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1 Dependence

The dependence atom =(x, y) was introduced1 in [11]. Here x and y are finite
sets of attributes (or variables) and the intuitive meaning of =(x, y) is that
the attributes x completely (functionally) determine the attributes y. One may
wonder, whether the dependence atom is truly an atom or whether it has fur-
ther constituents. My very pleasant co-operation with Samson Abramsky led to
the breaking of this atom, with hitherto unforeseen consequences. Here is the
story.

A reasonable goal in logic is to capture the intuitive meaning of some concept
by means of simple axioms. In the case of dependence atoms such simple axioms
are the so-called Armstrong’s Axioms2:

1. Reflexivity: =(xy, x).
2. Augmentation: =(x, y) implies =(xz, yz).
3. Transitivity: If =(x, y) and =(y, z), then =(x, z).

presented in one of the first3 papers on database theory [3].
Armstrong’s Axioms capture the meaning of dependence atoms completely

in the sense that an atom =(x, y) follows from a set Σ of other atoms by these
rules if and only if every database in which the dependence atoms Σ hold also
=(x, y) holds.

A dependence atom holding in a database can be given the same meaning
as a formula holding in a first order structure, but only if we make one very
important leap. This is the leap from considering truth in one assignment to
considering truth in a team, a set of assignments. This innovation is due to
Hodges [9].

� Research partially supported by grant 251557 of the Academy of Finland. I am grate-
ful to Pietro Galliani, Juliette Kennedy, Juha Kontinen and Fan Yang for reading
the manuscript and making helpful comments.

1 It was, however, known as “functional dependence” in database theory since the 70s.
2 We write xy for the union x ∪ y of the sets x and y.
3 According to R. Fagin in “Armstrong databases”, 7th IBM Symposium on Mathe-
matical Foundations of Computer Science, Kanagawa,Japan, May 1982.
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Let M be a background structure and X a set of assignments of variables into
M . We call such sets teams. We define what it means for the team X to satisfy
a dependence atom =(x, y) in M, denoted M |=X =(x, y), as follows:

∀s, s′ ∈ X(s � x = s′ � x implies s � y = s′ � y). (1)

This gives exact meaning to =(x, y) in perfect harmony with the idea that
the values of x functionally determine the values of y. This is also the mean-
ing of functional dependence as it started to appear in database theory after
[3].

2 Constancy

A special case of =(x, y) is the constancy atom =(y) where x = ∅:

∀s, s′ ∈ X(s � y = s′ � y). (2)

The intuitive meaning of =(y) is simply that y is constant. In a context like team
semantics, where we have variation in the values of the attributes (or variables),
it makes a lot of sense to take also into account the possibility of no variation. So
in the context of team semantics, where formulas with free variables x1, . . . , xn
are considered, the constancy atom

=(x1 . . . xn) (3)

limits the teams to singleton (or empty4) teams. In singleton (and empty) teams
all dependence atoms =(u, v) are true, so (3) has the effect of trivializing all
dependence atoms.

A complete axiomatization of the logical consequence of a constancy atom
from a set of other constancy atoms is almost too trivial to quote: it consists of
just the rule

Reflexivity: =(xy) implies =(x).

3 Dependence Logic

We can extend the definition of the meaning of dependence atoms to the entire
first order logic built from identities x = y, relational atoms R(x1, . . . , xn) and
the dependence atoms =(x, y) as follows:

4 Teams are sets of assignments and also the empty set is a team.
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M |=X x = y ⇐⇒ ∀s ∈ X(s(x) = s(y)).
M |=X ¬x = y ⇐⇒ ∀s ∈ X(s(x) �= s(y)).
M |=X R(x1, . . . , xn) ⇐⇒ ∀s ∈ X((s(x1), . . . , s(xn)) ∈ RM).
M |=X ¬R(x1, . . . , xn) ⇐⇒ ∀s ∈ X((s(x1), . . . , s(xn)) /∈ RM).
M |=X φ ∧ ψ ⇐⇒ M |=X φ and M |=X ψ.
M |=X φ ∨ ψ ⇐⇒ There are X1 and X2 such that

X = X1 ∪X2, M |=X1 φ, and M |=X2 ψ.
M |=X ∃xφ ⇐⇒ M |=X′ φ for some X ′ such that

∀s ∈ X ∃a ∈M(s(a/x) ∈ X ′)
M |=X ∀xφ ⇐⇒ M |=X′ φ for some X ′ such that

∀s ∈ X ∀a ∈M(s(a/x) ∈ X ′)

We call the resulting semantically defined logic Dependence Logic [11].
Conceivably one could extend (1) to full dependence logic in different ways.

An important guideline in making the choices for the above semantics is that for
singleton teams {s} this agrees with satisfaction in first order logic, that is, if
we use the notation M |=s φ for the proposition that the assignment s satisfies
the first order formula φ in M, then for first order φ (i.e. for φ not containing
dependence atoms):

M |={s} φ ⇐⇒ M |=s φ. (4)

4 Downward Closure

Another guiding principle is downward closure: If M |=X φ and Y ⊆ X , then
M |=Y φ for any dependence logic formula φ. Why do we want downward
closure? The idea is that every dependence logic formula specifies a type of
dependence. So, in particular, we do not aim at expressing non-dependence.
Also, we do not consider dependencies which are manifested in part of the team
only, even if the part was a very big part.

Our concept of dependence is thus logical, not probabilistic. For =(x, y) to hold
in X , every pair {s, s′} chosen from X has to satisfy (1), not a single exception
is allowed. This property is, of course, downward closed. We simply extend this
to all formulas and thereby maintain the idea that every formula determines a
weak form of this kind of dependence.

In practical applications probabilistic dependences are much more ubiquitous.
In particular, in practical applications one can usually overlook a tiny portion
of the team as irrelevant noise, possibly resulting from errors in data handling.
In our mathematical theory of team semantics a single row can destroy the
dependence manifested by millions of other rows.

Let us see how downward closure arises: Conjunction determines the simul-
taneity of two dependences. Downward closure is preserved. Disjunction says
that the team splits into two subteams, both with their own dependence. Down-
ward closure is preserved: a smaller team splits similarly into subteams obtained
by intersecting the original subteams with the smaller team. The existential
quantifier says that after some rows are updated, a dependence holds. A smaller
team inherits the update canonically. Finally, the universal quantifier says that
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a given dependence holds even if a certain attribute has simultaneously all pos-
sible values. In a smaller team we simultaneously give all possible values to the
given attribute in the remaining assignments. In each case downward closure is
clearly preserved.

5 Axioms

Given that Armstrong’s Axioms govern the dependence atom, what are the
axioms governing the entire dependence logic? After all, we have just given the
semantics. Ideally the semantics would reflect the completeness of the axioms.
As it happens,5 the above semantics does not reflect the completeness of any
effectively given set of axioms and rules, because the set of Gödel numbers of
valid sentences in dependence logic is a complete Π2-set in the sense of the Levy
hierarchy of set theory [12].

What is the meaning of the logical operations of dependence logic, if logical
consequence cannot be axiomatized? A trivial answer is that the meaning comes
from set theory according to the definition of the semantics. This, however, raises
the further question, do we really have to understand set theory to understand
the meaning of the logical operations ∧,∨, ¬, ∃ and ∀? Shouldn’t “logical” mean
something simpler than set theory?

Conceivably there is a fragment of dependence logic which is completely ax-
iomatizable but still rich enough to express some interesting dependence prop-
erties. A step in this direction is [10], where a complete axiomatization of the
logical consequence relation Σ |= φ, where φ is first order, is given. Some of the
rules of this axiomatization are quite involved but still all the rules have a clear
intuitive content. Here is an example of the rules of [10]:

∃y(∧1≤j≤n =(zj , yj) ∧ C) ∨ ∃y′(
∧

n+1≤j≤n+m =(zj , yj) ∧D)

∃y∃y′(
∧

1≤j≤n+m =(zj , yj) ∧ (C ∨D))
(5)

Work is underway to extend such results to non-first order—real dependence
logic—consequences, and Juha Kontinen and his student Miika Hannula have
unpublished results in this direction. In the light of this we may argue that there
are meaningful and insightful steps between Armstrong’s Axioms for atoms and
the axiomatically intractable purely semantic theory of dependence.

6 Breaking the Atom

Are the complicated rules of [10], an example of which is (5), and the even more
complicated ones needed for non-first order consequences, really the best way
to understand the meaning of =(x, y) and first order logic built on top of it?
Maybe =(x, y) can be analyzed in a different way, leading to simpler logical
rules. Samson Abramsky suggested to look inside the atom =(x, y) and see what

5 This is essentially due to A. Ehrenfeucht, as Henkin reports in [8].
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are its constituents. This led to the topic of the title of this paper, and to the
paper [2].

To break the atom =(x, y) we can rewrite its semantics as follows:

∀Y ⊆ X(if x is constant on Y , then y is constant on Y ). (6)

Using the constancy atoms this amounts to

∀Y ⊆ X(if Y satisfies =(x), then Y satisfies =(x)). (7)

This resembles the semantics of intuitionistic implication in Kripke-semantics

w � φ→ ψ ⇐⇒ ∀u ≥ w(if u � φ, then u � ψ),

so thinking of subsets of X as “extensions” of X we define a new logical opera-
tion:

M |= φ→ ψ iff ∀Y ⊆ X(if M |=Y φ, then M |=Y ψ). (8)

With this new implication we have a simple definition of the dependence atom:

=(x, y) iff =(x) → =(y) (9)

with exactly the same semantics in team semantics as the original (1).
The idea that subteams are “extensions” of the team is not far-fetched. We

can think of teams as uncertain information about an assignment (see [4] for
more on this idea) and then a smaller team represents less uncertainty, i.e. more
certainty. The ultimate extension in this sense is a singleton, representing total
certainty about the assignment.

An obvious potential advantage of =(x) → =(y) over =(x, y) is that on the
one hand =(y) is a much simpler atom than =(x, y) and on the other hand →
is not just an arbitrary new operation, it is the restriction to team semantics of
the classical intuitionistic implication going back to Brouwer, Kolmogorov and
Heyting, with an extensive literature about it.

Considering that φ → ψ is the restriction of intuitionistic implication to the
context of dependence logic, it can be hoped that it inherits some its rich meaning
in constructive mathematics, and that this inheritance can be taken advantage
of. Indeed, if Armstrong’s Axioms are combined with (9) and dependence atoms
are replaced by arbitrary formulas, Heyting’s axioms for intuitionistic implication
and conjunction arise:

1. Reflexivity: (φ ∧ ψ) → φ.
2. Augmentation: φ→ ψ implies (φ ∧ θ) → (ψ ∧ θ).
3. Transitivity: If φ→ ψ and ψ → θ, then φ→ θ.

This can be interpreted by saying that dependence logic has an intuitionistic ele-
ment. It is not intuitionistic per se, but it shares some aspects with intuitionistic
logic. Perhaps dependence logic could be developed completely constructively,
but this has not been tried yet.
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Another remarkable property of the intuitionistic implication in dependence
logic is that it is the adjoint of conjunction, just as it should be:

φ ∧ ψ |= θ iff φ |= ψ → θ. (10)

Probably the introduction of intuitionistic implication into dependence logic will
eventually lead to better proof theory, not least because of the natural Galois
connection (10). But alas, intuitionistic implication is not definable6 in depen-
dence logic! In fact Fan Yang [13] has shown that adding intuitionistic implica-
tion to dependence logic leads to full second order logic. So the introduction of
the much needed implication to dependence logic leads to an explosion of the
expressive power. Remarkably, we can still keep downward closure, so we have
not introduced a negation in the classical sense, even though full second order
logic is closed under negation. This is one of the peculiarities of team semantics,
and its oddness disperses with closer investigation, for which we refer to [13].

7 Independence

Given that we have made some headway in understanding dependence by intro-
ducing the dependence atom and investigating its logic, the question naturally
arises, what about independence? With this in mind, in [7] the independence
atom x ⊥ y was introduced7.

Intuitively speaking, x ⊥ y says that x and y are so independent of each
other that knowing one gives no information about the other. This form of
independence turns out to be ubiquitous among attributes in science and society,
wherever independence is talked about. As it turned out in discussions with
Samson, the independence concept of quantum mechanics in [1] is also of the
type x ⊥ y. This observation is the subject of further study in co-operation with
Samson.

To give independence exact meaning, let M be a background structure and
X a set of assignments of variables into M . We define what it means for the
team X to satisfy an independence atom x ⊥ y in M, denoted M |=X x ⊥ y,
as follows:

∀s, s′ ∈ X∃s′′(s′′ � x = s � x and s′′ � y = s′ � y). (11)

In other words, if a value a occurs in some assignment s as a value of x and a
value b occurs as a value of y in some other assignment s′, then there is a third
assignment s′′ which has simultaneously a as the value of x and b as the value of

6 Pietro Galliani has a related but different, and very interesting, analysis of the
dependence atom in terms of what he calls public announcement operators and the
constancy atoms [5]. The public announcement operators have the advantage over
→ that they are definable in dependence logic itself.

7 As with dependence atom, it turned out (this observation was made by Fredrik
Engström) that our independence atom was already studied under a different name
(embedded multivalued dependence) in database theory.
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y. So from x being a we cannot infer what y is (unless it is constant), and from
y being b we cannot infer what x is (unless it is constant).

Speaking of being constant, in fact, the constancy atom =(x) implies x ⊥ y
because we can then choose s′′ = s′ in (11). This is the curious state of affairs
uncovered in [7], which shows that independence is not necessarily the opposite
of dependence. Since =(x) implies =(x, y), we can have simultaneously =(x, y)
and x ⊥ y. Being constant is one form of independence.

The analogue of Armstrong’s Axioms is in the case of independence atom the
Geiger-Paz-Pearl [6] axioms:

1. Empty set rule: x ⊥ ∅.
2. Symmetry Rule: If x ⊥ y, then y ⊥ x.
3. Weakening Rule: If x ⊥ yz, then x ⊥ y.
4. Exchange Rule: If x ⊥ y and xy ⊥ z, then x ⊥ yz.

These axioms satisfy in team semantics the same kind of Completeness Theorem8

as Armstrong’s Axioms. So we may regard them really as incorporating the
essence of independence on the atomic level.

Independence atoms can be added to dependence logic9 and we get a proper
extension, called independence logic, which no longer satisfies the Downward
Closure property. This logic is able to express existential second order properties
in a particularly strong sense [5]. If we again add intuitionistic implication, we
get full second order logic [13].

8 Speculation: Breaking the Independence Atom

Let us then try to break the independence atom into pieces. The reasons for
attempting this are the same as in the case of dependence atom: the logic is
non-axiomatizable and trying to axiomatize even just first order consequences10

leads to rather complicated axioms.
Since we are bound to lose downward closure, intuitionistic implication alone

is not enough. The following more complicated compatible conjunction suggests
itself: We add a new logical connective φ � ψ to dependence logic with the
following semantics:

M |=X φ� ψ ⇐⇒

∀�=∅Y, Z ⊆ X((M |=Y φ and M |=Z ψ) →
∃Y ′, Z ′ ⊆ X(Y ⊆ Y ′, Z ⊆ Z ′,M |=Y ′ φ,M |=Z′ ψ, and Y ′ ∩ Z ′ �= ∅)).

8 Proved in [6] in the case of random variables.
9 By an unpublished result of Pietro Galliani the dependence atom is definable from
the independence atom, so if we add the independence atoms to first order logic, we
get the dependence atoms free.

10 Miika Hannula has a complete axiomatization (unpublished).
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In words, every non-empty subteam Y satisfying φ and every non-empty subteam
Z satisfying ψ, can be extended inside X , respectively, to Y ′ and Z ′ such that
they still satisfy φ and, respectively, ψ, but, moreover, they meet. In a finite
model this means that non-empty maximal teams satisfying φ and ψ meet. In
finite modelsM |=X φ�φ says the non-empty maximal subteams ofX satisfying
φ all meet. In forcing terms this means that below X the formula φ defines a set
of compatible teams. In forcing terms φ�ψ is satisfied by teams below which φ
and ψ are compatible. For sentences φ and ψ the sentence φ� ψ is always true.
For first order φ(x) and ψ(x):

M |= ∀x(φ(x) � ψ(x)) ⇐⇒ M �|= ∃xφ(x) or
M �|= ∃xψ(x) or else
M |= ∃x(φ(x) ∧ ψ(x)).

Having added the new operation we can now break the independence atom into
smaller constituents:

x ⊥ y ⇐⇒ =(x) �=(y). (12)

To what avail? In what sense is =(x)�=(y) simpler than x ⊥ y? At the moment
it is not clear whether the equivalence (12) is an insightful analysis of x ⊥ y.
Certainly the atoms =(x) represent a simplification from x ⊥ y, but it is more
difficult to estimate the connective �. It is not one of the logical operations
known in logic, and no general theory of � exists.
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