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Abstract

We consider the restriction of first—order logic to models, called pseudo—
finite, with the property that every first—order sentence true in the model
is true in a finite model. We argue that this is a good framework for study-
ing first-order logic on finite structures. We prove a Lindstrém Theorem
for extensions of first order logic on pseudo-finite structures.

1 Introduction

First order model theory on infinite structures is a well-developed field of ab-
stract mathematics with powerful methods and results. In contrast, finite model
theory has rather few general methods and also rather few general results. We
propose an approach where we allow certain infinite models but not all. Some
infinite models have infinite cardinality but no first-order properties which de-
pend on this infinity. We distinguish these infinite models from those which
actually satisfy some first-order axioms which do not have finite models at all.
In the latter case the infinite cardinality of the model is not an accident but a
necessity. We call a model pseudo-finite if every first-order sentence true in
the model is also true in a finite model. We propose the study of first-order
model theory restricted to pseudo-finite models as an alternative approach to
finite model theory.

Let us think of the following problem: We have two first-order sentences ¢
and ¥ and we want to know if ¥ is true in all finite models of ¢. If ¢ — ¥ is
provable in predicate logic, ¥ is true in all models of ¢, finite or infinite, so we
have solved our problem. But suppose we suspect that ¢ — 1 is not provable
in predicate logic. We may try to demonstrate this by exhibiting a model of ¢
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where 1) is false. Such a model-construction may require elaborate techniques
as we know from model theory and axiomatic set theory. We argue below
that a substantial part of the machinery of infinite model theory is available in
pseudo-finite model theory. If we succeed in using these methods to construct
a pseudo-finite model of ¢ A =), we have solved the problem: The sentence 1)
cannot be true in all finite models of ¢.

Pseudo-finiteness can be defined in several equivalent ways. The Lemma
below exhibits three. If L is a vocabulary, we use I';, to denote the first-order
theory of all finite L-structures.

Lemma 1 Suppose L is a vocabulary and A is an L-structure. Then the fol-
lowing conditions are equivalent

(1) AET,.
(2) Every first-order L—sentence which is true in A is true in a finite model.

(8) There is a set {A; : i € I} of finite L—structures and an ultrafilter F' on I

such that
iel

Proof. (2) — (3): Let T be the set of first-order L-sentences true in A. Let
I be the set of finite subsets of T. For i = {¢1,...,¢n} € I, let A; be a finite
L—structure such that A; = ¢1A...Ap,, and then X; the set of j € I for which
A = o1 A Ay, The family {X; : i € I} can be extended to an ultrafilter
FonI. If now A |= ¢, then {j € I : A; |= ¢} contains X; for ¢ = {¢}, hence

IT Ai/F = ¢. The other directions are trivial. O
i€l

We call models isomorphic to [] A;/r for some set I, finite A; and some
i€l

ultrafilter F', UP-finite. By the Keisler—Shelah Isomorphism Theorem [11, 15]
a model A is pseudo-finite if and only if it has an ultrapower which is UP-finite.
This gives a purely algebraic definition of pseudo-finiteness. The random graph
(see e.g. [6]) is a well-known example of a pseudo-finite model. More generally,
suppose i, is a uniform probability measure on the set S, (L) of L-structures
with universe {1,...,n} and let

plp) = lim p,({A € Su(L): A= o))
for any L-sentence . Then if A is a model of the almost sure theory of u
{¢: ¢ first order L—sentence and u(p) =1},

then A is pseudo-finite. In this case the pseudo-finite structures actually satisfy
the stronger condition: true sentences are true in almost all finite models. There
is a deep result of model theory which can be utilized to get pseudo-finite models:
Cherlin, Harrington and Lachlan [3] proved that all models of totally categorical



(k—categorical for each k) theories are pseudo-finite. For a stability theoretic
analysis of pseudo-finite structures, see [10] and [4].

We use common model theoretic notation, as e.g. in [9]. When we talk about
finite structures we do not assume that the vocabulary is necessarily finite.

2 Examples

Pseudo-finite models can be and have been used to prove results about finite
structures. Gurevich [7] proved by means of Ehrenfeucht-Fraisse games that
even cardinality is not expressible in first—order logic on ordered structures.
One can alternatively use UP-finite models to prove this result. Let A,, be the
linear order ({1,...,n},<). It is easy to see that if

A= H Az/F, B= H At/ F,

n<w n<w

where F' is a non—principal ultrafilter on w, then A = B as both A and B have
order—type of the form
w+ Z Z + w*,
ieL

where L is an Ny-saturated dense linear order without endpoints. If even cardi-
nality were expressible by a first—order sentence ¢ on finite ordered structures,
then we would have A = ¢ and B = —¢ contradicting A = B. It is easy
to see that a linear order is pseudo-finite if and only if its type is finite or
W+ ner Z+w*, where L is a linear order.

Hajek [8] proved that connectedness is not first—order definable on finite
graphs. It was observed by Turédn [18] that this can be proved using UP-finite
models as follows: Let A, be the cycle of 2n vertices and B,, the union of two
cycles of n vertices. Let A= [] A,/r and B= ][] B, /F, where F is a non—

n<w n<w

principal ultrafilter on w. It is easy to see that A = B as both graphs are the
union of continuum many infinite chains of type Z. If there were a first-order
sentence ¢ expressing connectedness, then A |= ¢ and B | —¢ contradicting
A = B.

Fagin [5] proved the stronger result that connectedness is not even monadic
Y1 on finite graphs. Also this result can be proved using UP-finite models. For
this, suppose 3P ... 3P, is a monadic ¥ sentence. Suppose C,, is a cycle of
length 2827 Each C), is connected, so we have predicates Pi, ..., P, on Cp
making ¢ true. We can think of these predicates as components of a coloring of
the vertices of C,,. Let a, and b, be vertices of C}, so that the neighborhoods
of a,, and b, of width n have the same color-pattern. Let C/ be the result
of diverting the edge connecting a,, to its successor to an edge from a,, to the
successor of b,, and the edge connecting b,, to its successor to an edge from b,
to the successor of a,. Let A, be the graph C,, and B,, the graph C/, both
endowed with the above coloring. Let A = ] A,/rF and B = ][] B,/F,

n<w n<w



where F' is a non—principal ultrafilter on w. Then A = B, whence B = ¢. Let
n < w, with B, = ¢. We get a contradiction since C/, is disconnected.

Koponen and Luosto [12] show that neither simplicity nor nilpotency is
first-order definable on finite groups. They accomplish this by using pseudo-
finite groups. For simplicity they prove that

I_IZP/Fg H(Zp+zp)/F

peEP peEP

where P is the set of primes and F' is a non—principal ultrafilter on P. For

nilpotency they use
H Zyi/p = H Zyip(i)/ F-
i<w i<w

Starting with [1] algebraists and model theorists have studied pseudo-finite
fields.

Familiar model constructions may not yield a pseudo-finite structure. For
example, if A is pseudo-finite and P is a subset of A, there is no guarantee that
the expansion (A, P) is pseudo-finite. However, we may always add constants.
Reducts of pseudo-finite structures are pseudo-finite. Ultraproducts of pseudo-
finite structures are pseudo-finite, by the Lo$ Lemma. Naturally, any model
elementarily equivalent to a pseudo-finite model is itself pseudo-finite.

UP-finite structures constitute an important special case of pseudo-finiteness.
Note that ultraproducts of UP-finite structures are again UP-finite:

IO Ais/e)/e= T Ai/a,

iel jeJ; (i,j)EK

where
K={(i,j):ie€l jel;}

and
XeH < {i:{jeJ;:(i,j)e X} eG;} € F.

The main difference between pseudo-finite and UP-finite structures is that the
former may omit types while the latter are always Nj—saturated (if infinite).
Also, the former may be countably infinite, while the latter cannot: Shelah [14]

showed that the cardinality of an infinite UP-finite [[ A;/F is always |I|¥. If
icl

we assume the Continuum Hypothesis (CH), the UP-finite models of cardinality

N; become (by Rj—saturation) categorical, i.e., CH implies

A=B s A=B,

if A and B are UP-finite and of size < N;. Shelah [16] constructs a model of
set theory with a non-categorical UP-finite model of cardinality 2¢.



3 Model theory of pseudo-finite structures

Model theory of pseudo-finite structures can be studied in many respects in the
same manner as the model theory of arbitrary structures. The pseudo-finite
models of a first-order theory T of a vocabulary L are exactly the models of the
theory TUT'f. So we have the following properties: (FEp;n ¢ means ¢ is true
in all finite finite models. Equivalently, ¢ is true in all pseudo-finite models, i.e.,

I'yt¢.)

e Finite Compactness Theorem If T is a first—order theory every finite
subset of which has a finite model, then 7" has a model (which w.l.o.g. is
pseudo-finite).

e Finite Lowenheim—Skolem Theorem If T is a countable first—order
theory and T has a pseudo-finite model, then T has a countable model
(which w.l.o.g. is pseudo-finite).

e Finite Omitting Types Theorem If T is a first-order theory in a count-
able vocabulary L and p is an L-type, non-principal relative to T'U I'f,
then T has a pseudo-finite model which omits p.

e Finite Lyndon Preservation Theorem Suppose T is a first-order the-
ory. A sentence is preserved by homomorphic images on pseudo-finite
models of T if and only if it is equivalent in pseudo-finite models of T' to
a positive sentence.

e Finite Los—Tarski Theorem Suppose T is a first-order theory. A sen-
tence is preserved by pseudo-finite submodels of pseudo-finite models of
T if and only if it is equivalent in pseudo-finite models of T" to a universal
sentence.

The model theory of pseudo-finite structures is yet to be developed. Some
more advanced results can be immediately derived from the infinite version.
An example is the pseudo-finite version of Morley’s Theorem: If a count-
able first-order theory has only one pseudo-finite model (up to isomorphism)
in some uncountable cardinality, then it has only one pseudo-finite model (up
to isomorphism) in every uncountable cardinality. However, for pseudo-finite
model theory to make sense, it has to be developed systematically. One such
systematic account is [4].

4 Interpolation

The usual forms of interpolation all fail in finite models. In their usual formu-
lation they also fail in pseudo-finite models. However, in each case there is a
weaker statement which is true. We start with a crucial example:

Example 2 There are a finite vocabulary L1, a finite vocabulary Lo, an Lq—
sentence ¢y, an Lo—sentence ¢2, an Ly—model A1, and an Ly—model Ay such



that =piN ¢1 — ¢2, A1 | ¢1, Ao = —do, Ar [ (LoNLy) = Ay [ (LoN Ly) is
pseudo-finite, and there is no L1 N La—sentence 0 such that Epry ¢1 — 6 and

Erin 0 — ¢2.

Proof. Let L; = {R} and Ly = {P} where R and P are distinct binary predi-
cates. Let ¢ say that R is an equivalence relation with all classes of size 2 and
let 5 say —(P is an equivalence relation with all classes of size two except one of
size one). Then Epry ¢1 — ¢o. If there were an identity sentence 6 such that
Erin ¢ — 0 and =gy 0 — 1), then 6 would characterize even cardinality in
finite models. The models A; and Ay as required are easy to construct. O

We can now immediately see that the usual form of Robinson’s Theorem is
false: Let 17 be the theory of A; and 75 the theory of Ay. The theories T}
and Ty both have a pseudo-finite model, and all pseudo-finite L; N Lo-models
of T1 NT, are elementary equivalent. Yet 77 UT5 has no pseudo-finite model.
However, the following obtains easily from the classical Robinson’s Theorem:

Finite Robinson Consistency Theorem Suppose T; (i € {0,1}) is
a first—order L;—theory with a pseudo-finite model. Suppose also that
pseudo-finite Ly N L1—models of Ty N7} are elementary equivalent. Then
there are pseudo-finite models Ay and A such that Ag = To, A1 E T
and Ag [ (Lo N L1) = Ay [ (Lo N Ly).

Example 2 shows that the usual formulation of Craig’s Interpolation Theo-
rem does not hold on pseudo-finite models. However, the following formulation
follows from the classical Craig Interpolation Theorem:

Finite Craig Interpolation Theorem Suppose L and L, are vocabu-
laries, ¢; is an L;—sentence (i € {0,1}) and for all pseudo-finite Lo N L1—
models A and all pseudo-finite expansions A; of A to an L;—model satisfy

A0’2300:>A1 '2301

Then there is an Ly N Li—sentence 6 such that
Eriv o — 0 and Epiy 0 — 1.

To see more clearly how this follows, we may write it in an equivalent form:
Suppose Ly and L; are vocabularies, ¢; is an L;—sentence (i € {0,1}) and

L, UTL, = wo — o1

Then there is an Ly N Ly—sentence # such that Epry @9 — 0 and Epiy 0 —
1. Example 2 shows that the assumption 't iz, = @o — ¢1 i.e. Eriv wo —
1 would not be enough (as is well-known). The situation is the same with Beth
Definability Theorem. The above Finite Craig Interpolation Theorem gives:



Finite Beth Definability Theorem Suppose L is a vocabulary, P a
new predicate symbol, and ¢(P) a first-order L U { P}—sentence such that
for all pseudo-finite L U { P}—models A and A’ of ¢(P) we have

AJL=A'|L=pr=p~,
Then there is an L—formula 6(Z) such that
@(P) Erin YI(O(Z) < P(Z)).
Equivalently: If
I'rogpy UT pogey U{e(P), o(P)} F P =P,

then there is an L—formula 0(Z) such that p(P) Erin VE(0(Z) +» P(F)). Again,
it is easy to see that the weaker assumption

Trutppy U{p(P),p(P)} F P =P

would not be enough, indeed, it is well-known that ¢(P) A ¢(P’) Erpin P =P’
is not enough.

Let us call K a pseudo-finite PC—class if there is a vocabulary L and a
first—order ¢ such that

K ={A | L: A pseudo-finite and A | ¢},

and a pseudo-finite Yi-class if there is a vocabulary L and a first-order ¢
such that

K = {A : A pseudo-finite and FJA'(A = A’ | L, A’ = ¢)}.

Note the difference between pseudo-finite PC and pseudo-finite X1: the latter
quantifies over more relations than the former. Every non-empty pseudo-finite
PC-class contains a finite model, but a pseudo-finite ¥1-class may contain only
infinite models. Hence PC and X1 are not the same concept on pseudo-finite
models, but they coincide both on finite models and on all models. On finite
models they coincide with NP-describability.

A consequence of the Finite Craig Interpolation Theorem is the Finite
Souslin—Kleene Interpolation Theorem for PC: If K is pseudo-finite PC
and the complement {A ¢ K : A pseudo-finite } is pseudo-finite PC, too, then
K is first—order definable of pseudo-finite models. Thus first—order logic is A—
closed on pseudo-finite structures. To get a similar result for $1 we first modify
the Interpolation Theorem:

Alternative Finite Craig Interpolation Theorem Suppose Ly and L
are vocabularies, @; is an L;—sentence (i € {0,1}) and for all pseudo-finite
Lo N Li—models A and all expansions A; of A to an L;—model

Ao Ewo= Al E ol



Then there is an LyN Li—sentence 0 such that for all pseudo-finite LoNLq—
models A and all expansions A; of A to an L;—model

A ':Qﬁ()—)g and A, ’:0—)Q01

The Finite Souslin—Kleene Interpolation for X%} now follows: If K is
pseudo-finite X} and {A ¢ K : A pseudo-finite } is pseudo-finite 31, then
K is first-order definable on pseudo-finite structures. On finite models the
Souslin-Kleene Theorem for PC (and X}) is false, but the analogous question,
whether NPNco-NP=PTIME is a famous open problem. On all models the
Souslin-Kleene Theorem for PC (and 1) holds.

5 A Lindstrom Theorem

On all structures first order logic has a nice characterization, the Lindstréom
Theorem [13]: first-order logic is the maximal logic with the Compactness and
the Lowenheim-Skolem Theorems. Although first order logic seems very robust
on finite structures, too, no analogous characterization in terms of model theo-
retic properties is known. Indeed, no model theoretic properties comparable to
Compactness and the Lowenheim-Skolem Theorems are known for first order
logic on finite structures. As we have seen above, this is not so in pseudo-finite
structures. In this section we investigate to what extent the Lindstrom Theorem
holds on pseudo-finite structures.

For basic definitions concerning abstract logics we refer to [2]. We denote first
order logic by L. The most commonly studied extensions of first-order logic on
finite structures are the fixed point logic FP and its extension £% . These
logics make perfect sense on pseudo-finite structures, too. However, pseudo-
finite structures need not have the finite model property relative to these logics.
Let us call a model A L*-pseudo-finite, if every L*-sentence true in A is true in
a finite structure. We may, and it would make sense, restrict to abstract logics
L* where satisfaction is defined for L*-pseudo-finite structures. The pseudo-
finite linear order w + Z + w* satisfies a sentence of FP with no finite models, so
it is not FP-pseudo-finite. On the other hand, the random graph is a pseudo-
finite structure which is even £ -pseudo-finite. An extreme case is the logic
L* with the quantifier ” There exists infinitely many”. Here only finite models
are L*-pseudo-finite.

If L* and L** are abstract logics, then L* < L** on finite models means
that for every ¢ € L* there is ¢* € L** such that

AE¢p << AE9¢"

for all finite A. If A is a relational structure in a language L and U € L, then
A W) ig the relativization of A to the set U”. The abstract logic L* relativizes
if for all ¢ € L* and all unary predicates U there is $(V) € L* such that

AW = AU o



for all L*-pseudo-finite models A. We assume our abstract logics all relativize.

An abstract logic L* satisfies the Finite Compactness Theorem if when-
ever T is a theory in L*, every finite subset of which has a finite model, then T'
has a model. W.l.o.g. we may take this model to be L*-pseudo-finite. L* satis-
fies the Finite Lowenheim—Skolem Theorem if whenever T is a countable
L*-theory and T has an L*-pseudo-finite model, then T" has a countable model.
W.l.o.g. we may take this model to be L*-pseudo-finite.

First-order logic satisfies both Finite Compactness Theorem and Finite Lowenheim—
Skolem Theorem. Any abstract logic which satisfies the Compactness Theorem
on all structures, satisfies also, a fortiori, the Finite Compactness Theorem, and
some infinite models are L*-pseudo-finite. Likewise, any abstract logic satisfying
the Léwenheim—Skolem Theorem (every countable theory with a model has a
countable model) satisfies the Finite Lowenheim—Skolem Theorem. This infer-
ence shows that the fixed point logic FP satisfies the Finite Lowenheim—Skolem
Theorem. The generalized quantifier

Qpauzyp(z,y, %)

which says that ¢(x, y, Z) defines on the set of elements satisfying ¢)(u) a Boolean
algebra with an even (or infinite) number of atoms, satisfies the Compactness
Theorem on all structures, (assuming GCH) [17]. Hence it satisfies the Finite
Compactness Theorem, too. The logic L, (Qp4) is an example of a logic which
satisfies the Compactness Theorem and which extends the first-order logic even
on finite structures.

Theorem 3 Suppose L* is an abstract logic such that L, < L* on finite mod-
els. If L* satisfies the Finite Compactness Theorem and the Finite Lowenheim-
Skolem Theorem, then L* < L, on finite models.

Proof. The proof is an adaption of the original proof of Lindstréom’s Theorem
[13]. Suppose 6§ € L* is not first order definable on finite models. Because L*
satisfies the Finite Compatcness Theorem, we may assume 6 has finite vocabu-
lary 7 (see [2, page 79]). Let

¢$,k(x17 "',xm)a n < q(m> k)

be the list of all (up to equivalence) first order formulas of quantifier rank < &
with m free variables. Let

¢k - /\{¢%k “n < q(oak)v ):FIN 0 — ¢9z7k}
Clearly, Errn 0 — ¢*. Thus we may choose a finite Ay, = ¢* A —0. Let
W = {60 i n < q(0,k), Ay = 60F}.

If =rpry 0 — =% then Epry ¢F — =, contrary to Ay, = ¢* AyF. Therefore
we can choose a finite By = 0 A ¥, Thus Ay and By, satisfy the same first
order sentences of quantifiers rank < k, i.e. Ay =, By.



Let Uy and U; be new unary predicate symbols. By assumption, the rela-
tivisation #(V0) of 6 to Uy and the relativisation (—6)(U1) of -6 to U, are in L*.
Let P be a new binary predicate and F' a new ternary predicate. Let T be the
L*-theory consisting of the following sentences:

1. oWo)
(ﬁg)(Ul)

“P is a linear order”

= LN

“F codes a P-ranked back-and-forth system' in the language L between
Uy and U7.”

o

ElmlﬂxoP(arl, xo)

6. Va,..Vao[(P(zn, Tn-1) A ... A P(x1,20)) = Fxpt1P(Tnt1,2,)] for all n <
w.

7. —¢ for each L*-sentence in the vocabulary 7.

If Ty C T is finite, we can construct a model C for Ty from A, and By, for a
sufficiently large k. The model C is finite, hence satisfies also the sentences in
condition 7. By the Finite Compactness Theorem there is a model C of the
whole T. Because of the conditions 7, C is L*-pseudo-finite. By the Finite
Lowenheim.Skolem Theorem, we can choose C to be countable. Let Cg be the
restriction of C to UL. Respectively, let C; be the restriction of C to UL.
Note that Cy and C; are L*-pseudo-finite. Now Cy and C; are countable
partially isomorphic models, hence isomorphic. But Cy = 6 and C; | -0, a
contradiction. O

A corollary of the theorem is: L* < L, on pseudo-finite models if and only
if L* satisfies the Finite Compactness Theorem, the Finite Lowenheim-Skolem
Theorem, and every pseudo-finite model is L*-pseudo-finite.

The above theorem can be interpreted as saying that even though first-order
logic seems very weak on finite structures, we cannot hope to find logic which
is stronger on finite models and which would admit both compactness and exis-
tence of countably infinite models in the proximity of finite models. Something
has to be given up. One possibility is to give up countably infinite models. Let
us say that an abstract logic L* satisfies the Ultraproduct Compactness
Theorem if whenever T is a theory in L*, every finite subset of which has
a finite model, then T has a UP-finite model A. W.lo.g. A may be taken
to be L*-pseudo-finite. L* satisfies the Ultraproduct Lowenheim—Skolem
Theorem if whenever T is an L*-theory of cardinality < 2% and T has an

IThis is as in the original proof by Lindstrém [13]. A P-ranked back-and-forth system
in the language L between Up and U; is a sequence I = (I; : ¢ € P) of non-empty sets of
partial isomorphimsm relative to the language L. If p € I; and P(j,14), then for every a € Uy
there is b € Uy such that p U {(a,b)} € I;. Also, for every b € U; there is a € Up such that
pU{(a,b)} € L.

10



L*-pseudo-finite UP-finite model, then T has a UP-finite model of cardinality
< 2%, W.lo.g. this model can be chosen to be L*-pseudo-finite. First-order
logic satisfies the Ultraproduct Compactness Theorem and the Ultraproduct
Léwenheim—Skolem Theorem.

Theorem 4 Assume the Continuum Hypothesis. Suppose L* is an abstract
logic such that FO < L* on finite models. If L* satisfies the Ultraproduct
Compactness Theorem and the Ultraproduct Lowenheim-Skolem Theorem, then
L* < Ly, on finite structures.

Proof. The proof is like that of Theorem 3. At the end we note that Cy and
C; are Nj-saturated elementary equivalent models of cardinality < 2¥ = Ny,
hence isomorphic. O

We can eliminate the use of Continuum Hypothesis in the above theorem,
if we assume instead absoluteness for countably closed forcing, i.e. truth
of L* is preserved by countably closed forcing. More exactly, if ¢ € L*, A is a
model and P is countably closed forcing, then |Fp [A = ¢].

Theorem 5 Suppose L* is an abstract logic such that L., < L* on finite
structures and L* is absolute for countably closed forcing. If L* satisfies the
Ultraproduct Compactness Theorem, then L* < L, on finite models.

Proof. The proof is again like that of Theorem 3. At the end we note that Cq
and C; are Ni-saturated and elementary equivalent. If we collapse canonically
their cardinalities to Wi, they are still N;-saturated and elementary equivalent,
hence isomorphic. This leads to a contradiction with the absoluteness assump-
tion. O
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