, despite the
fact that the former is second order and the latter first order, but second
order logic is marred by reliance on ad hoc large domain assumptions. In
this chapter I argue that sort logic, a powerful extension of second order
logic, provides a foundation for mathematics without any ad hoc large
domain assumptions. The large domain assumptions are replaced by
ZFC-like axioms. Despite this resemblance to set theory sort logic retains
the structuralist approach to mathematics characteristic of second order
logic. As a model-theoretic logic sort logic is the strongest logic. In fact,
every model class definable in set theory is the class of models of a
sentence of sort logic. Because of its strength sort logic can be used to
formulate particularly strong reflection principles in set theory.

1. Introduction

Sort logic, introduced in [7], is a many-sorted extension of second order
logic. In an exact sense it is the strongest logic that there is. In this paper
sort logic is suggested as a foundation of mathematics and contrasted to
second order logic and to set theory. It is argued that sort logic solves the
problem of second order logic that existence proofs of structures rely on ad
hoc large domain assumptions.

The new feature in sort logic over and above what first and second order
logics have is the ability to “look outside” the model, as for a group to be the
multiplicative group of a field requires reference to a zero element outside
the group, or for a Turing machine, defined as a finite set of quadruples, to
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halt requires reference to a tape potentially much bigger than the Turing
machine itself.

In computer science it is commonplace to regard a database as a many-
sorted structure. Each column (attribute) of the database has its own range
of values, be it a salary figure, gender, department, last name, zip code, or
whatever. In fact, it would seem very unnatural to lump all these together
into one domain which has a mixture of numbers, words, and strings of
symbols. To state that a new column can be added to a database, e.g. a
salary column, involves stating that new elements, namely the salary values,
can be added to the overall set of objects referred to in the database.

In a sense ordinary second order logic also “looks outside” the model
as well as one can think of the bound second order variables as first order
variables ranging over the domain of all subsets and relations on the original
domain. In fact, one of the best ways to understand second order logic is to
think of it as a two-sorted first order logic in which one sort—the sort over
which the second order variables range—is assumed to consist of all subsets
and relations of the other sort. When “all subsets and relations” is replaced
by “enough subsets and relations to satisfy the Comprehension Axioms”,
we get semantics relative to which there is a Completeness Theorem of
Henkin [2]. The same is true of sort logic.

To get a feeling of sort logic, let us consider the following formulation of
the field axioms in a many-sorted first order logic with two sorts of variables.
We use variables x, y and z for the sort of the multiplicative group, and u, v
and w for the sort of the additive group. The function · and the constant
1 are of the first sort and the function + and the constant 0 of the second
sort:

ϕ =






∀x∀y∀z((x · y) · z = x · (y · z))
∀x(x · 1 = 1 · x = x)
∀x∀y(x · y = y · x)
∀x∃y(x · y = 1)

ψ =






∀x∀y∀z((x+ y) + z = x+ (y + z))
∀x(x + 0 = 0 + x = x)
∀x∀y(x+ y = y + x)
∀x∃y(x+ y = 0)
∀x∀y∀z(x · (y + z) = x · y + x · z)
∀x∃u(x = u) ∧ ∀u∃x(u = 0 ∨ u = x) .

(1.1)

We have separated the multiplicative group into the first sort and the ad-
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ditive group in the second sort. With this separation of the group and the
bigger field part we can ask questions such as:

What kind of groups are the multiplicative group of a field?

And the answer is: exactly the groups that satisfy

For some + and for some 0: ϕ ∧ ψ. (1.2)

The truth of the sentence (1.2) in a given group means that there is some-
thing out there outside the group, in this case the element 0, which together
with the new function + defines a field.

For a different type of example, suppose

ϕ (1.3)

is a finite second order axiomatization of some mathematical structure in
the vocabulary {R1, ..., Rn}. Suppose we want to say that ϕ has a model.
So let us take a new unary predicate P and consider the sentence

∃P (∃R1 . . .∃Rnϕ)
(P ), (1.4)

where ψ(P ) means the relativization of ψ to the unary predicate P . What
(1.4) says in a model is that there are a subset P and relations R1, ..., Rn

on P such that (P,R1, ..., Rn) |= ϕ. So in any model which is big enough
to include a model of ϕ the sentence (1.4) says that there indeed is such
a model. But in smaller models (1.4) is simply false, even though ϕ may
have models. So (1.4) does not really express the existence of a model for
ϕ. The situation would be different if we allowed “∃P∃R1 . . . ∃Rn” to refer
to outside the model. In sort logic, which we will introduce in detail below,
the meaning of the sentence

∃̃R1 . . . ∃̃Rnϕ, (1.5)

is that there is a new domain of objects with new relations R1, ..., Rn such
that ϕ holds. Thus (1.5) expresses the semantic consistency of ϕ indepen-
dently of the model where it is considered.

In algebra concepts such as a module P being projective, a group F be-
ing free, etc, are defined by reference to arbitrary modules M and arbitrary
groups G with no concern as to whether such modules M can be realized
inside P , or whether such groups G could be realized inside F . Even if it
turned out that they could be so realized, the original concepts certainly
referred to quite arbitrary objects N and G in the universe of all mathe-
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matical objects. Lesson: Apparently second order concepts in mathematics
sometimes refer to outside the structure being considered.

Reference outside is, of course, most blatant in set theory where objects
are defined by reference to the entire universe of sets. In practice one can in
most cases limit the reference to some smaller part of the universe, but very
often not to the elements or to the power-set of the object being defined.

2. Sort Logic

Many-sorted logic has several domains, and variables for each domain, much
like vector spaces have a scalar-domain and a vector-domain and different
variables for each, or as geometry has different variables for points and lines.
It seems to have been first considered by Herbrand, and later by Schmidt,
Feferman [1], and others.

2.1. Basic concepts

A (many-sorted) vocabulary is any set L of predicate symbols P,Q,R, . . ..
We leave function and constant symbols out for simplicity of presentation.
We use natural numbers as names for sorts.

Each vocabulary L has an arity-function

aL : L → N

which tells the arity of each predicate symbol, and a sort-function

sL : L →
⋃

n

Nn, sL(R) ∈ NaL(R),

which tells what are the sorts of the elements of the tuple in a relation.
Thus if P ∈ L, then P is an aL(P )-ary predicate symbol for a relation of
aL(P )-tuples of elements of sorts n1, . . . , nk, where (n1, . . . , nk) = s(P ). So
we can read off from every n-ary predicate symbol what the sorts of the
elements are in the n-tuples of the intended relation. In other words, we do
not have symbols for abstract relations between elements of arbitrary sorts
(except identity =).

2.2. Syntax

The syntax of sort logic is very close to the syntax of second order logic. In
effect we just add a new form of formula ∃̃Pϕ with the intuitive meaning
that there is a predicate P of new sorts of elements such that ϕ.
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Suppose L is a vocabulary. Variable symbols for individuals are x, y, z, ...
with indexes x0, x1, ... when necessary, and for relations X,Y, Z, ... with
indexesX0, X1, .... Each individual variable x has a sort s(x) ∈ N associated
to it, so it is a variable for elements of sort s(x). Each relation variable X
has an arity a(X) and a sort s(X) ∈ Na(R) associated to it, so it is a
relation variable for a relation between elements of the sorts n1, . . . , nk,
where s(X) = (n1, . . . , nk).

The logical symbols of sort logic of the vocabulary L are
≈,¬,∧,∨, ∀, ∃, (, ), x, y, z, . . . , X, Y, Z, . . .. L-equations are of the form x = y
where x and y can be variables of any sorts. L-atomic formulas are either
L-equations or of the form Rx1 . . . xk, where R ∈ L, sL(R) = (n1, . . . , nk),
and x1, ..., xk are individual variables such that s(xi) = ni for i = 1, . . . , k.
A basic formula is an atomic formula or the negation of an atomic formula.
L-formulas are of the form:

(1) x = y.
(2) R(x1, . . . , xn), when sL(R) = (s(x1), ..., s(xn)).
(3) X(x1, . . . , xn), when s(X) = (s(x1), ..., s(xn)).
(4) ¬ϕ.
(5) (ϕ ∨ ψ).
(6) ∃xϕ.
(7) ∃Xϕ.
(8) ∃̃Xϕ. New Sort Condition: If s(X) = (n1, . . . , nk), then ϕ has no

free variables or symbols of L, other than X , of a sort ni or of the sort
(m1, . . . ,ml) with {m1, . . . ,ml} ∩ {n1, . . . , nk} )= ∅.

The reason for the New Sort Condition is that the domains of the ele-
ments referred to by the free variables of ϕ are fixed already so they should
not be altered by the ∃̃-quantifier.

We treat ϕ ∧ ψ, ϕ → ψ, ∀xϕ and ∀̃Xϕ as shorthands obtained from
disjunction and existential quantification by means of negation.

The concept of a free occurrence of a variable in a formula is defined as in
first order logic. As a new concept we have the concept of a free occurrence
of a sort in a formula. We define it as follows, following the intuition that if
a sort occurs “free” in a formula, either as the sort of an individual variable,
relation variable or predicate symbol, then to understand the meaning of
the formula in a model we have to fix the domain of elements of that
sort. Respectively, if a sort has only “bound” occurrences in a formula, we
can understand the meaning of the formula in a model without fixing the
domain of elements of that sort, rather, while evaluating the meaning of
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the formula in a model we most likely try different domains of elements of
that sort.

The free sorts fs(ϕ) of a formula are defined as follows:

(1) fs(x = y) = {s(x), s(y)}.
(2) fs(Rx1 . . . xn) = {s(x1), ..., s(xn)}.
(3) fs(Xx1 . . . xn) = {s(x1), ..., s(xn)}.
(4) fs(¬ϕ) = fs(ϕ).
(5) fs(ϕ ∨ ψ) = fs(ϕ) ∪ fs(ψ).
(6) fs(∃xϕ) = fs(ϕ) ∪ {s(x)}.
(7) fs(∃Xϕ) = fs(ϕ) ∪ {n1, . . . , nk}, if s(X) = (n1, . . . , nk).
(8) fs(∃̃Xϕ) = fs(ϕ) \ {n1, . . . , nk}, if s(X) = (n1, . . . , nk).

2.3. Axioms

Below ϕ(y/x) means the formula obtained from ϕ by replacing x by y in
its free occurrencies. Substitution should respect sort.

Definition 2.1: The axioms of sort logic are as follows:
Logical axioms:

• Tautologies of propositional logic.
• Identity axioms: x = y, x = y → y = x, (x1 = y1 ∧ ...∧xn = yn ∧ϕ) →
ϕ(y1...yn/x1...xn), for atomic ϕ

• Quantifier axioms:

– ϕ(y/x) → ∃xϕ, if y is free for x in ϕ in the usual sense.
– ϕ(Y/X) → ∃Xϕ, if Y is free for X in ϕ in the usual sense.
– ϕ(Y/X) → ∃̃Xϕ, if Y is free for X in ϕ in the usual sense.

The rules of proof:

• Modus Ponens {ϕ,ϕ→ ψ} |= ψ
• Generalization

– {Σ,ϕ→ ψ} |= ∃xϕ→ ψ, if x is not free in Σ ∪ {ψ}
– {Σ,ϕ→ ψ} |= ∃Xϕ→ ψ, if X is not free in Σ ∪ {ψ}
– {Σ,ϕ→ ψ} |= ∃̃Xϕ→ ψ, if no free sorts of ψ occur in s(X).

First Comprehension Axiom:

∃X∀y1...∀ym(Xy1...ym ↔ ψ)

for any formula ψ not containing X free, whenever s(X) =
(s(y1), . . . , s(ym)).
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Second Comprehension Axiom:

∃̃X∀y1...∀ym(Xy1...ym ↔ ψ)

for any formula ψ not containing X free, whenever s(X) =
(s(y1), . . . , s(ym)).

The logical axioms and the rules of proof are clearly indispensable and
are directly derived from corresponding axioms and rules of first order logic.
The difference between the axioms ϕ(Y/X) → ∃Xϕ and ϕ(Y/X) → ∃̃Xϕ
is the following: Both take ϕ(Y/X) as a hypothesis. The conclusion ∃Xϕ
says of the current sorts that a relation X satisfying ϕ exists, namely, Y .
If s(X) = (n1, . . . , nk), then the conclusion ∃̃Xϕ says of the sorts other
than n1, . . . , nk that domains for the sorts n1, . . . , nk exists so that in the
combined structure of the old and new domains a relation X satisfying ϕ
exists, namely, Y . The Comprehension Axiom is the traditional (impred-
icative) axiom schema which gives second order logic, and in our case sort
logic, the necessary power to do mathematics [3]. In individual cases less
comprehension may be sufficient but this is the general schema. The differ-
ence between the First and the Second Comprehension Axioms is that the
former stipulates the existence of a relationX defined by ψ in the structure
consisting of the existing sorts, while the latter says that this is even true
if the sorts of elements and relations that ψ

If we limit ourselves to just one sort, for example 0, we get exactly the
classical second order logic.

2.4. Semantics

We now define the semantics of sort logic. This is very much like the se-
mantics of second order logic, except that we have to take care of the new
domains that may arise from interpreting quantifiers of the form ∃̃ and ∀̃.

Definition 2.2: An L-structure (or L-model) is a function M defined on
L with the following properties:

(1) If R ∈ L and s(R) = (n1, ..., nk) then ni ∈ dom(M) and Mni =df

M(ni) is a non-empty set for each i ∈ {1, ..., k}.
(2) If R ∈ L is an k-relation symbol and s(R) = (n1, ..., nk), then M(R) ⊆

Mn1 × . . .×Mnk .

We usually shorten M(R) to RM. If no confusion arises, we use the
notation

M = (Mn1 , . . . ,Mnl ;R
M
1 , . . . , RM

m )
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for a many-sorted structure with universes Mn1 , . . . ,Mnl and relations
RM

1 , . . . , RM
m between elements of some of the universes. A vector space

with scalar field F and vector group V would be denoted according to this
convention (taking functions and constant relationally):

(V, F ; · , 1, + , 0).

Definition 2.3: An assignment into an L-structure M is any function s
the domain of which is a set of individual variables, relation variables and
natural numbers such that

(1) If x ∈ dom(s), then s(x) ∈ dom(M) and s(x) ∈ Ms(x).
(2) If X ∈ dom(s) with sL(X) = (n1, . . . , nk), then n1, . . . , nk ∈ dom(M)

and s(X) ⊆ Mn1 × . . .×Mnk .

A modified assignment is defined as follows:

s[a/x](y) =

{
a if y = x
s(y) otherwise.

s[A/X ](Y ) =

{
A if Y = X
s(Y ) otherwise.

Suppose s(X) = (n1, . . . , nk). A model M′ is an X-expansion of a model
M if {n1, . . . , nk}∩dom(M) = ∅, dom(M′) = dom(M)∪{n1, . . . , nk}, and
M′ ! dom(M) = M.

Definition 2.4: The truth of L-formulas inM under s is defined as follows:

(1) M |=s R(x1, . . . , xn) if and only if (s(x1), . . . , s(xn)) ∈ M(R),
(2) M |=s x = y if and only if s(x) = s(y),
(3) M |=s ¬ϕ if and only if M !s ϕ,
(4) M |=s (ϕ ∨ ψ) if and only if M |=s ϕ or M |=s ψ,
(5) M |=s ∃xϕ if and only if M |=s[a/x] ϕ for some a ∈ Ms(x),
(6) M |=s ∃Xϕ if and only if M |=s[A/X] ϕ for some A ⊆ Mn1 × . . .×Mnk ,

where s(X) = (n1, . . . , nk),
(7) M |=s ∃̃Xϕ if and only if M′ |=s[A/X] ϕ for some X-expansion M′ of

M and some A ⊆ M ′
n1

× . . .×M ′
nk
, where s(X) = (n1, . . . , nk).

Since (7) of the above truth definition involves unbounded quantifiers
over sets, the definition has to be given separately for formulas of quantifier-
rank at most a fixed natural number n. When n increases, the definition
itself gets more complicated in the sense of the quantifier rank.
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As in second order logic, there is a looser concept of a model, one relative
to which we can prove a Completeness Theorem. This concept permits also
a uniform definition.

Definition 2.5: A Henkin L-structure (or Henkin L-model) is a triple
(M,U ,G), where M is an L-structure, U is a set such that ∅ /∈ U and
G is a set of relations between elements of the domains of M and the sets
in U . We assume that the First and the Second Comprehension Axioms are
satisfied by (M,U ,G) in the sense defined below.

The idea is that U gives a set of possible domains for the new sorts
needed for the truth conditions of the ∃̃-quantifiers, and G gives a set of
possible relations needed for the truth conditions of the ∃-quantifiers. Since
U is not the class of all sets (as it is a set) and G need not be the set of
all relevant relations, the structures (M,U ,G) are more general than the
structures M. The original structures M are called full.

An assignment and a modified assignment for a Henkin L-structure
(M,U ,G) is defined as for ordinary structures. Suppose s(X) =
(n1, . . . , nk). A model M′ is an X-expansion in U of a model M if
{n1, . . . , nk} ∩ dom(M) = ∅, dom(M′) = dom(M) ∪ {n1, . . . , nk}, M′ !
dom(M) = M, and M′(ni) ∈ U for all i = 1, . . . , k.

Definition 2.6: The truth of L-formulas in (M,U ,G) under s is defined
as follows:

(1) (M,U ,G) |=s R(x1, . . . , xn) if and only if (s(x1), . . . , s(xn)) ∈ M(R),
(2) (M,U ,G) |=s x = y if and only if s(x) = s(y),
(3) (M,U ,G) |=s ¬ϕ if and only if (M,U ,G) !s ϕ,
(4) (M,U ,G) |=s (ϕ∨ψ) if and only if (M,U ,G) |=s ϕ or (M,U ,G) |=s ψ,
(5) (M,U ,G) |=s ∃xϕ if and only if (M,U ,G) |=s[a/x] ϕ for some a ∈ Ms(x),
(6) (M,U ,G) |=s ∃Xϕ if and only if (M,U ,G) |=s[A/X] ϕ for some A ∈

P(Mn1 × . . .×Mnk) ∩ G, where s(X) = (n1, . . . , nk),
(7) (M,U ,G) |=s ∃̃Xϕ if and only if (M,U ,G)′ |=s[A/X] ϕ for some X-

expansion M′ of M in U and some A ∈ P(M ′
n1

× . . .×M ′
nk
)∩G, where

s(X) = (n1, . . . , nk).

The following characterization of provability in sort logic is proved as
the corresponding result for type theory [2]:

Theorem 2.7: (Completeness Theorem) The following conditions are
equivalent for any sentence ϕ of sort logic and any countable theory T of
sort logic:
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(1) T |= ϕ.
(2) Every Henkin model of T satisfies ϕ.
(3) Every countable Henkin model of T satisfies ϕ.

This characterization shows that our axioms for sort logic capture the
intuition of sort logic in a perfect manner, at least if our Henkin semantics
does. Out Henkin semantics is very much like that of second order logic.

3. Sort Logic and Set Theory

In this chapter we look at sort logic from the point of vies of set theory.

Definition 3.1: We use ∆n to denote the set of formulas of sort logic
which are (semantically) equivalent both to a Σn-formula of sort logic, and
to a Πn-formula of sort logic.

Theorem 3.2: [7][6] The following conditions are equivalent for any model
class K and for any n > 1:

(1) K is definable in the logic ∆n.
(2) K is ∆n-definable in the Levy-hierarchy.

Proof: We give the proof only in the case n = 2. The general case is similar.
Suppose L is a finite vocabulary and A is a second order characterizable
L-structure. Suppose σ is the conjunction of a large finite part of ZFC. Let
us call a model (M,∈) of θ supertransitive if for every a ∈ M every element
and every subset of a is in M . Let Sut(M) be a Π1-formula which says
that M is supertransitive. Let Voc(x) be the standard definition of “x is
a vocabulary”. Let SO(L, x) be the set-theoretical definition of the class
of second order L-formulas. Let Str(L, x) be the set-theoretical definition
of L-structures. Let Sat(A,ϕ) be an inductive truth-definition of the Σ2-
fragment of sort logic written in the language of set theory. Let

P (z, x, y) = Voc(z) ∧ Str(z, x) ∧ SO(z, y) ∧
∃M(z, x, y ∈ M ∧ σ(M) ∧ Sut(M) ∧ (Sat(z, x, y))(M)) .

Now if L is a vocabulary, A an L-structure, then A |= ϕ ⇐⇒ P (L,A,ϕ).
This shows that A |= ϕ is a Σ2 property of A and L.

For the converse, suppose the predicate Φ is a Σ2 property of L-
structures. There is a Σ2-sentence ϕ of sort logic such that for all M,
M ∈ K off M |= ϕ.
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Suppose Φ = ∃x∀yP (x, y,A), a Σ2-property of A. Let ψ be a sort
logic sentence the models of which are, up to isomorphism, exactly the
models A for which there is (Vα,∈), with α = "α, A ∈ Vα, and
(Vα,∈) |= ∃x∀yP (x, y,A). If ∃x∀yP (x, y,A) holds, we can find a model
for ψ by means of the Levy Reflection principle. On the other hand, sup-
pose ψ has a model A. W.l.o.g. it is of the form (Vα,∈) with A ∈ Vα.
Let a ∈ Vα such that (Vα,∈) |= ∀yP (a, y,A). Since in this case Hα = Vα,
(Hα,∈) |= ∀yP (a, y,A), where Hα is the set of sets of hereditary cardi-
nality < α. By another application of the Levy Reflection Principle we get
(V,∈) |= ∀yP (a, y,A), and we have proved ∃x∀yP (x, y,A).

By a model class we mean a class of structures of the same vocabulary,
which is closed under isomorphisms. In the context of set theory classes are
referred to by their set-theoretical definitions.

The following consequence was mentioned in [5] without proof:

Corollary 3.3: [7][6] Every model class is definable in sort logic. Sort logic
is therefore the strongest logic.

The logics ∆n, n = 2, 3, . . ., provide a sequence of stronger and stronger
logics. Their model theoretic properties can be characterized in set theo-
retical terms as the following results indicate:

Theorem 3.4: [7] The Hanf-number of the logic ∆n is δn. The Löwenheim
number of the logic ∆n is σn. The decision problem of the logic ∆n is the
complete Πn-definable set of natural numbers.

Theorem 3.5: [4] The LST-number of ∆2 is the first supercompact cardi-
nal.

Theorem 3.6: The LST-number of ∆3 is at least the first extendible car-
dinal.

Theorem 3.7: The decision problem of ∆n is the complete Πn-set of nat-
ural numbers.

4. Sort Logic and Foundations of Mathematics

We suggest that sort logic can provide a foundation of mathematics in the
same way as second order logic, with the strong improvement that it does
not depend on the ad hoc Large Domain Assumptions of set theory.
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We will now think of foundations of mathematics from the point of view
of sort logic. Propositions of mathematics are—according to the sort logic
view—either of the form

A |= ϕ,

where A is a structure, characterizable in sort logic, and ϕ is a sentence of
sort logic, or else of the form

|= ϕ,

where again ϕ is a sentence of sort logic. Thus a proposition of mathematics
either states a specific truth, truth in a specific structure, or a general truth,
truth in all structures. The specific truth can be reduced to the general truth
as follows. Suppose θA is a sort logic sentence which characterizes A up to
isomorphism. Then

A |= ϕ ⇐⇒ |= θA → ϕ.

Curiously, and quite unlike the case of second order logic, the con-
verse holds, too. Suppose ϕ is a sort logic sentence in which the predicates
P1, ..., Pk occur only. Let X1, . . . , Xk be new unary predicate variables of
sorts s(P1), ..., s(Pk) respectively. Then

|= ϕ ⇐⇒ A |= ∀̃X1 . . . ∀̃Xkϕ(X1 . . .Xk/P1 . . . Pk)

)|= ϕ ⇐⇒ A |= ¬∀̃X1 . . . ∀̃Xkϕ(X1 . . . Xk/P1 . . . Pk).

Intuitively this says that a sort logic sentence which talks about the pred-
icates P1, . . . , Pk in some domains is valid if and only if whatever new
domains and interpretations we take for P1, . . . , Pk, ϕ is true. Since the
general truth is reducible to specific truth we may focus on specific truth
only, without loss of generality.

What is the justification we can give to asserting A |= ϕ? We can prove
from the axioms of sort logic the sentence θA → ϕ. Of course, we may have
to go beyond the standard axioms of sort logic, but much of mathematics
can be justified with the sort logic axioms that we have.

What is the justification for asserting that ϕ has a model, i.e. ¬ϕ is
not valid? By the above it suffices to prove from the axioms the sentence
¬∀̃X1 . . . ∀̃Xkϕ(X1 . . . Xk/P1 . . . Pk). If we compare the situation of sort
logic with that of second order logic the difference is that in second order
logic we have to make so-called “large domain assumptions” to justify ex-
istence of mathematical structures, while in sort logic we can simply prove
them from the general Comprehension Axioms. But here comes a moment
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of truth. Can we actually prove the existence of the structures necessary in
mathematics from the mere Comprehension Axioms?

In fact we need more axioms to supplement the First and the Second
Comprehension Axiom.

Definition 4.1: Power Sort Axiom:

∃̃Y (∀u∃z1(u = z1) ∧ ∀z1∃u(u = z1)∧
∀x∀y(∀z1 . . .∀zn(Y xz1 . . . zn ↔ Y yz1 . . . zn) → x = y)∧
∀X∃x∀z1 . . . ∀zn(Xz1 . . . zn ↔ Y xz1 . . . zn)),

(4.1)

where

s(X) = (s(z1), . . . , s(zn))
s(Y ) = (s(x), s(z1), . . . , s(zn))
s(x) = s(y)
s(z1) = . . . = s(zn).

Note that in the Power Sort Axiom only s(u) occurs free, so it is an
axiom about models with one sort, namely s(u). Naturally the models may
consist of other sorts as well, this axiom just does not say anything about
those sorts. The sort s(z1) is just an auxiliary copy of the sort s(u), as the
conjunct ∀u∃z1(u = z1) ∧ ∀z1∃u(u = z1) stipulates. The sort s(x) is a new
sort which codes the n-ary relations on the domain s(u). The coding is done
by means of the predicate Y .

Lemma 4.2: Every full model satisfies the Power Sort Axiom.

Proof: Suppose M is a (full) model and s is an assignment into M. Let
us fix X , Y , and x, y, z1, . . . , zn such that s(X) = (s(z1), . . . , s(zn)), s(Y ) =
(s(x), s(z1), . . . , s(zn)), s(x) = s(y) and s(z1) = . . . = s(zn). Let N be like
M except that there is a new sort s(u) (or if this sort existed in M it is
now replaced) with universe P(Ms(x)) and Ns(z1) = Ms(u). Let s

′ be like s
except that

s′(Y ) = {(a, b1, . . . , bn) ∈ Ns(x) ×Ms(u) × . . .×Ms(u) : (b1, . . . , bn) ∈ a}.

Now s′ satisfies in N the formula

∀x∀y(∀z1 . . .∀zn(Y xz1 . . . zn ↔ Y yz1 . . . zn)) → x = y)∧
∀X∃x∀z1 . . . ∀zn(Xz1 . . . zn ↔ Y xz1 . . . zn)),

Hence s satisfies in M the formula (4.1).
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Definition 4.3: Infinite Sort Axiom:

∃̃X(∀x∀y∀z((Xxy ∧Xxz) → y = z)
∀x∀y∀z((Xxz ∧Xyz) → x = y)
∀x∃yXxy
∃z∀x∀y(Xxy → ¬y = z))

(4.2)

where s(X) = (s(x), s(x)) and s(x) = s(y) = s(z).

Lemma 4.4: Every full model satisfies the Infinite Sort Axiom.

Proof: Suppose M is a (full) model and s is an assignment into M. Let us
fix X , and x, y, z such that s(X) = (s(x), s(x)), and s(x) = s(y) = s(z). Let
M′ be like M except that there is a new sort s(x) (or if this sort existed
in M it is now replaced) with universe ω. Let s′ be like s except that

s′(X) = {(n, n+ 1) : n ∈ ω}.

Now s′ satisfies in M′ the formula

∀x∀y∀z((Xxy ∧Xxz) → y = z)
∀x∀y∀z((Xxz ∧Xyz) → x = y)
∀x∃yXxy
∃z∀x∀y(Xxy → ¬y = z) .

Hence s satisfies in M the formula (4.2).

The Power Sort Axiom, reminiscent of the Power Set Axiom of set
theory, is necessary for arguing about the existence of new sorts of elements.
The Infinite Sort Axiom is required for arguing about infinite domains, just
as we need the Axiom of Infinity in set theory. Note that the Power Sort
Axiom or the Infinite Sort Axiom do not imply that we have only infinite
or uncountable models. By the above lemmas these axioms are true in all
models, even finite ones.

With the above two new axioms we can construct mathematical struc-
tures up to any cardinality < "ω, as if we were working in Zermelo’s set
theory. For bigger structures we have to make stronger assumptions, and
they probably have great similarity with the Replacement Axiom of set the-
ory. The point is that in second (and higher) order logic we have to make
ad hoc Large Domain Assumptions as we go from structure to structure,
while in sort logic we need only make general assumptions about domains,
as axioms of set theory postulate general properties of sets.

So what is the difference between sort logic and set theory? Despite its
proximity to set theory, sort logic is still a logic, like first order logic, second



September 16, 2013 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 05˙Vaananen˙SG˙2011˙new

Sort Logic and Foundations of Mathematics 185

order logic, infinitary logic, etc. Sort logic treats mathematical structures up
to isomorphism only, there is no preference of one construction of a structure
over another, and this is in line with common mathematical thinking about
structures. In its model theoretic formulation sort logic gives rise to in-
teresting reflection principles via its Löwenheim-Skolem-Tarski properties.
Finally, sort logic provides a natural model theoretic forum for investigat-
ing complicated set theoretical properties of models, without going into the
nuts and bolts of the constructions of specific structures.

As the strongest logic sort logic is an ultimate yard-stick of definability
in mathematics. Any property that is isomorphism invariant can be mea-
sured by sort logic. The canonical hierarchy ∆n (n < ω) inside sort logic
climbs up the large cardinal hierarchy by reference to Hanf-, Löwenheim-
and Skolem-Löwenhem-Tarski-numbers, reaching all the way to Vopenka’s
Principle. The model classes that are ∆2 in the Levy-hierarchy are exactly
the model classes definable in the ∆-extension of second order logic. Sort
logic provides a similar characterization of model classes that are ∆n in
the Levy-hierarchy for n > 2. Is this too strong a logic to be useful? For
logics as strong as sort logic the main use is in definability theory. But sort
logic has also a natural axiomatization, complete with respect to a natural
concept of a Henkin model, so we can also write inferences in sort logic.
This is an alternative way of looking at mathematics to set theory, one in
which definition rather than construction is the focus.
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