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SECOND ORDER LOGIC OR SET THEORY?

JOUKO VÄÄNÄNEN

Abstract. We try to answer the question which is the “right” foundation of mathematics,

second order logic or set theory. Since the former is usually thought of as a formal language

and the latter as a first order theory, we have to rephrase the question. We formulate what

we call the second order view and a competing set theory view, and then discuss the merits of

both views. On the surface these two views seem to be in manifest conflict with each other.

However, our conclusion is that it is very difficult to see any real difference between the two.

We analyze a phenomenonwe call internal categoricitywhich extends the familiar categoricity

results of second order logic to Henkin models and show that set theory enjoys the same kind

of internal categoricity. Thus the existence of non-standard models, which is usually taken as

a property of first order set theory, and categoricity, which is usually taken as a property of

second order axiomatizations, can coherently coexist when put into their proper context. We

also take a fresh look at complete second order axiomatizations and give a hierarchy result

for second order characterizable structures. Finally we consider the problem of existence in

mathematics from both points of view and find that second order logic depends on what we

call large domain assumptions, which come quite close to the meaning of the axioms of set

theory.
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§1. Introduction. Two views of the nature of mathematics seem to be in
utter conflict with each other. One is what we will call the second order
viewwhich takes the concept of structure as the basic notion in mathematics
and stipulates that mathematics is simply the study of the higher order
properties of such structures. According to this view it is immaterial and
even misleading to discuss what the elements of such structures are, as the
structures are taken up to isomorphism only. The apparently opposing view
is the set theory view which takes mathematical objects (i.e., sets) and their
membership relation as the basic notion and builds all of mathematics from
this basic concept, not only up to isomorphism but to identity.
Both views have their appeal. Let us first discuss the appeal of the second
order view. It is indeed immaterial in mathematics what kind of objects for
example the real numbers are, as long as they satisfy the axioms of completely
ordered fields. We know that there is, up to isomorphism, only one such
field, namely R, and giving preference to one construction of the reals over
another seems unfounded. The same applies to the natural numbers N, the
complex numbers C, the Euclidean spaces Rn, the free group of countably
many generators, the Banach spaces !p, and so on. Typically mathematical
research takes place in one of these classical structures making reference
to elements, subsets, and relations on the structure, in some cases also to
families of subsets, all well handled by second (or higher) order logic on the
particular structure. There is no need for a universal theory of mathematical
objects which would show how all these structures and their properties are
reduced to some more basic objects (“sets”) and their properties (“ZFC-
axioms”). This mode of thinking is sometimes called structuralism as it
emphasizes structures; as it finds the search for a universal foundation of
mathematics unnecessary, it is sometimes thought of as anti-foundationalist.
Let us then consider the other side, the set theory view. According to
this view it is an important achievement that most if not all of mathematics
can be reduced to the concept of set, whose properties have an intuitively
appealing axiomatization. If there is ever doubt concerning a mathematical
argument, one only needs to reduce it to set theory and if this can be done,
the argument can be declared correct. In this reduction it may turn out
that strong principles like the Axiom of Choice are invoked and this may
deserve a special mention in the result, and raise the question whether the
use was essential. As compared with the second order view, this approach is
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foundationalist1 in spirit. However, set theorists do not claim that mathe-
matical objects really are sets, only that they can be thought of as sets. The
fact that set theorists define the ordered pair (a, b) as {{a}, {a, b}} does not
mean that set theorists claim that ordered pairs have to be defined in this
way, or in any way for that matter. The operation (x, y) could be taken as an
undefined basic concept in addition to ∈. However, there is certain beauty
in having as few basic concepts as possible, and taking only ∈ is a kind of
record—hard to beat. Since variables in set theory are thought to range over
sets, that is, elements of the universe, set theory is usually thought of as a
first order theory.
The conflict between the two views is obvious: The second order view says
that building everything from one ingredient (sets) is not necessary and leads
to questions that cannot really be answered andwhich touch only very lightly
on “core mathematics” if at all. The second order view also points out that
the first order axioms ZFC of set theory have non-standard models, while
the second order axiomatizations of the classical structures are categorical.
The set theory view maintains that, contrary to the second order view, in
order to know the second order properties of infinite structures one needs
some axioms, be they axioms of second order logic or set theory, and these
axioms have non-standard models in both cases. Even if one takes separate
axioms for each structure there is a common core in these axioms, and this,
according to the set theory view, is the foundation on which second order
logic rests. Here then is the foundationalist/anti-foundationalist divide: is
there a unitary concept of mathematical truth, or are there separate notions
of truth each based on its own structure?
This paper ends with an investigation of the existence of mathematical
objects. For second order logic this means the existence of structures. We
point out, and give some technical results to this effect, that one cannot give
evidence in the form of proofs from the axioms of second order logic for the
existence of a mathematical structure, unless we already know the existence
of at least one structure of at least the same cardinality. It is not at all clear,
and we leave it as an open problem, how to formulate an axiom of second
order logic that would remedy this weakness. Any axiom that states the
largeness of the universe would be false in all structures of smaller size and
therefore cannot be called an axiom. So we would seem to need an axiom
that refers to the “outside” of a structure. If we could state the existence of
large structures “outside” our domain, as superstructures in a sense, then
we would have some way of solving this problem. In Section §6 we discuss
extensions of second order logic, such as sort logic and higher order logics,
which offer some ways to refer to a superstructure. We also discuss how set
theory solves this problem.

1By foundationalism I mean here the position that all mathematics can be reduced to one
concept (here the concept of a set) and to axioms governing this concept (such as the ZFC
axioms of set theory).
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We conclude that the second order view suffers from a weakness that the
set theory view solves easily. It is tempting to adopt the set theory view as
the primary view and then formulate the second order view as a secondary
view which appeals to set theory for the existence of structures, but this ruins
the autonomy of the second order view with respect to set theory.

§2. The second order view. In the early years of the 20th century the basic
classical structures N,R,C,Rn,Cn, and so on, of number theory, geometry,
algebra and analysis were axiomatized by Peano, Dedekind, Cantor, Hilbert,
Veblen and Huntington (see e.g., [2]). These axiomatizations were second
order and their first order versions (axiom schemata) were introduced only
later.
The second order view sees mathematics as formulated most intelligibly in
second order logic. According to this view the propositions of mathematics
are of the form

A |= φ, (1)

where A is one of the classical structures and φ is a second (or higher) order
sentence. Both A and φ have some finite vocabulary, which we assume to be
a first order vocabulary, although higher order vocabularies are needed, for
example in topology. The nature of the vocabulary is, however, not impor-
tant for our discussion. The meaning of (1) is that whatever φ asserts about
the elements, subsets, relations, etc of A, is true in A. So a mathematician
working in number theory takes A = N, and if he works in analytic number
theory, he works with A = R or C. If he uses algebraic methods, he may use
A = Cn. Naturally, a mathematician moves smoothly from one structure to
another always appealing to the second order properties, such as induction
or completeness, of the relevant structure, paying no attention to the fact that
the vocabulary changes. It is assumed that there are canonical translations
of the smaller structures into the bigger ones.
Not all mathematics is however of the form (1), for we sometimes establish
universal truths, such as “every compact Hausdorff space is normal”, or
“every subgroup of a free group is free”. So the second order view includes
the provision that some mathematical propositions are of the form

|= φ, (2)

where φ is a second (or higher) order sentence. The meaning of (2) is that
whichever structure A of the vocabulary of φ we consider and whatever φ
says about the elements, subsets, relations etc of this structure A, holds in A.
So if φ talks about groups, the meaning of (2) is that every group, be it one
of the “known” groups or just an abstract group, satisfies (2). The difference
with (1) is that (2) is not a proposition about any particular structure, as
is (1), but rather about the universe of all structures of the type that φ talks
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about. We prove below that there is noA and no effective translation φ "→ φ∗
such that (2) can be reduced to A |= φ∗, so we cannot discard (2).
Some propositions of the form (2) need third or even higher order logic.
For example if we want to say that every linear order can be extended to a
complete order, and similar mathematical facts, we have to go beyond the
cardinality of the model. This can be done in third and higher order logics.
This detail does not affect the main point of this paper.

2.1. More about second order characterizable structures. We will now
sharpen (1) by specifying what a “classical structure” means. We stipu-
late that this refers simply to a structure that has a categorical second order
definition, that is, we mean a structure A such that there is a second order
sentence #A such that the following two conditions hold:

A |= #A (3)

∀B∀C((B |= #A ∧ C |= #A)→ B ∼= C). (4)

We call such structures A second order characterizable. Note that (3) is of
type (1) and (4) is of type (2) (see (10) below). The classical structures
N,R,C,Rn,Cn are certainly second order characterizable in this sense.
Second order characterizable structures have the following pleasant prop-
erty: If A is second order characterizable and φ is second order, then (1) is
equivalent to

|= #A → φ. (5)

At first sight (1) may look like a proposition about the relationship between
an infinite object A and a finite object φ, but in the equivalent form (5) it
looks like a property of the finite string of symbols #A → φ. So we seem
to have a reduction of something which is infinitistic to something which is
finitistic. The beauty of this reduction is marred by the symbol “|=” in (5),
which brings in a genuinely infinitistic element. Still one cannot deny the
virtue of dealing with the finite string #A → φ rather than with the infinite
structure A. Maybe we can see by merely inspecting #A → φ that indeed,
φ does follow from #A. This may even be something that a computer can
detect by looking at #A and φ very carefully.
The reduction of (1) to (5) demonstrates that the “particular truth” repre-
sented by (1) can be reduced to the “universal truth” represented by (2). So
in this sense it would suffice to study (2) only, but then the problem emerges
of determining themeaning of the universal quantification over all structures
in (2).
For second order characterizable structures we can completely overlook
the question what kind of objects the elements of these structures are. This
is part of the second order view. A second order characterizable structure is
nothing in particular but just any structure that satisfies the axiomatization.
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Weneed not, it seems, worry about the question how these structures are con-
structed or how they come into being, although this is not uncontroversial.
One possibility is to say that if the axioms define something uniquely, and
they are consistent, then this unique structure exists. The early researchers
took it for granted that the axiomatization of, say the ordered field of the
real numbers, is consistent, since the ordered field of reals itself satisfied
it. However, it was later recognized that it makes sense to try to establish
consistency, however difficult it turned out to be, without assuming first that
we already have a model.

2.2. Second order truth. Let us then consider the question, what are the
grounds underwhich amathematician canassert (1), communicating thereby
that his or her knowledge now covers (1). We assume that A exists and that
(1) is meaningful. Tomake progress inmathematics it is not enough to know
that the proposition (1) has a truth-value—we should also determine what
the truth-value is. For example, we can assume φ is false in A and try to
derive a contradiction, allowing us to conclude that φ is true in A. Or we
can perhaps prove φ in A by induction. Centuries of efforts have equipped
mathematicians with tools to prove propositions of the form (1).
We want to emphasize the difference between knowing that φ has a truth
value in A and knowing what the truth value is. There is a marked difference
between

“A |= φ or A |= ¬φ” is known, (6)

and

“A |= φ is known” or “A |= ¬φ is known”. (7)

If we have given a mathematical definition of a formalized language and a
mathematical definition of truth for that language, we can give a mathemat-
ical argument that every sentence of the language has a truth value in every
structure. Then we have established (6), but from this it does not follow for
any particular φ that we have established (7).
We maintain in this paper that the criterion for asserting a proposition
in mathematics is having a proof for it. This means neither that we are
limiting ourselves to constructive logic, nor that we give up the existence
of mathematical objects and truth values of mathematical statements. The
position adopted here is that it is essential to use classical logic in the analysis
of infinite mathematical objects. A comparison of second order logic and
set theory in the constructive context would be perfectly meaningful but is
not the approach of this paper.
We have argued that the evidence we can give for asserting (1) is a proof
of φ from #A, a proof that follows standard mathematical rigor. It would
be very surprising if such a rigorous proof could not be written, albeit
with a lot of work, in one of the standard inference systems CA of second
order logic consisting of Comprehension Axioms and the Axioms of Choice
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[4, Ch. IV §1]. Indeed, if there were a rigorous argument that could not
be so formalized, the immediate question would be, what is the argument
based on. Can we use semantical inference, that is, justify (1) by showing
that every model of #A satisfies φ? Yes, and this can even be shortened to the
idea of showing that A satisfies φ, and this is exactly what we are trying to
do. So reference to semantic inference in this case means saying that A |= φ
because A |= φ, and this is not very helpful. So we have not committed any
errors, but we have not made any progress either.
Recently there has been discussion concerning Fermat’s Last theorem, in
particular the question what is needed to formalize the proof. Usually the
higher order axioms which are needed can be pin-pointed with some work.
Many such results have been obtained in so-called reverse mathematics.

2.3. Second order characterizable structures and internal categoricity.
Above we discussed grounds for asserting (1). The same discussion ap-
plies to (2). We can assert (2) if we have a proof of φ, typically from CA.
But we should also ask ourselves, how do we recognize second order charac-
terizable structures? After writing down #A we have to give grounds why (3)
and (4) hold. In the light of the above discussion we would give evidence
for asserting (3) by giving a proof of #A → #A, which is not evidence for
anything. So how can we ever assert (3)? We can perhaps prove

∃R1, . . . , Rn#A, (8)

from the CA axioms, where R1, . . . , Rn are the predicate symbols occurring
in #A. But then we would have given evidence for

|= ∃R1, . . . , Rn#A, (9)

which is not what we want. We are not trying to show that every structure
whatsoever permits relations that constitute a copy of A. Surely this cannot
be true in structures that have a different cardinality than A. It seems that
the only possibility is to simply assume (3), rather than trying to present
evidence for it. This is the well-known problem of consistency of formal
systems raised by Hilbert and settled in the negative by Gödel. If we are
working in a stronger framework, we may “read off” A |= #A, or anyway the
existence of a model of #A, from the existence of some larger structure, but
obviously this only raises the question where did the larger structure come
from? So (3) has to be taken on faith. After all, we have written #A so that
it is true in A, so we may take the correctness of the process of writing down
#A as the grounds for (3) even if this cannot be substantiated. It is in the
spirit of the second order view that we simply assume the existence of A,
or anyway a structure satisfying #A. In set theory this problem is solved by
assuming the existence of at least one infinite set and then working from
there onwards by means of the operations of power-sets, unions, separation
and replacement. We return to the problem of existence at the end of this
paper.
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Evidence for asserting (4) is clear. We may simply present a proof—
informal or formal—for ∀B∀C((B |= #A ∧ C |= #A) → B ∼= C). For a
formal proof we have to translate this into second order logic. Suppose the
vocabulary of #A is {R1, . . . , Rn}. Let {R′

1, . . . , R
′
n, U,U

′} be new predicate
symbols so that the arity of each R′

i is the same as the arity of Ri . Let #
′
A
be

#A with each Ri replaced by R′
i . Let

ISOM(U,R1, . . . , Rn,U
′, R′
1, . . . , R

′
n)

be the second order sentence saying that there is a bijection U → U ′ which
maps each Ri onto R′

i . Any proof of

∀U ∀U ′ ∀R1 . . . RnR′
1 . . . R

′
n(((#A)

(U ) ∧ (# ′A)(U
′))

→ ISOM(U,R1, . . . , Rn,U ′, R′
1, . . . , R

′
n)) (10)

from the axioms of second order logic can be rightfully used as evidence
for asserting (4). Here φ(U ) means the relativization of φ to the unary
predicate U . For the classical structures this can be readily done.
Suppose we have given evidence for (1) by exhibiting a proof of φ from
#A and the axioms CA of second order logic, or of (4) by exhibiting a proof
of (10) from CA. In fact we have then proved more than was asked. We can
define the concept of “Henkin model” of the CA axioms of second order
logic. These are non-standard or “false” models in the same sense as a Klein
Bottle is an “unreal” surface or Gödel’s rotating universe is an “unreal”
solution to Einstein’s field equations. The ordinary “real” models are “full”
Henkinmodels, because in them the range of second order variables includes
all subsets and relations. The Henkin models are like a cloud around the
real models. By proving φ from #A and the axioms CAwe have shown that φ
holds even in the non-standard Henkin models that CA has. More exactly,
we have shown that φ holds in a whole class of structures, a class that has A
as a member. In particular, we have shown that φ holds in A. The fact that
we proved that φ holds in more structures than we wanted should in no way
lessen our faith in φ holding in A. Most likely it is just easier to justify (1)
in this way.
But does the above discussion not contradict (4)? The answer to this riddle
is revealed by an inspection of the vocabularies. The vocabulary of #A ∧ #A′

is

L = {R1, . . . , Rn, R′
1, . . . , R

′
n}.

Let us consider a Henkin model C of #A ∧ #A′ . Let C0 be the reduct of C to
{R1, . . . , Rn}, and C1 the reduct to {R′

1, . . . , R
′
n}. Since we assume that C

satisfies the CA axioms, and we have established (10), we may conclude that
C0

∼= C1. If we start from two arbitrary Henkin models C1 and C1, which do
not arise from a common expansion C, there is no way to conclude from (10)
that C0 ∼= C1. We call this phenomenon internal categoricity, meaning that
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any two models even in the general sense of Henkin models that cohere by
having a common expansion to a model of CA, are isomorphic. Note that
internal categoricity implies categoricity in the ordinary sense: if we take
two “real models” of the CA axioms, that is, Henkin models in which all
subsets and relations are in the range of the second order variables, then
the models do cohere because they have a common expansion that satisfies
CA, namely the “full” Henkin model of the union of the vocabularies. So
internal categoricity is indeed a particularly strong form of categoricity.

2.4. Summary of the second order view. The second order view presented
above is based on the belief in the meaningfulness of propositions like (1)
and (2) and on them being true or false, on the belief that the second order
variables of φ really range over all subsets and relations on the domain of the
modelA, and on the belief that #A characterizesAup to isomorphism. Where
the above second order view may diverge from the view of some supporters
of second order logic is that the justification for asserting (1), (2) and (4) is
secured by means of proofs. We were driven to this by contemplating the
evidence that we could possibly give. We pointed out that the fact that the
proof systems, when formalized, permit countable and other non-standard
models, does not in itself cast doubt on the bound variables of φ in (1)
ranging over all subsets and relations on the domain. The existence of non-
standard models reveals the strength—not the weakness—of the relevant
proofs, indicating that (1), (2) and (4) are special cases of more general
results.

§3. The set theory view. Cantor introduced set theory in the context of
studying sets of reals and their properties. He then went on to introduce
arbitrary sets probably not realizing, but certainly not claiming, that his
theory could be used as the foundation for all of mathematics; rather he had
to defend the idea that set theory is mathematics at all.
Originally set theory had so-called urelements, that is, elements that are
not sets and also have themselves no elements. Subsequently it turned out
thatmathematics can be developed in set theorywithout urelements. Despite
this fact, it would be most natural and perfectly in harmony with everything
that is done in set theory to include natural numbers, real numbers and so
on as urelements and let the sets built “on top” of the urelements dictate
the necessary properties of these numbers. Indeed, we could build a close
relationship between the second order view and set theory by taking for
every second order characterizable structure a set of urelements from which
the structure is built. Although this approach would not change anything
essential in our account of set theory, we abandon it in favor of the more
standard approach of disregarding urelements.
Set theory is based on the idea that there is a universe of sets and all
of mathematics can be embedded into this universe giving mathematics a
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uniform framework. The prevailing view in set theory is that the universe of
sets has the structure of a hierarchy, called the cumulative hierarchy:

V0 = ∅,
Vα+1 = P(Vα),

V% =
⋃

&<%

V& , if % is a limit ordinal.

It is held that every set is an element of some Vα . This conviction, which
may appear somewhat arbitrary, is simply based on the fact that nothing else
seems necessary. It is also customary to denote the union of all the sets Vα
by V and what we have just said amounts to saying that V is the universe of
set theory. Of course, V is not a set, but what is called a proper class.
It is common in set theory to identify natural numbers with finite ordinals:

n = {0, . . . , n − 1}

and Nwith'. Then we can construct integers as equivalence classes of pairs
of natural numbers, so Z ∈ V'+3, rational numbers as equivalence classes
of integers, so Q ∈ V'+5, and real numbers as equivalence classes of sets
of rational numbers, so R ∈ V'+7. The classical structures, so important
in second order logic, can all be constructed explicitly as elements of, say
V'+12. Since second order logic can be readily interpreted in set theory one
may easily check that the constructed structures all satisfy their second order
characterizations, so we have constructed, up to isomorphism, the same
structures as was done in second order logic. The difference with second
order logic is that we now accept these structures as individual structures
rather than as particular equivalence classes of the isomorphism relation.
This decision is of no consequence mathematically, it is just a curiosity and
part of set-theoretical thinking.
According to what we are calling the set theory view mathematical propo-
sitions are of the form

Φ(a0, . . . , an−1), (11)

where Φ(x0, . . . , xn−1) is a first order formula of the vocabulary {∈} and
a0, . . . , an−1 are some specific sets. The meaning of (11) is that the sets
a0, . . . , an−1 have the property Φ(x0, . . . , xn−1). Note that Φ(x0, . . . , xn−1)
will most likely have quantifiers, and the variables bound by these quantifiers
range over the entire universe V of sets. In other words, the meaning of (11)
is that Φ(x0, . . . , xn−1) is true in the proper class size model (V,∈) under
the assignment xi "→ ai . But one should not think that this is a definition
of the meaning of (11). It is impossible to actually define the meaning of
(11) because truth is undefinable. However, for any fixedm the truth of (11)
for formulas Φ(x0, . . . , xn−1) of quantifier rank ≤ m (and hence, a fortiori,
for formulas with at most m symbols) can be defined by a formula of that
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quantifier rank (roughly speaking, because for any m set theory has a so
called universal Σm-formula, see [8]).
By specificmathematical objects we mean definable objects, that is, sets a
for which there is a first order formula #(x) of the vocabulary {∈} such that
the following two conditions hold:

φ(a) (12)

∀x((φ(x) ∧ φ(y))→ x = y) (13)

Note the resemblance to (3) and (4). Like truth, also definability is not itself
definable. But for each fixed quantifier rank m we can define the concept of
definability by a formula of quantifier rank ≤ m.
As the above remarks show, set theory is open ended in the sense that
we cannot once and for all secure the meaning of (11), for two reasons:
neither truth nor definability is definable. If we limit ourselves to a bounded
quantifier rank, then suddenly (11) becomes expressible on that quantifier
rank.
Familiar mathematical objects such as

N,Q,Z,R,C,Rn,Cn, (,
3
√
2, log, sin, etc.

are all definable on quantifier rank ≤ 2. To find a definable mathematical
object not definable on quantifier rank 2 one has to go deep into set theory.
Likewise, in mathematical practice one has to think hard to find examples of
(11) whereΦ(x0, . . . , xn−1) could not be bewritten by a formula of quantifier
rank ≤ 2.
There are, intuitively speaking, only countably many definable sets so
most sets are undefinable. For example, most real numbers are in this sense
undefinable. Also, there is no reason to believe that complex things like
well-orderings of the reals have to be definable. These objects are needed for
the general workings of set theory but there is no reason to think one is able
to put one’s finger on them. This is completely in harmony with the general
philosophy of the set theory view of mathematics, which is geared towards
definable objects but allows undefinable objects in the background as, after
all, everything cannot be definable. To assume that everything is definable
would mean giving up the power-set axiom, which however is necessary for
constructing such basic structures as R. So the set theory view maintains
coherence by allowing some (most) sets to be undefinable, i.e., sets we cannot
talk about explicitly but which still occur in the range of bound variables. In
modern set theory (see e.g., [6]) one can actually prove from large cardinal
assumptions that there is no well-ordering of the reals which is projective
(i.e., Σ1n for some n).
We can easily express both (1) and (2) in the form (11), so the set-theoretic
framework is in this sense at least as powerful as the second order framework.
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Note that we think of the quantifiers in (11) as ranging over all sets of the
universe, including all subsets of the parameters a0, . . . , an−1.
There is a bounded set theory view which is seemingly weaker than the
above original set theory view. It is the view that mathematical propositions
are of the form

(Vα ,∈) |= Φ(a0, . . . , an−1), (14)

where α is a definable ordinal large enough for Vα to contain a0, . . . , an−1,
the sets a0, . . . , an−1 are definable over (Vα ,∈), and Φ(x0, . . . , xn−1) is a
first order formula of set theory. The meaning of (14) should be clear: we
can use the ordinary Tarski truth definition for first order logic. We can
express (1) and (2) in this form. For (1) in most cases α ≤ ' + 7 suffices.
For (2) it is more difficult to determine an upper bound for α and quite
large α may be needed. So this modified set theory view is sufficient to
account for practically all of mathematics outside set theory (and perhaps
category theory) itself and also to account for mathematics in the sense of
the second order view. The disadvantage of the bounded view is that it does
not cover all of set theory, except by increasing α as soon as it is needed.2

So the original set theory view is more stable, needing no adjustment from
proposition to proposition. On the other hand, the original set theory view
cannot be understood inside set theory itself (because of the undefinability
of truth) except on a case by case basis or by bounding the quantifier rank.
The bounded set theory view allows us to focus on the interesting and
confusing question whether set theory is first order or higher order. In (14)
the bound variables of Φ(x0, . . . , xn−1) range over Vα . If a0, . . . , an−1 ∈ V&
and & < α, then all subsets of a0, . . . , an−1 are in the range of those bound
variables, so we can express second order properties of a0, . . . , an−1. In
particular, if A is a structure such that A ∈ Vα , then P(A) ⊆ Vα , so first
order logic over (Vα ,∈) can express any second order properties of A. If
A ∈ V& , & < α, then the same is true of third order properties of A. So
is (Vα ,∈) |= Φ(a0, . . . , an−1) first order or not? It is first order from the
perspective of (Vα ,∈), the bound variables of Φ(a0, . . . , an−1) ranging over
elements ofVα . At the same time, (Vα ,∈) |= Φ(a0, . . . , an−1) is higher order
from the perspective of the sets a0, . . . , an−1 in the following sense. Since
a0, . . . , an−1 ∈ Vα , P(a0) ∪ · · · ∪ P(an−1) ⊆ Vα . So the bound variables
of Φ(a0, . . . , an−1) have all subsets of each ai in their range. If α is a limit
ordinal, this is true of subsets of subsets of each ai , subsets of subsets of
subsets of each ai , etc. We conclude: the set theory view includes the higher
order view in this sense.
What are the grounds under which a mathematician can assert something
like (11)? Note that unless a0, . . . , an−1 were definable we could not assert

2By theLevyReflectionprinciple ([6] Theorem12.14) any true sentencewith set parameters
is true in some Vα .
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(11) at all. Intuitively speaking, we can assert (11) if we somehow know
that (11) is how a0, . . . , an−1 sit in the entire universe of sets. There are
obvious difficulties in stating precisely what such knowledge could consist
of and we have alluded to this already in connection with second order
logic. The most obvious solution is again to rely on proofs. Justification
for asserting (11) is a formal or informal proof of Φ(a0, . . . , an−1) from
first principles, such as the ZFC axioms. We need not go into the question
whether the ZFC axioms are acceptable as first principles, because in most
cases of mathematics outside set theory one can use weaker axioms such
as Zermelo’s set theory (or even weaker). However, it is part and parcel
of the philosophy of the set theory view that one does not shy away from
the strongest first principles, even large cardinal axioms. There are other
foundational positions such as predicativism, finitism, quasi-intuitionism,
constructivism, intuitionism, and so on where the weaker axiom systems are
relevant.
How can we recognize what the definable sets referred to in (11) are? As
in the case of second order logic there is no way to give evidence for (12)
apart from making sure we have written φ(x) so that it faithfully reflects our
understanding of a. However, we can prove

∃x φ(x) (15)

in ZFC and declare that a is the unique set given by (13)-(15). This corre-
sponds in second order logic to deriving (8) from #B for a biggerB.
Just as in the case of second order logic, giving a proof forΦ(a0, . . . , an−1)
from ZFC tells us much more than what (11) maintains. For (11) to be true
it is enough that Φ(a0, . . . , an−1) is true in (V,∈), while if Φ(a0, . . . , an−1) is
provable from ZFC, it is true in every universe where the ZFC axioms hold.
One important such universe is the universe L of constructible sets due to
Gödel. Other universes, called innermodels, are known in great numbers but
even to prove V .= L (and not just its consistency) one has to use principles,
such as large cardinal axioms, that go beyond ZFC. It is part of the set theory
view that we believe in the existence of countable transitive setsM for which
(M,∈) |= ZFC. Although we cannot present evidence for this assertion on
the basis of ZFC only, it is part of the set theory view. One can use large
cardinal assumptions as evidence. If we have a proof ofΦ(a0, . . . , an−1) from
ZFC, then Φ(a0, . . . , an−1) is true in each such countable transitive model
(M,∈) as well as in all the generic extensions of such models obtained by
Cohen’s method. All this emphasizes what deep consequences the assertion
of (11) with a proof from ZFC as evidence has. In such a case we should not
think that the fact thatΦ(a0, . . . , an−1) holds in numerous artificial universes
of sets in any way undermines our conviction that we have established the
truth of Φ(a0, . . . , an−1) in the actual set-theoretical universe. We have just
established more than was asked. Practically, it is is easier to give evidence



104 JOUKO VÄÄNÄNEN

for a proposition holding in a large number of different kinds of universes,
one of which is the “real” one, than it is to derive the proposition in just the
one that we are considering.
As in second order logic, we can prove the internal categoricity of set
theory: If set theory is formalized with two ∈-relations, say ∈1 and ∈2, and
the ZFC axioms3 are adopted in the common vocabulary {∈1,∈2}, let us
call it ZFC(∈1,∈2), then one can prove in ZFC(∈1,∈2) that the equation

y ∈2 F (x) ⇐⇒ ∃z (y = F (z) ∧ z ∈1 x) (16)

defines a class function F which is an isomorphism between the ∈1-sets
and the ∈2-sets. In this sense set theory, like second order logic, has in-
ternal categoricity. If we look at the formalized ZFC(∈1) and ZFC(∈2)
inside ZFC(∈1,∈2), assuming the consistency of ZFC, then we have non-
isomorphic models (M,∈M1 ) and (N,∈M2 ) of ZFC, but these two models
cannot be put together into one model of ZFC(∈1,∈2). As in second order
logic, this demonstrates that the non-standard models really have to be con-
structed from the outside. The maximalist intuition that the universe of sets
has really all the sets, and respectively the intuition that the second order
variables of second order logic really range over all subsets of the domain,
corresponds to the idea that our language is so rich that whatever exists can
already be referred to by a term of our language.4 When this intuition is
combined with internal categoricity we get ordinary categoricity. But note
that we get ordinary categoricity only in an informal sense, because the max-
imalist intuition is an informal principle. This is in harmony with the overall
approach of treating second order logic or set theory as the foundation of
mathematics rather than a formalization of the foundation. When second or-
der logic or set theory is conceived of as the foundation of mathematics, both
have an equal amount of (internal) categoricity, and when they are formal-
ized and looked at as mathematical objects, both have an equal amount of
categoricity if only “full” models of the formalizations are considered and an
equal amount of non-categoricity if the proof methods of the formalizations
are considered.
Since the universe of sets is somewhat elusive, there is a temptation to forget
about it and study only the artificial universes (M,∈), which happen to satisfy
the ZFC axioms. One may even go further and deny the coherence of the
set-theoretical universe and maintain that any justified assertion of truth of
a sentence in the set-theoretical universe is merely assertion of truth of the
sentence in all models of ZFC. All models are then equal, one is not favored

3In particular, formulas in the Replacement and Separation Schemata can involve both ∈1
and ∈2.
4In the case of set theory we noted above that if we have several epsilon-relations and they

satisfy the ZFC axioms even in the larger vocabulary which contains all of them, we get the
result that they are all isomorphic to each other. We can interpret this by saying that the set
theoretical universe is unique as far as we talk about alternatives that can be named.
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above the others. Let us give in to this temptation for amoment. What are the
propositions of mathematics, if not of the form (11)? Are they of the form
(1) and (5), in which case we are working within the second order view?
Are they of the form (M,∈) |= Φ(a0, . . . , an−1), where (M,∈) |= ZFC?
What is ∈ here? Are they of the form (M,E) |= Φ(a0, . . . , an−1), where
a0, . . . , an−1 ∈ M , E ⊆ M ×M , and (M,E) |= ZFC? So what isM here?
How can we assert (M,E) |= Φ(a0, . . . , an−1) if we do not know how to refer
toM and a0, . . . , an−1? Or are they of the form

∀M ∀E ⊆M ×M ((M,E) |= ZFC→ (M,E) |= Φ(t0, . . . , tn−1)),
where t0, . . . , tn−1 are definable terms of the language of set theory? If this
is the form of a mathematical proposition, it would be simpler to give it in
the form

ZFC 2 Φ(t0, . . . , tn−1),
because then we would be dealing with just finite proofs and we would
not have to answer the question, what are the ranges of the quantifiers
∀M ∀E ⊆ M ×M ? We have arrived at the position that propositions of
mathematics are existence claims of proofs from the ZFC axioms. This
is appealing because we have just argued that proofs are the evidence for
asserting truth anyway. So why not just stick to the evidence and forget
what it is evidence for? If we take this line because we believe only in the
existence of finite mathematical objects, then we can really only justify the
use of constructive logic in proofs, and then we have abandoned classical
mathematics. On the other hand if we believe in the existence of infinite
mathematical objects, we have not explained what we mean by propositions
about them.

§4. Second order characterizable structures. The concept of a second or-
der characterizable structure makes perfect sense in the context of the set
theory view (see Section 3). Let us then adopt the set theory view and spend
a moment investigating what can be said about such structures. Since the set
theory view as formulated here is a foundationalist position it is particularly
suited to an attempt to understand the general concept of a second order
characterizable structure.

4.1. A hierarchy of second order characterizable structures. We show that
second order characterizable structures form a hierarchy. Upon closer in-
spection this hierarchy reveals some essential features of second order logic.
SupposeA is a second order characterizable structure in a relational vocab-
ularyL = {R1, . . . , Rn} and |A| = κ. Thenκ is second order characterizable
as a structure of the empty vocabulary by the sentence #κ = ∃R1 . . .∃Rn#A,
that is, a structure B of the empty vocabulary satisfies #κ if and only if
|B | = κ. Thus the cardinalities of second order characterizable structures
are all second order characterizable.
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The concept of being secondorder characterizable is definable in set theory,
so we can consider without difficulty the countable set of all second order
characterizable cardinal numbers. It starts with the finite numbers, then
come ℵ0,ℵ1, . . . until we reach ℵ'. Then follow ℵ'+1,ℵ'+2, . . . . In fact it
is not so easy to see where this simple pattern breaks. This has been studied
by S. Garland [3]. The following observation shows that the second order
characterizable cardinals extend all across the set-theoretical universe, apart
from very large cardinals.

Proposition 1. The first inaccessible (Mahlo, weakly compact, Ramsey)
cardinal is second order characterizable. If κ is the first measurable cardinal,
then 2κ is second order characterizable. All second order characterizable
cardinals are below the first strong cardinal.5

Proof. Let φ0 be the conjunction of the finitely many ZFC axioms written
in second order logic. Models of φ0 are, up to isomorphism, of the form
(Vκ ,∈), κ inaccessible. Let φ1 be the conjunction of φ0 and a first order
sentence saying that every limit cardinal is singular. Then φ1 characterizes
up to isomorphism (Vκ,∈), where κ is the first inaccessible. Let φ2 be the
conjunction of φ0, the second order sentence saying that every closed un-
bounded class of ordinals has a regular element, and a first order sentence
saying that every limit cardinal is non-Mahlo. Then φ2 characterizes up to
isomorphism (Vκ ,∈), where κ is the first Mahlo. Let φ3 be the conjunction
of φ0, the second order sentence saying that every class size tree with set
size levels has a cofinal branch, and a first order sentence saying that there
are no weakly compact cardinals. Then φ3 characterizes up to isomorphism
(Vκ ,∈), where κ is the first weakly compact cardinal. Let φ4 be the con-
junction of φ0, the second order sentence saying that every coloring of finite
subsets of the universe by two colors has a class size set which is for each
n homogeneous for finite subsets of size n of its elements, and a first order
sentence saying that there are no Ramsey cardinals. Then φ4 characterizes
up to isomorphism (Vκ ,∈), where κ is the first Ramsey cardinal. Let φ5
be the conjunction of the relativization of φ0 to the unary predicateM , the
second order sentence saying that every subset of M is in the universe, the
second order sentence saying that a subset U of the universe is an ultrafilter
on M which is complete with respect to subsets of M which are elements
of M , and a first order sentence saying that there are no measurable car-
dinals in M . Then φ5 characterizes up to isomorphism (P(Vκ), Vκ,∈),
where κ is the first measurable cardinal. Finally, let κ be strong. Suppose
* is second order characterizable. Suppose j : V → M is an elementary
embedding with critical point κ such that P(*) ∈ M . Since P(*) ⊆ M ,

5The result concerning inaccessible cardinals is due to Zermelo. The result concerning
measurable cardinals is due to D. Scott. The result concerning strong cardinals is due to
M. Magidor. Large cardinals are started above '.
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M |= ∃α < j(κ)((#*)(α)). Thus V |= ∃α < κ((#*)(α)). Let α < κ with
α |= #*. Then α = *, so * < κ. 4
The second order characterizable cardinals come in clusters in the following
sense:

Lemma 2. If κ is second order characterizable, then so are κ+, 2κ, ℵκ and !κ.
More generally, if κ and * are second order characterizable, then so is κ*.

Proof. Let φ0 be the second order sentence saying that < is a well-order
in which every initial segment satisfies #κ but the whole universe itself does
not satisfy #κ . Then φ0 is satisfied, up to isomorphism, only by (κ+, <). Let
φ1 be the second order sentence saying that < is a well-order in which no
initial segment satisfies #κ but the whole universe itself satisfies #κ . Thenφ1 is
satisfied, up to isomorphism, only by (κ, <). Letφ2 be the conjunction of the
relativization of φ1 to a unary predicate U , the second order sentence saying
that < is a well ordering of the universe with each initial segment of smaller
cardinality than the universe, the second order sentence saying that elements
of U are “cardinals” in < that is, points a whose every initial segment has
fewer elements than a in <. Then φ2 is satisfied, up to isomorphism, only
by (ℵκ, <). Let φ3 be the conjunction of the relativization of φ1 to a unary
predicate U , the second order axioms of Zermelo’s set theory, and the first
order axiom which says that U is the class of all cardinal numbers. Then
φ4 is satisfied, up to isomorphism, only by (Vκ,∈), the cardinality of which
is !κ. For the last claim, let + be the conjunction of the relativization of
#* to a unary predicate P, the relativization of #* to the unary predicate Q,
the first order sentence saying that for every x the function z "→ F (x, z) is a
function Q → P, and the second order sentence saying that every function
Q → P is the function z "→ F (x, z) for some x. Then, up to isomorphism,
the only model of ∃F+ is (*κ, * ∪ κ, *,κ). 4
Thus the first non-second order characterizable cardinal is a singular
strong limit cardinal. The smallest singular strong limit cardinal is !',
but this cardinal is second order characterizable by the above. In fact it im-
mediately follows from Lemma 2 that if κ is the supremum of second order
characterizable cardinals, then κ = ℵκ = !κ.
If we put any particular second order characterizable cardinal κ under the
microscope we can immediately see that there are countably infinitely many
non-isomorphic second order characterizable structures of that cardinality.
First, there are certainly infinitely many non-isomorphic ones because each
structure (α, <), κ ≤ α ≤ κ + ' is second order characterizable. On
the other hand there are only countably many second order characterizable
structures overall.
How far from each other are the second order characterizable structures in
a given cardinality? Let us say that a structure is Turing-reducible to another
structure if the second order theory of the first is Turing-reducible (see e.g.,
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[9, §9.4]) to that of the second. Two structures are Turing-equivalent if they
are Turing-reducible to each other.

Proposition 3. IfA andB are second order characterizable structures such
that |A| ≤ |B |, then A is Turing reducible toB. In particular, all second order
characterizable structures of the same cardinality are Turing-equivalent.

Proof. SupposeA andB are second order characterizable structures such
that |A| ≤ |B |. Let L = {R1, . . . , Rn} be the relational vocabulary of A.
Now for any φ in the vocabulary L

A |= φ ⇐⇒ B |= ∀P ∀R1 . . . ∀Rn((#A → φ)(P)),

where +(P) denotes the relativization of + to the unary predicate P. 4

Figure 1. The hierarchy of second order characterizable structures.

The picture (Figure 1) that emerges now about infinite second order char-
acterizable structures is the following: There is a countable hierarchy of sec-
ond order characterizable cardinals that extends very high in the scale of car-
dinal numbers. At each cardinal there are countably many non-isomorphic
structures and also structures of different vocabularies. Whatever the vo-
cabulary L (apart from trivial cases), in each infinite cardinality κ there are
ℵ0 non-isomorphic second order characterizable L-structures of that cardi-
nality. All we need to do is take one predicate symbol R ∈ L and consider
structures with universe κ and R of different finite sizes. However, all these
ℵ0 second order characterizable structures of a fixed cardinality have the
same second order theory up to Turing-equivalence. Knowing truth in one,
means knowing truth in any of them, as well as in any structure on a lower
level. Thus when we go down in size, the complexity goes down, or at least
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does not increase. What about going up? Does the complexity increase every
time we go up in the cardinality of the model?

Proposition 4. If A and B are any infinite second order characterizable
structures such that 2|A| ≤ |B |, thenB is not Turing reducible to A.
Proof. The proof is a standard undefinability of truth argument. Let
κ = |A| and * = |B |. Note that (κ, <) and (*, <) are second order
characterizable, and therefore also B′ = (* ∪ P(κ), *, <,P(κ),κ, (,N) and
A′ = (κ, <, (,N), where ( is a bijection of κ × κ onto κ. It suffices to show
that B′ is not Turing-reducible to A′. Let L be the vocabulary of B′ and
L′ ⊂ L that of A′. Suppose for all second order L-sentences φ

B
′ |= φ ⇐⇒ A

′ |= φ∗

with some recursive function φ "→ φ∗ from L-sentences to L′-sentences. We
use n to denote the definable term which in B′ and A′ denotes the natural
number n. Using standard methods one can write a second orderL-sentence
Θ(x, y) such that for all L′-formulas φ(x) and any n ∈ N

B
′ |= Θ(!φ", n) ⇐⇒ A

′ |= φ(n).
Thus

A
′ |= φ(n) ⇐⇒ A

′ |= Θ(!φ", n)∗.

Let +(x) be the L′-formula which says ¬Θ(a, a)∗ for the “natural number”
a, in the formal sense, that is the value of x. Let k = !+(x)". Now

A
′ |= Θ(k, k)∗ ⇐⇒ A

′ |= +(k) ⇐⇒ A
′ |= ¬(Θ(k, k))∗,

a contradiction. 4
Let us now revisit the picture (Figure 1) of second order characteriz-
able structures. When we go up in the cardinalities of the models, we
obtain more and more complex theories. We can interpret this as a form
of anti-foundationalism in the sense that there is no individual second or-
der characterizable structureA such that the truth of any other second order
characterizable structure is Turing-reducible to truth inA. This is even true if
we only consider empty vocabularies, that is, structures with a universe only
and no structure whatsoever. If we try to use brute force by letting P be the
set of Gödel numbers of second order sentences φ such that (2) holds, then
we do get a structure (N,+, ·, P) such that truth in any second order charac-
terizable structure is Turing-reducible to truth in (N,+, ·, P), but the price we
pay is that the structure (N,+, ·, P) itself is not second order characterizable.
4.2. Definability of second order characterizable structures. The second
order characterizable structures are by definition definable in second order
logic but here we examine in what sense they are definable in set theory.
The Levy-hierarchy [8] of Σn- and Πn-formulas is useful in estimating
the set-theoretical complexity of mathematical concepts. Most concepts in
mathematics outside set theory are Σn- or Πn-definable with n ≤ 2. Since a
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concept may have several equivalent formulations it is important to specify
which axioms are used to obtain Σn- or Πn-definability. Accordingly we say
that a property of sets is Σn-definable if there is a Σn-formula that defines
the property. The concept of Πn-definability is defined similarly. Finally,
a property of sets is ∆n-definable if it is both Σn- and Πn-definable. For
example, finiteness is ∆1-, countability is Σ1- and “x is the power-set of y” is
Π1-definable.
Since a second order characterizable structure is specified up to isomor-
phism only, it does not make sense to ask if an individual second order
characterizable structure is definable in set theory. The whole isomorphism
class is obviously definable and we now show it is actually ∆2-definable.

Proposition 5. If A is a second order characterizable structure, then the
class {B : B ∼= A} is ∆2-definable.
Proof. Suppose L a finite vocabulary and A is a second order charac-
terizable L-structure. Suppose , is the conjunction of a large finite part of
ZFC. Let us call a model (M,∈) of # supertransitive if for every a ∈M every
element and every subset of a is inM . Let Sut(M ) be a Π1-formula which
says that M is supertransitive. Let Voc(x) be the standard definition of “x
is a vocabulary”. Let SO(L, x) be the set-theoretical definition of the class
of second order L-formulas. Let Str(L, x) be the set-theoretical definition
of L-structures. Let Sat(A,φ) be the standard inductive truth-definition of
second order logic written in the language of set theory. Let

P1(z, x, y) = Voc(z) ∧ Str(z, x) ∧ SO(z, y) ∧

∃M (z, x, y ∈M ∧ ,(M ) ∧ Sut(M ) ∧ (Sat(z, x, y))(M ))
and

P2(z, x, y) = Voc(z) ∧ SO(z, y) ∧ Str(z, x) ∧

∀M ((z, x, y ∈M ∧ ,(M ) ∧ Sut(M ))→ (Sat(z, x, y))(M )).

Now ZFC 2 ∀z ∀x ∀y(P1(z, x, y)↔ P2(z, x, y)) and if L is a vocabulary,B
an L-structure, then B ∼= A ⇐⇒ P1(L,B, #A). This shows that B ∼= A is
a ∆2 property ofB and L. 4
The following result, based on the idea of the proof of a related result of
Ajtai [1] (see also [10], [5], [7]), demonstrates that even though the isomor-
phism class of a second order characterizable structure is definable in set
theory, the question whether individual structures in the isomorphism class
are definable in set theory is independent of the axioms of set theory:

Proposition 6. Suppose A is a second order characterizable structure. If
V = L, then {B : B ∼= A} contains a Π2-definable model. If ZFC is con-
sistent, then it is consistent to have a countable second order characterizable
structure A such that {B : B ∼= A} contains no structures that are definable in
set theory.
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Proof. If V = L, then we can define the smallest element B of {B :
B ∼= A} in the canonical well-order of L: B is the unique set satisfying

Str(L,B) ∧ P2(L,B, #A) ∧ ∀x(P1(L, x, #A)→ B ≤L x).

On the other hand if ZFC is consistent there is a forcing extension in which
the set R has no well-ordering which would be definable in set theory with
real parameters. However, let <∗ be a well-ordering of R (by the Axiom
of Choice) in the order-type |R|. The structure (R, <∗) is second order
characterizable as <∗ is the unique well-ordering of the set R of the order-
type |R|. If (R, <∗) were definable in set theory, then wewould get a definable
well-order of R. 4
The above Proposition shows that second order characterizable structures
can be captured in set theory up to isomorphism, but if one wants to “pick
out” any particular one there may be obstacles. This is in harmony with
the general trend in set theory that one may not be able to choose elements
from a definable class in a definable way. A good example is the set of
well-orderings of the reals, used in the above proof. This set is of course a
definable set, but there is no provably definable way of defining any particular
such well-ordering. Rather the contrary, it is a consequence of large cardinal
assumptions that no well-ordering of the reals can be definable on any level
Σ1n of the projective hierarchy. Still it is consistent, relative to the consistency
of large cardinals, that there is a supercompact cardinal and the reals have a
definable well-order.
Perhaps the non-availability of specific definable structures in the isomor-
phism class of a second order characterizable structure gives credibility to
the idea, seemingly part of the second order view, that we should consider
structures up to isomorphism only, and not try to pinpoint any specific
structure. In set theory all the structures isomorphic to a given one exist
on an equal basis, none above others, and whether they are definable or not
is an afterthought. The fact that we cannot pick a definable well-ordering
of the field of reals does not mean that we could not use such (arbitrary)
well-orderings.
We now investigate how complicated is the truth concept in the structures
of the hierarchy (Figure 1) of second order characterizable structures. We
already know that in terms of Turing-reducibility the complexity goes up as
the size of the model goes up, at least if we make an exponential jump. We
now show that the second order theories of all the second order character-
izable structures are ∆2-definable and this is the sharpest result at least in
terms of the Levy-hierarchy. Moreover, we show that universal second order
truth (2) is on the strictly higher level of Π2-definability.

Proposition 7. The second order theory of any second order characteri-
zable structure is ∆2-definable. The second order theory of a second order
characterizable structure of cardinality ≥ !m cannot be Σmn for any n.
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Proof. We use the notation of Proposition 5. We showed already that the
Σ2-predicate P1(z, x, y) and the Π2-predicate P1(z, x, y) are equivalent and
hence ∆2-definable. Now

A |= φ ⇐⇒ ∃xP1(L, x, #A ∧ φ) ⇐⇒ ∀x(P1(L, x, #A)→ P2(L, x,φ)).
If P(x) is a Πmn property of natural numbers and A has cardinality ≥ !m,
then there is a second order # in the vocabularyL = {R1, . . . , Rk} of number
theory such that

P(a) ⇐⇒ A |= ∃R1 . . .∃Rk(# ∧ P(a)).
Thus the second order theory of A cannot be Σmn . 4
The validity |= φ, i.e., truth in all structures is more complicated than
truth in any particular second order characterizable structure:

Proposition 8. [12] The predicate “φ has a model” is a Σ2-complete predi-
cate. Hence the predicate |= φ is aΠ2-complete property of (the Gödel number
of ) φ.

Proof. φ has a model if and only if there is a supertransitive setM such
that it is true in (M,∈) thatφ has amodel. Thus the predicate “φ has amodel”
is Σ2. On the other hand, suppose ∃x ∀yP(x, y, n) is a Σ2-predicate. Let φn
be a second order sentence the models of which are, up to isomorphism,
exactly the models (Vα ,∈), where α = !α and (Vα ,∈) |= ∃x ∀yP(x, y, n).
If ∃x ∀yP(x, y, n) holds, we can find a model for φn by means of the Levy
Reflection principle ([6] Theorem 12.14). On the other hand, suppose φn has
a model. W.l.o.g. it is of the form (Vα ,∈). Let a ∈ Vα such that (Vα ,∈) |=
∀yP(a, y, n). Since in this case Hα = Vα , (Hα ,∈) |= ∀yP(a, y, n), where
Hα is the set of sets of hereditary cardinality < α. By another application
of the Levy Reflection Principle we get (V,∈) |= ∀yP(a, y, n), and we have
proved ∃x ∀yP(x, y, n). 4
Corollary 9. The second order theory of every second order characteri-
zable structure is Turing reducible to the proposition “φ is valid” and to the
proposition “φ has amodel” but the latter propositions are not Turing reducible
to the second order theory of any second order characterizable structure.

Note that the proposition “φ is valid” is trivially Turing reducible to the
second order theory of the structure (N, <, P), where P is the set {!φ" :
|= φ}. Thus (N, <, P) is an example of a structure that can be defined
in set theory but is not second order characterizable. Note that the above
Corollary is also an easy consequence of Proposition 4.

Proposition 10. The predicate “φ has at most one model up to isomor-
phism” is a Π2-complete predicate.

Proof. We show that the predicate “φ has at least two models up to
isomorphism” is a Σ2-complete predicate. φ has at least two models if and
only if there is a supertransitive set M such that it is true in (M,∈) that φ
has at least two models. Thus the predicate “φ has at least two models up
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to isomorphism” is Σ2. On the other hand, suppose ∃x ∀yP(x, y, n) is a
Σ2-predicate. Let φn be as, in the proof of Proposition 8, the second order
sentence the models of which are, up to isomorphism, exactly the models
(Vα ,∈), where α = !α and (Vα ,∈) |= ∃x ∀yP(x, y, n). If ∃x ∀yP(x, y, n),
then φn has two models of different cardinality, hence two non-isomorphic
models. On the other hand, if φn has at least two models, it has a model and
hence ∃x ∀yP(x, y, n) holds. 4

Proposition 11. The predicate “φ is a second order characterization of a
structure” is the conjunction of a Σ2-complete and a Π2-complete property of
φ. This predicate is not Σ2 or Π2.

Proof. The first claim follows from the previous two propositions. Sup-
pose a Σ2-predicate ∃x ∀yP(x, y, n) is given. Let +n be a second order
sentence the models of which are, up to isomorphism, exactly the mod-
els (Vα ,∈), where α = !α , (Vα ,∈) |= ∃x ∀yP(x, y, n), and (Vα ,∈) |=
∀&(& .= !& ∨¬∃x ∀yP(x, y, n))(V&). Note that +n has at most one model up
to isomorphism. If ∃x ∀yP(x, y, n) holds, we can find a model for +n by us-
ing the Levy Reflection principle and taking the model of minimal rank. On
the other hand, if +n has a model, then clearly ∃x ∀yP(x, y, n). This shows
that the predicate “φ is a secondorder characterization of a structure” cannot
beΠ2. To show that it cannot be Σ2 either let ∃x ∀yP(x, y, n) be again a Σ2-
predicate. let φn be as above, and let #n = φn ∨∀x ∀y(x = y ∧x ∈ y). Note
that #n has a model, whatever n is, and it has at least two non-isomorphic
models if and only if φn has a model. Thus #n does not characterize a
structure up to isomorphism if and only if φn has a model if and only if
∃x ∀yP(x, y, n). This concludes the proof. 4

So recognizingwhether a candidate secondorder sentence is a secondorder
characterization of some structure is so complex a problem that it cannot (by
Proposition 11 above) be reduced to truth A |= φ∗ in any particular second
order characterizable structure A. It encodes a solution to propositions of
the type .|= φ∗. So in complexity it is above all the particular truths A |= φ∗
and on a par with, but not equivalent to |= φ∗. The whole framework of
the second order view takes the concept of a second order characterizable
structure as its starting point. In the case of familiar classical structures we
can easily write the second order characterizations. But if we write down
an arbitrary attempt at a a second order characterization, the problem of
deciding whether we were successful is in principle harder than the problem
of finding what is true in the structure, if the sentence indeed characterizes
some structure.
Note that if φ is a second order characterization of A, then φ is complete,
for if + is any second order sentence in the vocabulary of φ, then A |= +
implies φ |= + and A .|= + implies φ |= ¬+.
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Proposition 12. The property of φ being a (consistent) complete second
order sentence is not Π2. If V = L, then every consistent complete sentence
characterizes some structure, but consistently some complete sentences have
non-isomorphic models. (The second claim is due to [10], see also [1] and [7].
For stronger results see [5].)

Proof. The proof is similar to the proof of Proposition 6. 4
4.3. What if only second order characterizable structures exist? We already
referred to the problem, what is the real meaning of |= φ? Is it that every
second order characterizable structure satisfies φ, or are we thinking of some
larger category of structures, each of which satisfies φ? In the latter case
the question arises, what are those structures that may not be second order
characterizable? We first point out that if V = L, then there is no difference,
but otherwise this is a real issue:

Proposition 13. Consider the conditions:

(a) A |= φ for every A
(b) A |= φ for every second order characterizable A
If V = L, (a) and (b) are equivalent. On the other hand, if ZF is consistent,
then it is consistent that (a) and (b) are not equivalent.

Proof. We build on [1] and [10], see also [5] and [7]. Trivially (a) im-
plies (b). Suppose V = L. Assume (a) fails. Suppose A is a structure
such that A .|= φ. Let A be the <L-smallest A such that A |= ¬φ. Now
A is second order characterizable by the sentence “I am isomorphic to the
<L-smallest model of ¬φ”. We contradict (b). For the second claim we
start with V = L, then add a Cohen real G and construct the countable
non-isomorphic models F (G) and F (−G) as in [1]. As proved by Ajtai [1],
these are second order equivalent but not isomorphic. As pointed out by
Solovay [10], there is a second order sentence # which is true in both of them
and which is complete. Let L′ = {R1, . . . , Rn} be the relational vocabulary
of #. Let # ′ be # written in a new disjoint vocabulary L′ = {R′

1, . . . , R
′
n}.

Let Iso(f,R1, . . . , Rn, R′
1, . . . , R

′
n) be the first order sentence which says that

f is an isomorphism between the model determined by R1, . . . , Rn and the
model determined by {R′

1, . . . , R
′
n}. Considerφ which says in the vocabulary

L ∪ L′:

(# ∧ # ′)→ ∃f Iso(f,R1, . . . , Rn, R′
1, . . . , R

′
n).

Let (F (G), F (−G)) be the L ∪ L′-structure the L-reduct of which is F (G)
and the L′-reduct F (−G). So φ and (F (G), F (−G)) violate (a). We now
show that (b) holds forφ. Suppose (A,B) is secondorder characterizableL∪
L′-structure and satisfies # ∧ # ′. Then A andB are second order equivalent,
modulo a translation of the vocabulary. If + characterizes (A,B), then A
is second order characterizable by the sentence ∃R′

1 . . .∃R′
n+, for suppose
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A′ |= ∃R′
1 . . . ∃R′

n+. Then (A
′,B′) |= +, building B′ from R′

1, . . . , R
′
n,

whence A ∼= A′. (b) is proved. 4
What about categoricity? When we defined the concept of a second order
characterizable structure in (4) we used a quantifier ranging over all struc-
tures. To say that the quantifier ranges over second order characterizable
structures leads to a circular definition. Still we obtain the following. We
use the original definition of a second order characterizable structure and
then make the following observation afterwards:

Proposition 14. Suppose all models of # have the same cardinality.6 Con-
sider

(a) (B |= # ∧ C |= #)→ B ∼= C for everyB,C.
(b) (B |= # ∧C |= #)→ B ∼= C for every second order characterizableB,C.

If V = L, (a) and (b) are equivalent. On the other hand, if ZF is consistent,
then it is consistent that (a) and (b) are not equivalent.

Proof. We build again on [1] and [10] (see also [5] and [7]). Trivially (a)
implies (b). Assume V = L. Suppose (b) and suppose there are structures
B and C such that B |= #, C |= # but B " C. Let (B,C) be the <L-
smallest (mod ∼=) (B,C) such that this holds. Now (B,C) is second order
characterizable, hence both B and C are, and therefore (b) gives B ∼= C.
For the converse we add a Cohen real G and construct the countable non-
isomorphic modelsB = F (G) and C = F (−G). As proved by Ajtai, these
are second order equivalent. As pointed out by Solovay, there is a second
order sentence # which is true in both of them and which is complete. So we
have a failure of (a). To see that (b) holds suppose B′,C′ are second order
characterizable, and B′ |= #, C′ |= #. Since # is complete, B′ and C′ are
second order equivalent. Hence C′ |= #B′ , andB′ ∼= C′ follows. 4
The pattern is the same in both of the above results: If we assume V = L,
then we can more or less dispense with non-second order characterizable
structures, but otherwise we cannot. This shows that the set-theoretical
assumption V = L has analogues in second order logic, for example the
assumption that every second order sentence with a model has a second
order characterizable model. This is true if V = L, and false if we add a
Cohen real, demonstrating that intrinsic properties of the mathematical uni-
verse according to the second order view play a similar role in second order
logic as V = L plays in set theory. The latter assumption solves virtually
all otherwise unsolvable problems in set theory. Similarly the assumption
that every consistent second order sentence has a second order characteri-
zable model simplifies working with second order logic, because one need
not worry about arbitrary structures. One can focus on the second order
characterizable structures.

6For example, # is a complete second order sentence.
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4.4. Summary of second order structures. The second order characteri-
zable structures form a hierarchy of increasing complexity. Second order
truth is not expressible as truth in any particular second order characteriz-
able structure. We can view this as a vindication of an anti-foundationalist
position: there is no second order characterizable structure which “stands
above” all others, rather each carries its own truth concept.
However, we observed that universal truth |= φ is more complex than any

A |= φ∗. In a sense,7 universal truth provides a foundation for second order
logic, albeit a very complex one, in particular more complex than is needed
for any individual second order characterizable structure.
The situation is not unlike that prevailing in set theory, where truth in
the whole universe is so complex that it is not definable at all. But for most
practical purposes truth in someVα for relatively smallα, such asα = '+',
suffices.
The universe of set theory is needed for general reasons: in order that the
axioms could be spelled out in a simple and appealing way, in order not to
have to decide howmany different kinds of sets are in the end needed, and in
order to have total freedom in set-theoretic constructions without “hitting
the ceiling.” If we tried to limit the set-theoretic operations we would raise
the question, what is it that we have left out, and why?
In second order logic universal truth is needed to account for universal
propositions (2). At the same time we can use it to give (1) the pleasant
formulation (5).
We have used set theory to analyze second order characterizable structures
and found set-theoretical concepts such as the cardinality of the model and
the Levy-hierarchy useful tools. One can redefine these tools in the second
order setting, but one would have to rely heavily on the concept of universal
truth, and having done that, there is a temptation to see the whole of second
order logic as the ∆2-fragment of a more powerful framework, namely set
theory.

§5. Set theory from a second order point of view. How does the set theory
view appear from the perspective of the second order view? The structure
(Vκ ,∈) (or Vκ for short), where κ is the first inaccessible cardinal > ', is
second order characterizable, as Zermelo observed. It is fair to say that any
mathematical proposition outside certain areas of set theory itself is of the
form Vκ |= φ, where φ is a first order sentence of the vocabulary {∈}. In
particular, if A is a second order characterizable structure in Vκ, such as any
of the classical structures, then the proposition A |= φ, where φ is second
order, can be readily translated into Vκ |= “A |= φ”, and thereby, using the
notation of (3), into

|= #Vκ → “A |= φ”.
7Recall that (1) can be reduced to (2).
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The idea now is that from the understanding of what #Vκ means we should
be able to deduce that what A |= φ means is true. The foundationalism of set
theory manifests itself here inside of the second order view: the single sen-
tence #Vκ encodes almost all of mathematics. From the anti-foundationalist
point of view one may find it unreasonable that a single #Vκ would encode
so much information that all questions A |= φ would be solvable. But we
are working inside the second order position and conceived #Vκ in the sec-
ond order framework as any other second order characterization. In this
position we accept every second order characterizable structure on an equal
basis. We did not stipulate that some structures are more important than
others but merely that the second order characterizable structures are the
important ones. So on what grounds should we abandon the poor devil Vκ
who knows too much?
If we have a mathematical proposition of the form A |= φ and A ∈ Vκ ,
then we can use Vκ as follows. We want to assert A |= φ as true. We know
that it is enough to assert the truth of |= #Vκ → “A |= φ”. How can we
justify this assertion? According to the above discussion the only method
available is to give an informal (or formal) proof of #Vκ → “A |= φ” from
the axioms CA of second order logic in the vocabulary {∈}. It would be
very surprising if this would be anything but a proof of “A |= φ” in ZFC,
although theoretically the proof based on the second order language and
the comprehension axioms is slightly stronger. So unless we have grounds
to rule out Vκ as a legitimate second order characterizable structure, we
can do full-fledged set theory inside the second order view. Only arguments
involving cardinals larger than the first inaccessible are ruled out. But the
first inaccessible can be replaced above by the second inaccessible, the third
Mahlo, the fourth weakly compact, the fifth inaccessible above the third
measurable, etc. So the limitation to κ can be eliminated case by case. In
short, (practically) every set theoretic argument can be recast as an argument
in second order logic.
Does doing set theory inside the second order view, however contrary to
the anti-foundationalism of the second order view it is, give us anything
more than what the set theory view does? It can be suggested that because
#Vκ characterizes Vκ categorically, we have gained something. Let us take
the CH as an example. We know that CH is true or false in Vκ and therefore

|= #Vκ → CH or |= #Vκ → ¬CH.
In the set theory view we also know that CH is true or false in Vκ , that is

Vκ |= CH or Vκ |= ¬CH.
In fact, the former does not give us anything more than the latter. In both
cases we know that the means we have for giving evidence either way have
been proved by Gödel and Cohen to be insufficient. If a second order
principle concerning Vκ emerged that solves CH it would be immediately
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recognized in set theory in the same vein. A central criterion for accept-
ing such new principles is the somewhat vague demand for naturality. It is
conceivable that some principles would be more natural in the second order
context and some others in the set theory context. For example, the assump-
tion of large cardinals, which is used in set theory to prove that there is no
projective well-order of the reals, has arisen in the set-theoretic framework
and seems natural there. Formulating large cardinal assumptions in second
order logic is uncharted territory.

§6. Large domain assumptions. We now return to the question of giving
evidence for a proposition of the form “φ is a second order characterization
of a structure”. This proposition is the conjunction of “φ has a model”
and “models of φ are isomorphic”. The predicate “φ has a model” is a
Σ2-complete property of φ. Thus it can neither be reduced to the question
A |= φ∗ for some second order characterizable structure A nor to |= φ∗ for
some second order φ∗ obtained effectively from φ. This means that “φ has
a model” is a proposition of a new kind. It is a proposition of a kind that
we do not know how to give evidence for. This is a weakness in the second
order view, as presented so far. It is not at all clear, and we have to leave it
as an open problem, how to formulate an axiom of second order logic that
would remedy this weakness.
One possible approach is the following: Suppose we already know the
existence of some second order characterizable structure B of the same
cardinality as A. We can then give evidence for (8) by proving

#B → ∃R1, . . . , Rn#A
from the CA axioms. But from where do we obtainB? We can assume with-
out loss of generality thatBhas empty vocabulary. If we use relativization to
a new predicate R we only need a second order characterizable structureB
of the empty vocabulary which is as large as A. Then we could give evidence
for (8) by proving

#B → ∃R (∃R1, . . . , Rn#A)(R)

from the CA axioms. What we need, in short, is a large domain assump-
tion #B. Just as with the large cardinal assumptions in set theory, the large
domain assumptions cannot be proved from the CA axioms of second order
logic.
Trying to manage without large domain assumptions amounts to talking
about a bigger universe inside a smaller universe. What we seem to need are
logical means to refer to the “outside” of a structure. Such logical means are
the heart of the extension of second order logic called sort logic (see [11]).
Alternatively, in higher order logics we can build an “outside” from the
higher type objects, but we would need higher and higher types with no end.
This problem does not arise in set theory because the axioms are designed
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for the very purpose of producing sets of higher and higher cardinalities
and if larger sets are needed than provided by the axioms, large cardinal
assumptions (inaccessible cardinals, measurable cardinals, etc) are added to
the axioms.
Most ofmathematics can be done in set theory without large cardinals, but
in second order logic one seems to need large domain assumptions in order
to give evidence for the construction of any infinite structure: we cannot give
evidence for a characterization of the natural numbers without assuming the
existence of a second order characterizable infinite structure; we cannot give
evidence for a characterization of the real numbers without assuming the
existence of a structure of at least continuum size; we cannot give evidence
for the existence of a structure built from all mappings from reals to reals
unless we assume the existence of a structure with that many elements. As
we proceed we need more and more assumptions about the largeness of
the universe. This phenomenon is familiar from Gödel’s Incompleteness
Theorem and is remedied in set theory by a combination of the axioms of
infinity, power-set and replacement.
With thismethodwe cangive evidence for the secondorder characterizabil-
ity of a structure if we already have a second order characterizable structure
of the same or bigger cardinality, and we can give evidence for a sentence φ
being a second order characterization of some structure if we already have
evidence for the second order characterizability of another structure of the
same or bigger cardinality. The idea comes to mind to assume the existence
of as large second order characterizable structures as we may ever want. We
might then ask what would be a second order characterization of a structure
which is sufficiently large? A natural candidate is Zermelo’s Vκ , where κ is
the first strongly inaccessible. We have thus created for ourselves a copy of
ZFC set theory.
We conclude that the second order view suffers from aweakness—the need
to keep making new large domain assumptions one after another—that the
set theory view solves succinctly by assuming that the universe is as large
as possible. It is tempting to adopt the set theory view as the primary view
and then formulate the second order view as a secondary view which appeals
to set theory for the existence of structures, but this ruins the claim of the
second order view as giving an autonomous explanation of mathematics.

§7. Conculsion. Second (and higher) order logic is comparable to set
theory on the level ofΠ2-formulas. Individual second order characterizable
structures are organized into a hierarchy on the lower level of∆2-definability.
Second (and higher) order logic has its foundation, not in second order
logic itself but in set theory, because the truth ofΠ2-formulas can be defined
in set theory. Respectively, set theory in full generality does not have a truth
definition in set theory itself, but one can organize it into the hierarchy of
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Πn-definability, n ∈ N, each level being definable on the next higher level.
As was mentioned, higher order logic corresponds to the case n ≤ 2.
Compared to each other, second order logic and set theory are not in total
synchrony because of the different nature of the formalizations, namely
what is the language and what is taken as an axiom. When we consider
each as a description of what it is that mathematicians do, the differences of
formalization all but disappear.
In particular, it is misleading to say that second order logic captures
mathematical structures up to isomorphismwhile set theory is marred by the
weakness of expressive power of first order logic manifested in the existence
of non-standard models of basic foundational theories. Rather, both second
order logic and set theory either manifest a high degree of categoricity or
alternatively permit a plethora of non-standard models, depending on the
perspective. Categoricity results when models are assumed to be “full”,
which in the case of formalized second order logic means that every subset
and relation of the domain is in the range of the second order variables, a
criterion that can be conveniently formulated in either informal set theory
or in informal second order logic.
In the case of set theory the “fullness” of the models of the formalized
set theory means that every subset of every set is in the range of first order
variables, a criterion that can be conveniently formulated either in informal
set theory itself or in informal second order logic. Much confusion arises if
formal and informal are mixed up. If they are kept separate, the informal
being what mathematicians are doing and the formal being our attempt to
make the informal intelligible, second order logic and set theory fare rather
equally.
Set theory gives a smoother approach but one has to be prepared to allow
sets to be built up in an uninhibited way combining power-set, unions and
applications of replacement. Second order logic settles for the more modest
approach involving only one (or a couple of) application(s) of the power-set
operation at a time, but the price is that one needs the concept of universal
truth which turns out to encode a tremendous amount of set theory, and
one cannot prove from the (comprehension) axioms the existence of second
order characterizable structures without large domain assumptions.
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Grundlehren der mathematischen Wissenschaften, vol. 27, Springer-Verlag, Berlin, 1972,
Sixth edition. First edition published 1928.
[5] Tapani Hyttinen, Kaisa Kangas, and Jouko Väänänen, On second order character-

izability, to appear.
[6] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag,

Berlin, 2003.
[7] Lauri Keskinen, Characterizing all models in infinite cardinalities, Ph.D. thesis, Uni-

versity of Amsterdam, 2011.
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