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Abstract

The semantics of the independence friendly logic of Hintikka and Sandu is usually defined via a game
of imperfect information. We give a definition in terms of a game of perfect information. We also
give an Ehrenfeucht-Fräıssé game adequate for this logic and use it to define a Distributive Normal
Form for independence friendly logic.
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1 Introduction

We consider a logic IF which is the closure of atomic and negated atomic formulas
of first order logic under the operations

(1) ∧,
(2) ∨/vi1 . . . vik ,
(3) ∀,
(4) ∃vn/vi1 . . . vik ,

where n 6∈ {i1, . . . ik}. This is, mutatis mutandis, the independence friendly logic of
Hintikka and Sandu [4]. The intuitive interpretation of φ ∨ /vi1 . . . vikψ is “φ or ψ
independently of vi1 , ..., vik .” Likewise, the interpretation of ∃vn/vi1 . . . vik is “there
exists vn independently of vi1 , ..., vik .” The extended independence friendly logic EIF
is the Boolean closure of IF , that is, the closure of the set of sentences of IF under
the operations

(1) ∧,
(5) ¬,

which are understood classically.
Hintikka and Sandu define the semantics of IF via a non-determined game of

imperfect information. Hodges [5] gives for his independence friendly logic an induc-
tive truth definition a’la Tarski, which actually makes the semantics compositional.
Caicedo and Krynicki [1] use a variation of Hodges’ truth-definition and prove a
Prenex Normal Form Theorem.

For first order logic it is customary to define truth in terms of the concept of a
sequence satisfying a formula in a structure. However, here we have to deal with se-
quences in which some elements are independent of some others. But it does not make
sense to speak about independence of elements in a single sequence. For example, we
may have the sequence

12 32 51
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for interpreting the variables v0, v1 and v2. It does not make sense to say that 51 is
independent of 12. But if we have a set of sequences, such as

12 32 51
17 32 51
3 32 51
10 46 58
2 46 58
17 46 58
19 46 58

there is a clear sense in which the third elements 51 and 58 are independent of the
first element of each triple. This interpretation of independence is an essential feature
of the semantics given by Hodges ([5, 6]). The treatment of Caicedo and Krynicki is
also based on sets of sequences.

Thus we define the concept of a set X of sequences satisfying a formula φ. For or-
dinary first order formulas this is equivalent to saying that every individual sequence
in the set X satisfies φ. We show that by defining the basic concepts of semantics
systematically in this higher order setting, we get for IF not only a compositional
Tarski-style semantics as in Hodges [6], but also a game-theoretic semantics of per-
fect information, and an Ehrenfeucht-Fräıssé game. The Ehrenfeucht-Fräıssé game is
likewise a game of perfect information. The new games are all determined.

The Ehrenfeucht-Fräıssé game is used in Section 5 to analyse IF in terms of the
so called Distributive Normal Form, introduced for first order logic by Hintikka [3].
This is a normal form obtained by pushing quantifiers of a formula in a sense as deep
as possible. So it is a kind of opposite for the Prenex Normal Form.

2 Notation

The variables vi1 , ..., vik in ∃/vi1 . . . vik and ∨/vi1 . . . vik are considered free occur-
rences of variables in the formula. We treat vi1 , ..., vik in /vi1 . . . vik as a set. So
/vi1 . . . vik is in fact a shorthand for /{vi1 ...vik}. We further shorten ∨/∅ to ∨ and
∃/∅ to ∃. If vi1 , ..., vik covers all the free variables of φ and ψ, then we write

φ⊕ ψ

for φ ∨ /vi1 , ..., vikψ. This is the classical totally independent disjunction.
Suppose A is a structure with universe A. If W ⊆ ω, let AW be the set of functions

f : W → A. We use S(AW ) to denote the power set of AW . Let X ∈ S(AW ), F :
X → B for some set B, and V ⊆ W . We say that F is V -uniform ([5]) if for all
f, g ∈ X we have

(∀n ∈W \ V )(f(n) = g(n)) ⇒ F (f) = F (g).

If W ⊆ ω,X ∈ S(AW ), F : X → A, f ∈ X, a ∈ A and n ∈ ω, we define f [a, n] ∈
AW∪{n} by:

f [a, n](m) =
{
a , if m = n
f(m) , otherwise
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and
X [F, n] = {f [F (f), n] : f ∈ X}.

Furthermore, let
X [A;n] = {f [a, n] : a ∈ A, f ∈ X}.

3 Semantics

We define the satisfaction relation for the logic IF . Our definition is like [6]. For
sentences this gives the same semantics as [4].

Definition 3.1 ([6]) Let A be a structure. The notion

A |=X φ

is defined by the following inductive definition for all W ⊆ ω, X ∈ S(AW ), V ⊆ {vn :
n ∈ W} and all formulas φ of IF with free variables among vn, n ∈ W .

(1) A |=X φ ⇐⇒ (∀f ∈ X)(A |= φ(f(i1), ..., f(im)), when φ(vi1 , ..., vim) is an
atomic or negated atomic formula.

(2) A |=X φ ∧ ψ ⇐⇒ (A |=X φ and A |=X φ)
(3) A |=X φ ∨ /vi1 . . . vikψ ⇐⇒ (∃F : X → 2)(A |=F−1({0}) φ and A |=F−1({1})

ψ and F is {i1, ..., ik}-uniform )
(4) A |=X ∀vnφ ⇐⇒ A |=X[A;n] φ

(5) A |=X ∃vn/vi1 . . . vikφ ⇐⇒ (∃F : X → A)(A |=X[F,n] φ and F is {i1, ..., ik}-
uniform )

For sentences φ we define

A |= φ ⇐⇒ A |={∅} φ ( ⇐⇒ A |=An φ).

The logical consequence φ |= ψ is defined to mean

∀A∀X(A |=X φ⇒ A |=X ψ)

and logical equivalence of φ and ψ is defined to mean that both φ |= ψ and ψ |= φ.

We consider the variables vi1 . . . vik as occurring free in ∃vn/vi1 . . . vikφ.

Example 3.2 Let φ be the formula ∃v1/v0(v0 = v1). Then φ∨φ 6|= φ, but φ⊕φ |= φ.
Thus φ ∨ φ and φ⊕ φ are not logically equivalent.

The following lemma is well-known, but we give a proof to illustrate the truth-
definition:

Lemma 3.3 Suppose A is a set and R ⊆ A4. We prove that the following conditions
are equivalent:

(1) (A,R) |= ∀v0∀v1∃v2/v1∃v3/v0v2R(v0, v1, v2, v3)

(2) (A,R) |=
( ∀v0 ∃v2
∀v1 ∃v3

)
R(v0, v1, v2, v3).
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Proof. Let A = (A,R). Suppose first (1). Thus

A |=A2 ∃v2/v1∃v3/v0v2R(v0, v1, v2, v3).

Therefore there is a {1}-uniform F : A2 → A such that

A |=X ∃v3/v0v2R(v0, v1, v2, v3),

where X = {h ∈ A3 : h(2) = F (h(0), h(1))}. By the uniformity of F , we can write
F (a, b) as f(a) for some f : A → A. Thus X = {h ∈ A3 : h(2) = f(0)}. Let
G : X → A be {0, 2}-uniform such that

A |=X[G,3] R(v0, v1, v2, v3).

Since G(a, b, f(a)) only depends on b, we can write it as g(b) for some g : A → A.
Now X [G, 3] = {h ∈ A4 : h(2) = f(0), h(3) = g(1)} and (2) follows.

Conversely, suppose (2) holds, that is, there are functions f : A → A and g :
A → A such that for all a, b ∈ A we have (a, b, f(a), g(b)) ∈ R. If we define G by
G(a, b, f(a)) = g(b) and let X = {(a, b, f(a)) : a, b ∈ A}, we have

A |=X[G,3] R(v0, v1, v2, v3),

whence
A |=X ∃v3/v0v2R(v0, v1, v2, v3).

If we now define F (a, b) = f(a), we have

A |=(A2)[F,2] ∃v3/v0v2R(v0, v1, v2, v3),

whence
A |=A2 ∃v2/v1∃v3/v0v2R(v0, v1, v2, v3),

and (1) follows. 2

Corollary 3.4 Let φ(P,Q) be the sentence ∀v0∀v1∃v2/v1∃v3/v0, v2((¬P (v0)∨¬v0 =
v1 ∨ (v2 = v3 ∧Q(v2))) ∧ (¬Q(v2) ∨ ¬v2 = v3 ∨ (v0 = v1 ∧ P (v0))) Then A |= φ(P,Q)
if and only if PA and QA are equinumerous.

We shall next give the above semantics in terms of a semantic game. This game
seems to be new. There are two players called I and II. A position in the game is a
pair p = (φ,X), where φ is a formula, called the formula of the position, X ∈ S(AW ),
and the free variables of φ are among vn, n ∈W .

Definition 3.5 Let A be a structure. The game

G(A, φ)

is defined by the following inductive definition for all sentences φ of IF . The type of
the move of each player is determined by the position as follows:
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(1) The position is (φ,X) and φ = φ(vi1 , ..., vik) is atomic or negated atomic. Then
the game ends. Player II wins if

(∀f ∈ X)(A |= φ(f(i1), ..., f(ik))).

Otherwise player I wins.
(2) The position is (φ ∧ ψ,X). Now player I chooses whether the game continues

from position (φ,X) or (ψ,X).
(3) The position is (φ∨ /vi1 . . . vikψ,X). Now player II chooses F : X → 2 such that

F is {i1, ..., ik}-uniform and then player I chooses whether the game continues
from position (φ, F−1({0})) or (ψ, F−1({1})).

(4) The position is (∀vnφ,X). Now the game continues from the position (φ,X [A;n]).
(5) The position is (∃/vi1 . . . vikφ,X). Now player II chooses F : X → A such that F

is {i1, ..., ik}-uniform and then the game continues from the position (φ,X [F, n]).

In the beginning, the position is (φ, {∅}).
The above game is a game of perfect information: the strategies of both play-

ers are allowed to depend on the whole sequence of previous positions. Hence it is
determined by the Gale-Stewart theorem [2], as a zero-sum game of perfect informa-
tion. For example, if A has at least 2 elements, player I has a winning strategy in
G(A, ∀v0∃v1/v0(v0 = v1)). The winning strategy consists of player I doing nothing,
player II simply has only losing moves.

Theorem 3.6 A |= φ if and only if player II has a winning strategy in G(A, φ).

Proof. We use induction to prove the following more general claim. Suppose X ∈
S(AW ). Then the following conditions are equivalent for every formula φ of IF with
free variables among vn, n ∈W :

(1) A |=X φ

(2) Player II has a winning strategy G(A, φ) in position (φ,X)

If φ is atomic or negated atomic, the claim follows from definitions. Also the case
φ = θ ∧ ψ is trivial.

Suppose φ = θ ∨ /vi1 . . . vikψ and (1) holds. Let F : X → 2 be {i1 . . . in}-uniform
such that A |=F−1({0}) θ and A |=F−1({1}) ψ. Player II starts G(A, φ) in position
(φ,X) by playing F . No matter how player I wants to continue, player II has a
winning strategy by induction hypothesis. Conversely, if (2) holds and the winning
strategy of II gives F such that II wins from position (φ, F−1({0})) and from position
(φ, F−1({1})), and then again the induction hypothesis implies (1).

Suppose φ = ∃vn/vi1 . . . vikψ and (1) holds. Let F : X → A be {i1 . . . in}-
uniform such that A |=X[F,n] ψ. By induction hypothesis, player II wins in position
(ψ,X [F, n]). Conversely, if (2) holds, the winning strategy of II gives a {i1 . . . in}-
uniform F : X → A and the induction hypothesis gives from this (1). 2

Every sentence of IF is equivalent to a Σ1
1-sentence of second order logic, that is,

a formula of the form
∃R1...∃Rnφ,
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where R1, ..., Rn are new predicate symbols and φ is first order. Conversely, every
Σ1

1-sentence of second order logic is equivalent to a sentence of IF . A sentence of IF
has a negation if and only if it is first order definable (For IF-logic this was pointed
out in [7]).

4 Characterizing definability and elementary equivalence

Let
A ≡>IF B ⇐⇒ ∀φ ∈ IF(A |= φ⇒ B |= φ)

and
A ≡IF B ⇐⇒ ∀φ ∈ IF(A |= φ⇔ B |= φ).

Since IF contains first order logic and first order logic is closed under negation,
A ≡>IF B implies the ordinary elementary equivalence A ≡ B of first order logic.
Therefore A ≡>IF B implies A ∼= B and hence A ≡IF B in the domain of finite
models. We point out later that this is not so for infinite models. Note thatA ≡IF B is
equivalent to elementary equivalence of A and B in the extended independence friendly
logic EIF . So to make a difference between the ordinary IF and the extended EIF
on the level of elementary equivalence it is necessary to study the relation A ≡>IF B
rather than the stronger A ≡IF B. Corollary 4.9 and Proposition 4.10 below further
show that ≡>IF is the right concept of elementary equivalence for IF .

We now introduce an Ehrenfeucht-Fräıssé game adequate for IF and use this game
to characterize ≡>IF .

Definition 4.1 Let A and B be two structures of the same vocabulary. The game
EFn has two players and n moves. The position after move m is a pair (X,Y ), where
X ⊆ Aim and Y ⊆ Bim , im ≤ m. In the beginning the position is ({∅}, {∅}). After
move m− 1 the position is (Xm−1, Ym−1) and there are the following possibilities for
the continuation of the game:

Case 1: Player I chooses a function F : Xm−1 → 2 and vi1 , ..., vik ⊆ {v0, ..., vm−2}
such that F is {i1, . . . , ik}-uniform. Then player II chooses a function G : Ym−1 →
2 such that G is i1, . . . , ik-uniform. Now player I chooses i < 2 and the game
continues from position (F−1({i}), G−1({i})).

Case 2: Player I decides that the game should continue from the new position

(Xm−1[A;m], Ym−1[B;m]).

Case 3: Player I chooses a function F : Xm−1 → A and vi1 . . . vik ⊆ {0, ...,m − 2}
such that F is V = {i1, . . . , ik}-uniform. Then player II chooses a function G :
Ym−1 → B such that G is V -uniform. Then the game continues from the position
(Xm−1[F,m], Ym−1[G,m]).

After n moves the position (Xn, Yn) is reached and the game ends. Player II is the
winner, if

A |=Xn φ⇒ B |=Yn φ

holds for all atomic and negated atomic formulas φ. Otherwise player I wins.
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This is also a game of perfect information and the concept of winning strategy is
defined as usual. The game is determined by the Gale-Stewart theorem ([2]).

Lemma 4.2 Suppose A is an infinite model and B a finite model of the empty vo-
cabulary. Then player I has a winning strategy in EF4.

Proof. The first move of player I uses Case 3 with V = ∅: He chooses an element
a ∈ A and the function F : {∅} → A defined by F (∅) = a. Suppose II answers with
G : {∅} → B mapping G(∅) = b. The game continues in position ({a}1, {b}1). Next
player I demands that the game continues in position ({a}1[1], {b}1[1]). Let f be a one
to one mapping of A into A\{a}. We let player I play now V = ∅ and F ′(a, x) = f(x)
as in Case 3. Player II answers with G′. Let X = {(a, x, f(x)) : x ∈ A} and
Y = {(b, y,G′(b, y)) : y ∈ B}. Let g(x) = G′(b, x). Then g cannot be one to one
from B into B \ {b}. Let us first assume g(c) = b for some c ∈ B. Thus (b, c, b) ∈ Y
does not satisfy the negated atomic sentence ¬(v0 = v2), while every sequence in X
satisfies it. Thus I has won. Let us then assume g(c) = g(d) for some c 6= d ∈ B. In
this case player I chooses V = {1} and F ′′(a, x, f(x)) = x. (This is like in [1, Example
1.4]). Since f is one to one, F ′′ is V -uniform. Suppose player II responds with G′′.
It is clear that I has won. 2

Definition 4.3 The set Fmlmvi1 ...vik
of IF-formulas of rank ≤ m in free variables

vi1 , ..., vik is defined as follows:

• Fml0vi1 ...vik
is the set of atomic and negated atomic formulas in variables vi1 , ..., vik .

• If φ and ψ are in Fmlmvi1 ...vik
, so then is φ ∧ ψ.

• If φ0, φ1 ∈ Fmlmvi1 ...vik
, then φ0 ⊕ φ1 is in Fmlmvi1 ...vik

.

• If φ0, φ1 ∈ Fmlmvi1 ...vik
, then φ0 ∨ /vj1 . . . vjlφ1 is in Fmlm+1

vi1 ...vik
vj1 ...vjl

.

• If φ is in Fmlmvi1 ...vik
, then ∀vnφ is in Fmlm+1

{vi1 ,...,vik
}\{vn}.

• If φ is in Fmlmvi1 ...vik
, then ∃vn/vj1 . . . vjlφ is in Fmlm+1

({vi1 ,...,vik
}∪{vj1 ,...,vjl

})\{vn}.

Let us write A ≡>nIF B, if A |= φ implies B |= φ for all sentences φ in Fmln∅ , and
A ≡nIF B, if A |= φ is equivalent to B |= φ for all sentences φ in Fmln∅ .

Theorem 4.4 Suppose A and B are models of the same vocabulary. Then the fol-
lowing conditions are equivalent:

(1) Player II has a winning strategy in the game EFn(A,B).
(2) A ≡>nIF B.

Proof. If n ∈ ω,W ⊆ ω, f ∈ An and π : n → W is a bijection, let π(f) ∈ AW such
that π(f)(i) = f(π(i)) for i = 0, ..., n− 1. If X ⊆ An, let πX be the set of π(f) with
f ∈ X . We prove the equivalence of the following two statements:

(3)m Player II has a winning strategy in the game EFm(A,B) in position (X,Y ),
where X ⊆ An and Y ⊆ Bn.

(4)m If φ = φ(vi0 , ..., vin−1) is a formula in Fmlmvi0 ,...,vin−1
, then A |=πX φ⇒ B |=πY φ,

where π(j) = ij for j = 0, ..., n− 1.
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The proof is by induction on m. The case m = 0 is true by construction. Let us then
assume (3)m ⇐⇒ (4)m as an induction hypothesis. Assume now (3)m+1 and let
φ = φ(vi0 , ..., vin−1) be a formula in Fmlm+1

vi0 ,...,vin−1
such that

A |=πX φ.

Case 1: φ = ψ0 ∨ /vi1 . . . vikψ1, where ψ0, ψ1 ∈ Fmlmvj1 ,...,vjn
. By assumption there

is a {i1, . . . , ik}-uniform F : πX → 2 such that for all i < 2 A |=F−1({1}) ψi. We
let I play F ′ and V = {i1, . . . , ik}, where F ′ : X → 2 such that F ′(f) = F (π(f))
for f ∈ X . Then II plays a V -uniform G′ : Y → 2 and the game continues in some
position (F ′−1({i}), G′−1({i})) according to the choice of I. We claim that for all i < 2

B |=πG−1({i}) ψi.

Let us consider B |=πG−1({i}) ψi. We let I demand that the game continues in
position (F ′−1({i}), G′−1({i})). Let G : πY → 2 such that G′(g) = G(π(g)) for
g ∈ Y . The induction hypothesis and the equation (πX)F−1({0}) = π′(F ′−1({i}))
give B |=(π′Y )G−1({0}) ψi. Now B |=πY φ follows.

Case 2: φ = ∀vinψ, where ψ ∈ Fmlmvi0 ,...,vin
. By assumption, A |=(πX)[A;in] ψ.

We let now I demand that the game continues in position (X [A;n], Y [B;n]). The
induction hypothesis and the equation (πX)[A; in] = π′(X [A;n]), where π′ extends π
by π′(n) = in, give B |=π′(Y [B;n]) ψ. Now B |=πY φ follows trivially.

Case 3: φ = ∃vin/vi1 . . . vikψ, where ψ ∈ Fmlm+1
{vj1 ,...,vjl

}∪{vi1 ,...,vik
}. By assumption

there is a {i1, . . . , ik}-uniform F : πX → A such that A |=(πX)[F,in] ψ. We let I
play F ′ and i1, . . . , ik, where F ′ : X → A such that F ′(f) = F (π(f)) for f ∈ X .
Then II plays a {i1, . . . , ik}-uniform G′ : Y → B and the game continues in position
(X [F ′, n], Y [G′, n]). Let G : Y → B such that G′(g) = G(π(g)) for g ∈ Y . The
induction hypothesis and the equations (πX)[F, in] = π′(X [F ′, n]) and (πY )[G, in] =
π′(Y [G′, n]), where π′ extends π by π′(n) = in, give B |=(π′Y )[G,in] ψ. Now B |=πY φ
follows.

To prove the converse implication, assume (4)m+1. To prove (3)m+1 we consider
the possible moves that player I can make in the position (X,Y ).

Case 1: Player I chooses a function F : X → 2 and a set V ⊆ {0, ..., n− 1} such that
F is V -uniform. Let φj , j < M be a complete list (up to equivalence) of formulas in
Fmlmvi0 ,...,vn−1

. Let {j1, ..., js} = {it : t ∈ V }. Let π(j) = ij for j = 0, ..., n− 1 and

M i = {j < M : A |=π(F−1({i})) φj}.
Let F ′ : πX → n such that F ′(π(f)) = F (f) for f ∈ X . Now

M i = {j < M : A |=F ′−1({i}) φj},
whence

A |=πX

∧
j∈M0

φj ∨
∧
j∈M1

φj



4. CHARACTERIZING DEFINABILITY AND ELEMENT. EQUIVALENCE 347

and hence
B |=πY

∧
j∈M0

φj ∨
∧
j∈M1

φj .

Thus there is a {j1, ..., js}-uniform G′ : πY → 2 such that for all i < n

B |=G′−1({i})
∧
j∈M0

φj .

Now we let player II play a G : Y → 2 such that G′(πf) = G(f). The game continues
from position (F−1({i}), G−1({i})) for some i < 2. Suppose player I wants to continue
in position (F−1({i}), G−1({i})). Given that now

A |=π(F−1({i})) φ⇒ B |=π(G−1({i})) φ

for all φ ∈ Fmlmvi1 ...vin
, the induction hypothesis implies that II has a winning strategy

in position (F−1({i}), G−1({i})).
Case 2: Player I decides that the game should continue from the new position
(X [m], Y [m]). We claim that

A |=π(X[m]) φ⇒ B |=π(Y [m]) φ

for all φ(vi0 , ..., vin) ∈ Fmlmvi0 ,...,vin
, where π(j) = ij for j = 0, ..., n. From this

the induction hypothesis would imply that II has a winning strategy in position
(X [m], Y [m]). So let us assume A |=π(X[m]) φ, where φ ∈ Fmlm. By definition,

A |=π′X ∀vinφ,

where π′ is the restriction of π to the set {0, ..., n−1}. Since ∀vinφ ∈ Fmlm+1, (4)m+1

gives
B |=π′Y ∀vinφ

and B |=π(Y [m]) φ follows.

Case 3: Player I chooses a function F : X → A and a set V ⊆ {0, ..., n − 1} such
that F is V -uniform. Let φi, i < M be a complete list (up to equivalence) of formulas
in Fmlmvi0 ,...,vin

. Let {j1, ..., js} = {it : t ∈ V }. Let π(j) = ij for j = 0, ..., n and

M0 = {i < M : A |=π(X[F,n]) φi}.

Let F ′ : πX → A such that F ′(π(f)) = F (f) for f ∈ X . Now

M0 = {i < M : A |=(πX)[F ′,in] φi},

whence
A |=πX ∃vin/vj1 ...vjs

∧
i∈M0

φi

and hence
B |=πY ∃vin/vj1 ...vjs

∧
i∈M0

φi.
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Thus there is a {j1, ..., js}-uniform G′ : πY → B such that

B |=(πY )[G′,in]

∧
i∈M0

φi.

Now we let player II play a G : Y → B such that (πY )[G, in] = π′(Y [G′, n]). The
game continues from position (X [F, n], Y [G,n]). Given that now

A |=π(X[F,n]) φ⇒ B |=π(Y [G,n]) φ

for all φ ∈ Fmlmvi1 ...vin
, the induction hypothesis implies that II has a winning strategy

in position (X [F, n], Y [G,n]). 2

Corollary 4.5 Suppose A and B are models of the same vocabulary. Then the fol-
lowing conditions are equivalent:

(1) A ≡>nIF B.
(2) For all natural numbers n, player II has a winning strategy in the game EFn(A,B).

Corollary 4.6 Suppose A and B are models of the same vocabulary. Then the fol-
lowing conditions are equivalent:

(1) A ≡IF B.
(2) For all natural numbers n, player II has a winning strategy both in the game

EFn(A,B) and in the game EFn(B,A).

The two games EFn(A,B) and EFn(B,A) can be put together into one game by
simply making the moves of the former symmetric with respect to A and B. Then
player II has a winning strategy in this new game if and only if A ≡nIF B. Instead of
a game we could have used a notion of a back-and-forth sequence.

The Ehrenfeucht-Fräıssé game can be used to prove non-expressibility results for
IF , but we do not yet have examples where a more direct proof using compactness,
interpolation and Löwenheim-Skolem theorems would not be simpler.

Proposition 4.7 There are countable models A and B such that A ≡>IF B, but
B 6≡IF A.

Proof. Let A be the standard model of arithmetic. Let Φn, n ∈ ω be the list of all
Σ1

1-sentences true in A. Suppose

Φn = ∃Rn1 ...∃Rnkn
φn.

Let A∗ be an expansion of A in which each φn is true. Let B∗ be a countable non-
standard elementary extension of A∗. Let B be the reduct of B∗ to the language of
arithmetic. By construction, A ≡>IF B. On the other hand, B 6≡>IF A as non-
wellfoundedness of the integers in B can be expressed by a Σ1

1-sentence and hence by
a sentence of IF . 2

Let us say that a model class K is closed under the relation ≡>nIF , if A ∈ K and
A ≡>nIF B imply B ∈ K.
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Proposition 4.8 Suppose K is a model class and n is a natural number. Then the
following conditions are equivalent:

(1) K is definable in IF by a sentence in Fmln∅ .

(2) K is closed under the relation ≡>nIF .

Proof. Suppose K is the class of models of φ ∈ Fmln∅ . If A |= φ and A ≡>nIF B, then
by definition, B |= φ. Conversely, suppose K is closed under ≡>nIF . Let

φA =
∧
{φ ∈ Fmln∅ : A |= φ},

where the conjunction is taken over a finite set which covers all such φ up to logical
equivalence. Let θ be the disjunction of all φA, where A ∈ K. Again we take the
disjunction over a finite set up to logical equivalence. We show that K is the class of
models of θ. If A ∈ K, then A |= φA, whence A |= θ. On the other hand, suppose
A |= φB for some B ∈ K. Now B ≡>nIF A, for if B |= φ and φ ∈ Fmln∅ , then φ is
logically equivalent with one of the conjuncts of φB, whence A |= φ. As K is closed
under ≡>nIF , we have A ∈ K. 2

Corollary 4.9 Suppose K is a model class. Then the following conditions are equiv-
alent:

(1) K is definable in IF .

(2) There is a natural number n such that K is closed under the relation ≡>nIF .

The above corollary gives also a characterization of Σ1
1-definability in second order

logic. No assumptions about cardinalities are involved, so if we restrict to finite
models we get a characterization of NP-definability.

Proposition 4.10 Suppose K is a model class. Then the following conditions are
equivalent:

(1) K is definable in EIF .

(2) There is a natural number n such that K is closed under the relation ≡nIF .

Proof. Suppose (2) holds. Let

φA =
∧
{φ ∈ Fmln∅ : A |= φ} ∧

∧
{¬φ ∈ Fmln∅ : A 6|= φ},

where the conjunction is made finite. Let θ be the (finite) disjunction of all φA, where
A ∈ K. We show that K is the class of models of θ. If A ∈ K, then A |= φA, whence
A |= θ. On the other hand, suppose A |= φB for some B ∈ K. Now B ≡n A, for if
B |= φ and φ ∈ Fmln∅ , then φ is one of the conjuncts of φB, whence A |= φ. On the
other hand, if B 6|= φ, then ¬φ is one of the conjuncts of φB, whence A 6|= φ. As K is
closed under ≡n, we have A ∈ K. 2
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5 Distributive normal forms

Definition 5.1 Suppose A is a model, X ⊆ Am and n is a natural number. We define
the constituent φnA,X as follows:

φ0
A,X =

∧
ψ

ψ(v0, ..., vm−1)

φn+1
A,X =

∧
F1,V1

(φnA,F−1({0}) ∨ /V1 φnA,F−1({1})) ∧

∀vmφnA,X[A,m] ∧
∧
F2,V2

∃vm/V2 φnA,X[F2,m],

where ψ ranges over all atomic and negated atomic formulas ψ(v0, ..., vm−1) which
every (a0, ..., an−1) ∈ X satisfies in A, F1 and V1 range over all F1 : X → 2 and
V1 ⊆ {0, ..., n−1} for which F1 is V1-uniform, and F2 and V2 range over all F2 : X → A
and V2 ⊆ {0, ..., n− 1} for which F2 is V2-uniform. Let

Cn,m

be the (finite) set of all constituents φnA,X , where A is a model and X ⊆ Am.

Note, that φnA,X ∈ Fmlnv0,...vm−1
and always A |=X φnA,X . The proof is an easy

induction on n.

Proposition 5.2 Suppose A,B are models, X ⊆ Am, Y ⊆ Bm and n is a natural
number. Then the following conditions are equivalent:

(1) B |=Y φnA,X
(2) Player II has a winning strategy in the game EFn(A,B) in position (X,Y )
(3) If φ ∈ Fmlnv0,...,vm−1

, then A |=X φ implies B |=Y φ.

Proof. The equivalence is essentially contained in the proof of Theorem 4.4.2

Theorem 5.3 (Distributive Normal Form) If φ ∈ Fmlnv0...vm−1
, then there are

φ0, ..., φk ∈ Cn,m such that φ and φ0 ⊕ ...⊕ φk are logically equivalent.

Proof. Let {φ0, ..., φk} be the finite list of all φnA,X for which A |=X φ. To prove the
logical equivalence of φ and φ0 ⊕ ...⊕ φk, suppose first B |=Y φ. Then φnB,Y is one of
the φi, so B |=Y φ0 ⊕ ... ⊕ φk. Conversely, suppose B |=Y φnA,X for some A and X
with A |=X φ. By Proposition 5.2, B |=Y φ. 2

The original constituents of Hintikka for first order logic have a strong maximality
property: any two mutually consistent constituents of the same level are logically
equivalent. This implies the uniqueness of the Distributive Normal Form. We may ask
to what extent our Distributive Normal Form is unique. The following observations
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seems to suggest that the uniqueness of the Distributive Normal Form is characteristic
to first order logic.

Let us call a constituent φnA,X m-maximal, if

φmB,Y |= φnA,X

holds for all φmB,Y which are consistent with φnA,X .

Proposition 5.4 Suppose A is a model, X ⊆ Al and n is a natural number. Then
the following are equivalent:

(1) φnA,X is first order definable.
(2) φnA,X is m-maximal for some m.

Proof. (1)→(2):
Let m be a natural number such that ¬φnA,X is definable in Fmlmvi1 ,...,vil

. We show
that φnA,X is m-maximal. Suppose therefore, that D |=U φmB,Y ∧ φnA,X . To prove
that φmB,Y → φnA,X , suppose C |=Z φmB,Y . If C |=Z ¬φnA,X , then C |=Z φmB,Y and
Proposition 5.2 imply B |=Y ¬φnA,X . Now D |=U φmB,Y and Proposition 5.2 imply
D |=U ¬φnA,X , a contradiction.

(2)→(1): We show

C 6|=Z φ
n
A,X ⇐⇒ C |=Z

⊕
{φmB,Y : {φmB,Y , φnA,X} inconsistent}.

To prove the implication from right to left, suppose C |=Z φmB,Y with {φmB,Y , φnA,X}
inconsistent. Then, of course, C 6|=Z φnA,X . For the converse implication, suppose
C 6|=Z φnA,X . Then C |=Z φmC,Z , so all we have to show is that {φmC,Z , φnA,X} is incon-
sistent. But if D |=U φmC,Z ∧ φnA,X , then m-maximality implies φmC,Z |= φnA,X , which
immediately gives C |=Z φ

n
A,X , a contradiction. 2

The following result shows that maximality fails for non-first order constituents in
a particularly strong way.

Proposition 5.5 There are models A and B such that for all natural numbers n:

(1) {φnA, φnB} is consistent
(2) φnA 6|= φ5

B
(3) φnB 6|= φ5

A

Proof. We consider a vocabulary with just one unary predicate symbol P . Let three
models for this vocabulary be defined as follows:

A = (R,Q)
B = (R,R \Q)
C = (Q,N),

Where R,Q and N are the sets of real, rational and natural numbers, respectively. A
simple downward Löwenheim-Skolem argument shows thatA ≡>IF C and B ≡>IF C,
whence (1) holds. It is easy to write a sentence ψ in Fml5∅ which expresses the existence
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of a one-one function from the whole universe into P . Thus ψ is true in B but not in
A. Hence B 6≡>5

IF A and (2) holds. (3) follows by symmetry. 2

In first order logic the distributive normal form has a uniqueness feature: if two
disjunctions of non-trivial constituents φ1 ∨ ... ∨ φn and φ′1 ∨ ... ∨ φ′m are equivalent,
then each φi is equivalent with some φ′j and vice versa. This is based on the fact that
constituents that are mutually consistent are actually equivalent. With the notation
of the above proof we have in IF mutually consistent non-equivalent constituents
φ5
A, φ

5
B and φ5

C and the non-uniqueness of the Distributive Normal Form of φ5
C : The

sentences φ5
C , φ

5
C ⊕ φ5

A and φ5
C ⊕ φ5

B are all logically equivalent.
It should be noted that first order definability of an IF -formula does not mean

that the formula behaves otherwise like a first order formula. A well-known example
is

∀v0∃v1/v0(v0 = v1).

This sentence is logically equivalent to a first order sentence and hence has a negation
in IF , but this negation is not the result of a syntactic operation on the original
formula. Rather, the negation is the result of a semantic consideration. A more
dramatic example is the following: It is easy to write down an IF-sentence φ ∈ Fml200∅
of the empty vocabulary which says that the universe has size at most 2100. So the
relatively short sentence φ is first order definable, but neither φ nor its negation has
a short first order definition, in fact none of quantifier-rank ≤ 2100.
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