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Abstract We study the expressive power of open formulas of dependence logic
introduced in Väänänen [Dependence logic (Vol. 70 of London Mathematical Society
Student Texts), 2007]. In particular, we answer a question raised by Wilfrid Hodges:
how to characterize the sets of teams definable by means of identity only in dependence
logic, or equivalently in independence friendly logic.
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1 Introduction

We can associate any first order formula φ(x1, . . . , xn) and any structure A of the
same vocabulary with the set

{s : A |!s φ(x1, . . . , xn)} (1)

of assignments s : {x1, . . . , xn} → A that satisfy φ(x1, . . . , xn) in A. The sets (1)
form the well-studied Boolean algebra of first order definable relations on A. If A =
{Rose,Gill,Leon,1961,1950}, RA = {(Gill,1961), (Leon,1950)}, SA =
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{(Rose,1950)} and φ is R(x0, x1)∨ S(x0, x1), then the set (1) would be {s0, s1, s2},
where

x0 x1
s0 Gill 1961
s1 Leon 1950
s2 Rose 1950

(2)

On the other hand, we can turn the table around, considering (2) as a database, and ask
what kind of properties does the set {s0, s1, s2} as a whole have, apart from the property
that each s ∈ {s0, s1, s2} individually satisfies φ(x0, x1) in A. This is the approach of
dependence logic, introduced in Väänänen (2007), basing on Hodges (1997a).

The basic idea of dependence logic is that certain properties of sets such as {s0, s1, s2}
cannot be expressed merely in terms of what each individual s ∈ {s0, s1, s2} satisfies.
An example of such a property of the database (2) is the fact that the value of x0
completely determines the value of x1 but not vice versa. That is, if we know x0 we
know x1 but not vice versa.

Dependencies are at the heart of numerous questions related to interaction of agents.
Typically, when we describe a strategy of a player in a game, we declare on which
previous moves any particular move of the player is allowed to depend, and in a deter-
ministic strategy the move is supposed to be completely determined by the moves that
it is allowed to depend on. Insider trading is an example of a move which depends
on disallowed moves. A border police officer may decide whether we can enter the
country depending, not on what kind of food or music we like, but only on whether
we have a certain kind of visa or not. A hereditary disease manifests itself as a depen-
dence of a health condition on certain genes in a health record database of a large
population. Finally, we may recognize important dependencies between our actions
and future states of affairs on Earth. Modern society is full of examples of reliance
on recognizing whether a certain kind of dependence is manifested or not. It seems
therefore natural to subject the logic of dependence to the scrutiny of exact study.

We give below the exact definition of dependence logic. In harmony with the above
discussion on manifestation of dependence in a set of assignments rather than in
individual assignments, formulas of dependence logic express properties of sets of
assignments, not properties of individual assignments. There is an obvious way to
consider definability of properties of sets of assignments in second order logic. We
establish an exact relationship between those properties of sets of assignments that are
definable in dependence logic and those that are definable in a certain specific way in
second order logic.

Our main result answers a question of Wilfrid Hodges in Hodges (1997b). The
background of this question is the following: The independence friendly (IF) logic,
incorporating explicit dependence of quantifiers on each other, was introduced in
Hintikka and Sandu (1989) and Hintikka (1996). By the method of Enderton (1970)
and Walkoe (1970) it can be seen that every sentence of IF logic has a definition in
"1

1, and vice versa. Hodges gave in Hodges (1997a) a compositional semantics for
IF logic in terms of what he calls trumps, i.e., sets of assignments to a fixed finite
set of variables. He showed in Hodges (1997b) that every formula of IF logic can be
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represented in an equivalent form in"1
1 with an extra predicate interpreting the trump.

Hodges went on to ask about the converse: what sets of subsets of an infinite domain
M are expressible as the set of trumps of a formula of the logic IF by means of identity
only. We show in this paper that the answer is: exactly those that can be defined in"1

1
with an extra predicate, occurring only negatively, for the trump.

We use the framework of Väänänen (2007) and accordingly refer to dependence
logic rather than IF logic. At the end of the paper we state our results also for IF logic.

2 Preliminaries

In this section we define dependence logic (D) and recall some of its properties.

Definition 2.1 (Väänänen 2007) The syntax of D extends the syntax of FO, defined
in terms of ∨, ∧, ¬, ∃ and ∀, by new atomic (dependence) formulas of the form

=(t1, . . . , tn), (3)

where t1, . . . , tn are terms. If L is a vocabulary, we use D[L] to denote the set of
formulas of D based on L .

The intuitive meaning of the dependence formula (3) is that the value of the term tn is
determined by the values of the terms t1, . . . , tn−1. As singular cases we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, i.e., is constant.
The set Fr(φ) of free variables of a formula φ ∈ D is defined as for first-order logic,

except that we have the new case

Fr(=(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn),

where Var(ti ) is the set of variables occurring in term ti . If Fr(φ) = ∅, we call φ a
sentence.

In order to define the semantics of D, we first need to define the concept of a team.
Let A be a model with domain A. Assignments of A are finite mappings from variables
to A. The value of a term t in an assignment s is denoted by tA⟨s⟩. If s is an assign-
ment, x a variable, and a ∈ A, then s(a/x) denotes the assignment which agrees with
s everywhere except that it maps x to a.

Let A be a set and {x1, . . . , xk} a finite (possibly empty) set of variables. A team X of
A with domain {x1, . . . , xk} is any set of assignments from the variables {x1, . . . , xk}
into the set A. We denote by rel(X) the k-ary relation of A corresponding to X

rel(X) = {(s(x1), . . . , s(xk)) : s ∈ X}.
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If X is a team of A, and F : X → A, we use X (F/xn) to denote the team {s(F(s)/xn) :
s ∈ X} and X (A/xn) the team {s(a/xn) : s ∈ X and a ∈ A}.

We are now ready to define the semantics of D. We restrict attention to formulas
in negation normal form, i.e., negation is assumed to appear only in front of atomic
formulas.

Definition 2.2 (Väänänen 2007) Let A be a model and X a team of A. The satisfaction
relation A |!X ϕ is defined as follows:

1. A |!X t1 = t2 iff for all s ∈ X we have tA1 ⟨s⟩ = tA2 ⟨s⟩.
2. A |!X ¬t1 = t2 iff for all s ∈ X we have tA1 ⟨s⟩ ̸= tA2 ⟨s⟩.
3. A |!X=(t1, . . . , tn) iff for all s, s′ ∈ X such that

tA1 ⟨s⟩ = tA1 ⟨s′⟩, . . . , tAn−1⟨s⟩ = tAn−1⟨s′⟩, we have tAn ⟨s⟩ = tAn ⟨s′⟩.
4. A |!X ¬ =(t1, . . . , tn) iff X = ∅.
5. A |!X R(t1, . . . , tn) iff for all s ∈ X we have (tA1 ⟨s⟩, . . . , tAn ⟨s⟩) ∈ RA.
6. A |!X ¬R(t1, . . . , tn) iff for all s ∈ X we have (tA1 ⟨s⟩, . . . , tAn ⟨s⟩) ̸∈ RA.
7. A |!X ψ ∧ φ iff A |!X ψ and A |!X φ.
8. A |!X ψ ∨ φ iff X = Y ∪ Z such that A |!Y ψ and A |!Z φ.
9. A |!X ∃xnψ iff A |!X (F/xn)|! ψ for some F : X → A.

10. A |!X ∀xnψ iff A |!X (A/xn) ψ .

Above, we assume that the domain of X contains the variables free in ϕ. Finally, a
sentence ϕ is true in a model A if A |!{∅} ϕ.

From Definition 2.2 it follows that many familiar propositional equivalences of
connectives do not hold in dependence logic. Example 2.3 below shows that the
idempotence of disjunction fails in dependence logic. This can be used to show that
the distributivity laws of disjunction and conjunction do not hold in dependence logic
either. We refer to Sect. 3.3 of Väänänen (2007) for a detailed exposition on proposi-
tional equivalences of connectives in dependence logic.

Example 2.3 Let A be a model with A = {0, 1, 2}. Consider the following team X
of A:

x0 x1 x2
s0 1 2 2
s1 2 1 2
s2 3 1 2

(4)

By Definition 2.2 part 3, A |!X=(x0, x1). Intuitively this means that the value of x0
determines in this team the value of x1: for each value of x0 there is exactly one value
of x1. On the other hand, we have A ̸|!X=(x1, x0), as the value of x1 does not deter-
mine the value of x0: for the value 1 of x1 there are two different values of x0. Note
that by Definition 2.2 part 3, A |!X =(x2). Note also that although A ̸|!X =(x1, x0),
we still have by Definition 2.2 part 8, A |!X = (x1, x0)∨ = (x1, x0), as we can take
Y = {s0, s1} and Z = {s2}.
Example 2.4 Let A = (A, {(0, 0), (1, 0), (1, 2), (2, 2)}), where A = {0, 1, 2}. Con-
sider team X = {∅} consisting of the empty assignment only. In this case Y = X (A/x0)

is the team:
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x0
s0 0
s1 1
s2 2

(5)

Let F : Y → A be the mapping F(s0) = 0, F(s1) = 0, F(s2) = 2. So Z = Y (F/x1)

is

x0 x1
s0 0 0
s1 1 0
s2 2 2

(6)

By Definition 2.2 part 5, A |!Z R(x0, x1). By Definition 2.2 part 9, A |!Y ∃x1 R(x0,

x1). By Definition 2.2 part 10, A |!X ∀x0∃x1 R(x0, x1).

Let X be a team with domain {x1, . . . , xk} and V ⊆ {x1, . . . , xk}. Denote by X ! V
the team {s ! V : s ∈ X} with domain V . The following lemma shows that the truth
of a formula depends only on the interpretations of the variables occurring free in the
formula.

Lemma 2.5 Suppose V ⊇ Fr(φ). Then A |!X φ if and only if A |!X!V φ.

Proof See Lemma 3.27 in Väänänen (2007). ⊓2

Our goal in this paper is to characterize definable sets of teams, i.e., sets of the form

{X : A |!X φ}, (7)

where A is a fixed model,φ ∈ D, and X is a team over some fixed domain {x1, . . . , xk}.
In the case of dependence logic we could drop the assumption of teams having a fixed
domain in (7) by Lemma 2.5. On the other hand, for IF logic the analogue of Lemma
2.5 does not hold, i.e., the truth of a formula may depend on the interpretations of
variables that do not occur in the formula (see, e.g., formula (13)).

For reasons that we discuss in the next section we first attempt to characterize the
set (7) in the special case when the vocabulary of A is empty. Note that this case is
still non-trivial. For example, if the domain of A is infinite, the set of φ such that
A |! φ is non-recursive even if the vocabulary of A is empty. It turns out that the
characterization can be then directly generalized to the case of A having a non-empty
vocabulary. The following fact [Fact 11.1 in Hodges (1997a), see Proposition 3.10 in
Väänänen (2007)] is very basic:

Proposition 2.6 (Downward closure) Suppose Y ⊆ X. Then A |!X ϕ implies A |!Y
ϕ.

Another basic fact is the result that the expressive power of sentences of D coincides
with that of existential second-order sentences ("1

1):
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Theorem 2.7 For every sentence φ of D there is a sentence % of "1
1 such that

For all models A: A |!{∅} φ ⇐⇒ A |! %. (8)

Conversely, for every sentence% of "1
1 there is a sentence φ of D such that (8) holds.

Proof Using the method of Walkoe (1970) and Enderton (1970) [see Theorems 6.2
and 6.15 in Väänänen (2007)]. ⊓2

However, Theorem 2.7 does not—a priori—tell us anything about definable sets
of teams. In our main result below (Theorem 4.9) we generalize Theorem 2.7 from
sentences to formulas. Since formulas of D define sets of teams and formulas of "1

1
define sets of assignments, the two concepts cannot be directly compared. To remedy
this we compare definability by a formula of D to definability by a sentence of "1

1
with an extra predicate.

3 Two Examples

The two examples of this section demonstrate the difficulties in characterizing all
definable properties of teams. The first example is the analogue of Theorem 3.2 in
Cameron and Hodges (2001) [see also Example 7.1 in Hodges (1997a)].

Example 3.1 Let L = {R} where R is an n + k-ary predicate symbol. Suppose A is a
finite set such that |A|k ≥ 2|A|n and S is a set of teams of A with domain {x1, . . . , xn}
such that S is closed under subsets. Then there is an L-structure A with domain A
and a formula φ(x1, . . . , xn) of dependence logic such that a team X with domain
{x1, . . . , xn} satisfies φ in A if and only if X ∈ S. As emphasized in Hodges (1997a)
and elaborated further in Cameron and Hodges (2001), this shows that it is very diffi-
cult to say anything more about definable properties of teams on arbitrary structures
except that they are closed downwards.

The previous example used in an essential way the predicate R. In the next example,
we construct formulas defining certain downward closed properties of teams over the
empty vocabulary.

Proposition 3.2 Let k ∈ N and let P(x) be a polynomial with positive integer coeffi-
cients. Then there is a formula ϕ(x) ∈ D[∅] such that for all finite sets A and teams
X over {x1, . . . , xk}

A |!X ϕ ⇔ |X | ≤ P(|A|).

Proof Suppose first that P(x) = c ∈ N. Note that |X | ≤ 1 can be defined by the
formula ψ :

=(x1) ∧ · · ·∧ =(xk).
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Therefore, |X | ≤ c can be expressed as

ψ ∨ ψ · · · ∨ ψ,

where the disjunction is taken c times. Suppose then that P(x) = xc. Now the follow-
ing formula can be used

∃y1 · · · ∃yc

⎛

⎝
∧

1≤i≤k

=(y1, . . . , yc, xi )

⎞

⎠.

This formula declares that there is a function from the set X to the set Ac which is
one-to-one. Finally, note that |X | ≤ (P1 + P2)(|A|) can be expressed as ψ1 ∨ ψ2
assuming that ψi defines the property |X | ≤ Pi (|A|). ⊓2

4 Characterizing Definable Properties of Teams

In this section we first characterize the properties of teams definable in dependence
logic over the empty vocabulary. We show that, over the empty vocabulary, definable
team properties correspond exactly to the downwards monotone classes of "1

1. Then
we extend the characterization to non-empty vocabularies.

Definition 4.1 Let ϕ(y1, . . . , yk) ∈ D[∅] and R a k-ary predicate. We denote by Qϕ

the following class of {R}-structures

Qϕ = {(A, rel(X)) | A |!X ϕ}.

Lemma 4.2 For every formula ϕ(y1, . . . , yk) ∈ D[∅], the class Qϕ is closed under
isomorphisms.

Since satisfiability is preserved in subteams, the class Qϕ is always monotone
downwards. The question we are studying can be formulated as follows.

Question For which downwards monotone classes Q can we find a formula ϕ ∈ D[∅]
such that Q = Qϕ .

Denote by"1
1[{R}] existential second-order sentences of vocabulary {R}. It is easy

to see that "1
1-definability is an upper bound for the solution.

Proposition 4.3 For everyϕ(y1, . . . , yk) ∈ D[∅] the class Qϕ is definable in"1
1[{R}].

Proof By an analogous translation as in Sect. 4 of Hodges (1997b) [see Theorem 6.2
in Väänänen (2007)], for every ϕ(y1, . . . , yk) ∈ D[∅], there is a sentenceψ ∈ "1

1[{R}]
such that for all sets A and teams X over {y1, . . . , yk} it holds that

A |!X ϕ ⇔ (A, rel(X)) |! ψ.

⊓2
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Corollary 4.4 Let k ∈ N. There is no formula ϕ(y1, . . . , yk) ∈ D[∅] such that for all
A and teams X

A |!X ϕ ⇔ |X | is finite.

Proof This follows by Proposition 4.3 and the Compactness Theorem of "1
1. ⊓2

Since, e.g., transitivity is not a downward monotone property, the family of classes
we are looking for will be a proper subfamily of "1

1[{R}]. We shall next show that
there is a syntactic criterion for a "1

1[{R}] sentence to be monotone downwards.

Definition 4.5 Let R be a k-ary relation symbol and ϕ ∈ "1
1[{R}] a sentence. We say

that ϕ is downwards monotone with respect to R if for all A and B ′ ⊆ B ⊆ An

(A, B) |! ϕ ⇒ (A, B ′) |! ϕ.

Definition 4.6 An occurrence of a relation symbol R in a formula ϕ is called positive
(negative) if it is in the scope of an even (odd) number of nested negation symbols.

Proposition 4.7 A sentence ϕ ∈ "1
1[{R}] is downwards monotone with respect to R

iff there is ψ ∈ "1
1[{R}] such that

|! ϕ ↔ ψ,

and R appears only negatively in ψ .

Proof Assume that ϕ ∈ "1
1[{R}] is downwards monotone with respect to R. Let ϕ∗

be the formula acquired by replacing all the occurrences of R in ϕ by a new predicate
variable R′. Using the downwards monotonicity of ϕ, it is straightforward to verify
that

|! ϕ ↔ ∃R′(ϕ∗ ∧ ∀x(R(x) → R′(x))).

Note that, on the right hand side, the predicate R appears only negatively.
For the other direction, we may assume that negation appears in ϕ only in front of

atomic formulas. Now the claim follows by induction on the construction of ϕ (case
ϕ = ¬R(t) being the only non-trivial one). ⊓2

In the following, we shall be using the fact that "1
1 formulas can be transformed to

the so-called Skolem Normal Form (Skolem 1920; see Skolem 1970).

Theorem 4.8 (Skolem Normal Form Theorem) Every "1
1 formula is equivalent to a

formula of the form

∃ f1 · · · ∃ fn∀x1 · · ·∀xmψ,

where ψ is a quantifier-free formula.
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We are now ready to prove the main result of this paper.

Theorem 4.9 Let Q be a downwards monotone class of {R}-models. Then there is a
formula χ ∈ D[∅] such that Q = Qχ if and only if Q is "1

1[{R}]-definable.

Proof Note that Proposition 4.3 already gives the other half of the claim. Assume
that Q is a downwards monotone and "1

1[{R}]-definable. We need to find a formula
χ ∈ D[∅] such that Q = Qχ . By Theorem 4.8, there is a sentence λ ∈ "1

1[{R}] of
the form

∃ f1 · · · ∃ fn∀x1 · · · ∀xmψ (9)

defining Q. We may assume that ψ is in conjunctive normal form and that for all
the function symbols appearing in ψ there are unique pairwise distinct variables
z1, . . . , zs , where (z1, . . . , zs) is a subsequence of (x1, . . . , xm), such that all occur-
rences of f are of the form f (z1, . . . , zs) [see the proof of Theorem 6.15 in Väänänen
(2007) for details]. As in the proof of Proposition 4.7, we then pass on to the equivalent
formula

∃R′(λ∗ ∧ ∀x(R(x) → R′(x)))

and translate it again to Skolem normal form

∃ f1 · · · ∃ fn∃ fn+1∃ fn+2∀x1 · · · ∀xm′(ψ ′ ∧ (¬R(x) ∨ fn+1(x) = fn+2(x))),

i.e., we replace all subformulas of the form R′(t1, . . . , tk) by the formula fn+1(t1, . . . ,
tk) = fn+2(t1, . . . , tk) and move the universal quantifiers in front by changing bound
variables if necessary. We still need to make sure that all the occurrences of the new
function symbols fn+1 and fn+2 are of the form f (z1, . . . , zs) for some pairwise
distinct variables z1, . . . , zs ((z1, . . . , zs) a subsequence of (x1, . . . , xm)). This can
be achieved by the introduction of new universally quantified first-order variables and
existentially quantified function variables. These reductions also impose changes to
the quantifier-free part of the formula. More precisely, they can add a new conjunct (a
disjunction of identities) to

(ψ ′ ∧ (¬R(x) ∨ fn+1(x) = fn+2(x)))

or new disjuncts (identity atoms) to all the conjuncts via the equivalence p∨ (q ∧r) ≡
(p ∨ q) ∧ (p ∨ r). However, after these reductions, the quantifier-free part of the
formula is still in conjunctive normal form and only one of the conjuncts has a literal
of the form ¬R(x). In other words, the predicate R has in total only one occurrence
in the formula and it is negative.

Let us now assume that the sentence λ in (9) defining Q satisfies all the conditions
required above. The formula χ(y1, . . . , yk) ∈ D[∅] defining Q is now defined as

∀x1 · · · ∀xm∃xm+1 · · · ∃xm+n(θ1 ∧ θ2),
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where θ1 is the formula
∧

1≤i≤n

=(zi
1, . . . , zi

si
, xm+i ),

and (zi
1, . . . , zi

si
) is the unique tuple of variables to which fi is applied in ψ . The

formula θ2 is acquired from ψ by first replacing the terms fi (zi
1, . . . , zi

si
) by the cor-

responding variables xm+i in ψ . Note that our assumptions on the way function terms
can occur guarantee that the variable xm+i always denotes the same element as the term
fi (zi

1, . . . , zi
si
) in the translation. Finally, we replace the subformula ¬R(x1, . . . , xk)

in ψ by the formula

∨

1≤i≤k

yi ̸= xi . (10)

Let A be a structure, RA ⊆ Ak , and (a1, . . . , ak) ∈ Ak . The idea of (10) is that the con-
dition (a1, . . . , ak) /∈ RA is equivalent with the condition that RA can be partitioned
into k parts B1, . . . , Bk so that for all (b1, . . . , bk) ∈ Bi , it holds that ai ̸= bi .

We shall next show that the translation works as intended, i.e., that for all A and
teams X over {y1, . . . , yk}

A |!X χ(y1, . . . , yk) ⇔ (A, rel(X)) |! λ.

Clearly, it suffices to show that for all functions f of the appropriate arity

A |!X∗ θ2 ⇔ (A, rel(X), f ) |! ∀x1 · · · ∀xmψ,

where

X∗ = {sa f1(a) · · · fn(a) | s ∈ X and a ∈ Am}

and fi (a) denotes the result of applying function fi to the appropriate subsequence of
a determined by the way zi

1, . . . , zi
si

reside in x1, . . . , xm . Recall that ψ is assumed to
be in conjunctive normal form

ψ =
∧

1≤ j≤e

∨

1≤i≤r j

α ji .

Hence, the formula θ2 can be written as

θ2 =
∧

1≤ j≤e

∨

1≤i≤r j

α∗
ji ,

where α∗
ji

arises from α ji by replacing the terms fi (zi
1, . . . , zi

si
) by the variables xm+i

and ¬R(x1, . . . , xk) by
∨

1≤i≤k yi ̸= xi .
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Let us assume first that the claim holds for all the conjuncts of ψ . Suppose that

(A, rel(X), f ) |! ∀x1 · · · ∀xm
∧

1≤ j≤e

∨

1≤i≤r j

α ji .

Then, for all j we have that

(A, rel(X), f ) |! ∀x1 · · · ∀xm
∨

1≤i≤r j

α ji .

By the assumption, it holds that

A |!X∗
∨

1≤i≤r j

α∗
ji

for all j , and thus

A |!X∗
∧

1≤ j≤e

∨

1≤i≤r j

α∗
ji .

The other direction is analogous. Therefore, it suffices to show the claim for disjunc-
tions of atomic formulas. Suppose that ∨1≤i≤rαi is a disjunction of atomic formulas
in which R appears only negatively. Assume that

(A, rel(X), f ) |! ∀x1 · · · ∀xm
∨

1≤i≤r

αi .

Then, for each a ∈ Am , some αi is satisfied. Define a partition Y1, . . . Yr of X∗ as
follows: sa f1(a) · · · fn(a) is put to Yv iff v is the least index j for which

(A, rel(X), f ) |! α j (a).

It is easy to verify that X∗ = ∪1≤i≤r Yi and that

A |!Yi α
∗
i .

For the other direction (here we need the assumption that at most one α j is of the
form ¬R(x1, . . . , xk)), suppose that

A |!X∗
∨

1≤i≤r

α∗
i . (11)

By definition, there is a partition of X∗ into sets Y1, . . . , Yr such that

A |!Yi α
∗
i .
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We may assume that α1 is the formula ¬R(x1, . . . , xk). We next define a new partition
of X∗ in the following way. For i = 2, . . . , r we do the following. Starting with the
case i = 2, we inflate Y2 to the maximal W2 ⊆ X∗ satisfying

A |!W2 α
∗
2 .

In the case i = l we define Wl as the maximal W ′ ⊆ X∗\(W2 ∪ W3 · · · ∪ Wl−1)

satisfying

A |!W ′ α∗
l .

Finally, we define W1 = Y1\(W2 ∪ · · · ∪ Wr ). Since W1 ⊆ Y1, this new partition
also witnesses (11) by the downward closure. If, in the new partition, some tuple
sa f1(a) · · · fn(a) ∈ W1, then we must have

s′a f1(a) · · · fn(a) ∈ W1

for all s′ ∈ X . This follows from the maximality of the sets W2, . . . , Wr and the
fact that the variables y1, . . . , yk do not appear in any of the formulas α∗

i for i > 1.
Therefore,

A |!W1

∨

1≤i≤k

yi ̸= xi

implies that

(A, rel(X), f ) |! ¬R(a)

for all a ∈ Am such that, for some s, we have sa f1(a) · · · fn(a) ∈ W1.
We may conclude that

(A, rel(X), f ) |! ∀x1 · · · ∀xm
∨

1≤i≤r

αi .

⊓2

Let us then consider definability over a non-empty vocabulary. Suppose that ϕ(y1, . . . ,

yk) ∈ D[L] and L is non-empty. In this case the formula ϕ(y1, . . . , yk) gives rise to
a mapping Qϕ assigning to each L-structure A a set of k-ary relations on A. The
generalization of Theorem 4.9 to arbitrary vocabularies L can be formulated in terms
of global mappings as described above. Instead, we formulate the general theorem
below localized to a fixed model:

Theorem 4.10 Let L be a vocabulary, A a L-model and F a family of sets of k-tuples
of A which is closed under subsets. Then the following are equivalent:

1. F = {rel(X) : A |!X ψ(y1, . . . , yk)} for some formula ψ(y1, . . . , yk) ∈ D[L].

123



On Definability in Dependence Logic

2. F = {Y : (A, Y ) |! φ(R)} for some sentence φ ∈ "1
1[L ∪ {R}], in which R occurs

only negatively.

Proof The direction from 1 to 2 follows by an analogous translation as in Sect. 4
of Hodges (1997b) [see Theorem 6.2 in Väänänen (2007)] implying that for every
ψ(y1, . . . , yk) ∈ D[L], there is a sentence φ ∈ "1

1[L ∪ {R}] such that for all models
A and teams X over {y1, . . . , yk} it holds that

A |!X ψ ⇔ (A, rel(X)) |! φ.

The proof from 2 to 1 is also analogous to the proof in the case L = ∅. Proposition
4.7 generalizes directly to the case where φ ∈ "1

1[L ∪ {R}]. By the same arguments
as in the proof of Theorem 4.9, we may assume that φ is in the special Skolem normal
form as before, and that the predicate symbol R has only one negative occurrence in
φ. The critical part in the proof is the case of a disjunction of atomic formulas of which
only one disjunct is allowed to be of the form ¬R(x1, . . . , xk). In the case L = ∅,
the other disjuncts are just identities or their negations. In the general case, the other
disjuncts can be arbitrary atomic formulas or their negations from the vocabulary L ,
and they may involve new terms arising from the function symbols and constants in L .
However, the variables y1, . . . , yk do not appear in these formulas. Therefore, exactly
the same argument as in the case L = ∅ still applies. ⊓2

5 The Case of IF Logic

In this section we state our results for IF logic. We begin by briefly recalling the syntax
and semantics of IF logic.

The syntax of IF logic extends FO by slashed quantifiers of the form (∃x/W ) and
(∀x/W ), where W is a finite set of variables. The intuitive meaning, e.g., of a formula
(∃x/{y})φ is that “there exists x , independently of y, such thatφ”. Hodges gave a com-
positional semantics for IF logic in terms of, what he calls trumps (Hodges 1997a). A
trump for a formula φ(x1, . . . , xn), with x1, . . . , xn free, corresponds to a team with
domain {x1, . . . , xn}. A truth definition similar to Definition 2.2 for IF formulas can
be found, e.g., in the Appendix of Cameron and Hodges (2001). Instead of giving the
definition here, we discuss its similarities and differences to Definition 2.2.

In IF logic, atomic formulas and connectives ∧, ∨, and ¬ are treated just like in
Definition 2.2. With respect to trumps with a fixed domain {x1, . . . , xn}, the meaning
of a formula of the form (∃x/W )φ, where W ⊆ {x1, . . . , xn}, is that “there is an x ,
depending only on variables other than in W , such that φ”. This can be expressed in
dependence logic as

∃x(=(x j1 , . . . , x jr , x) ∧ φ), (12)

where {x j1, . . . , x jr } = {x1, . . . , xn}\W . Note that if we consider trumps over vari-
ables {x1, . . . , xn+m}, the variables xn+1, . . . , xn+m need to be added to the depen-
dence formula in (12). This simple observation actually marks a difference between
IF logic and D, since, unlike with D, the truth of an IF-formula may depend on the
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interpretations of variables that do not occur in the formula. For example, the truth of
the formula ϕ

ϕ = ∃x/{y}(x = y) (13)

in a trump X with domain {x, y, z} depends on the values of z in X , although z does
not occur in ϕ. The relationship of IF logic and dependence logic is discussed further
in Väänänen (2007).

Suppose that ϕ(y1, . . . , yk) ∈ IF[∅] and R is a k-ary predicate. Just like in the case
of dependence logic, we denote by Qϕ the class of {R}-structures (A, rel(X)) such
that X is a trump with domain {y1, . . . , yk} for ϕ(y1, . . . , yk) in A. We are now ready
to formulate the analogues of Theorems 4.9 and 4.10 for IF logic.

Theorem 5.1 Let Q be a downwards monotone class of {R}-models. Then there is
a formula ϕ(y1, . . . , yk) ∈ IF[∅] such that Q = Qϕ if and only if Q is "1

1[{R}]-
definable.

Proof The implication from left to right is analogous to the case of dependence logic
using the downward closure of IF logic observed in Hodges (1997a) and the translation
of IF logic into "1

1 defined in Sect. 4 of Hodges (1997b). For the converse, it suffices
to show that the defining formula χ(y1, . . . , yk) in the proof of Theorem 4.9 can be
translated into an equivalent formula of IF logic (equivalent with respect to trumps
with fixed domain {y1, . . . , yk}). It is easy to verify that the following formula is as
wanted

∀x1 · · · ∀xm(∃xm+1/W1) · · · (∃xm+n/Wn)θ2, (14)

where Wi is the set

({x1, . . . , xm} ∪ {y1, . . . , yk} ∪ {xm+ j : 1 ≤ j ≤ i − 1})\{zi1, . . . , zis }.

The semantics of the (unslashed) universal quantifier of IF-logic in (14) coincides with
that of dependence logic. Also, by (12) it is clear that the block of slashed existential
quantifiers in (14) is equivalent with the construction

∃xm+1 · · · ∃xm+n(θ1 ∧ · · · ).

Finally, since the semantics of quantifier-free formulas in IF-logic is defined just like
in dependence logic, we are done. ⊓2
The IF version of Theorem 4.10 can be proved analogously.

Theorem 5.2 Let L be a vocabulary, A a L-model and F a family of sets of k-tuples
of A which is closed under subsets. Then the following are equivalent:

1. F = {rel(X) : X is a trump for ψ(y1, . . . , yk) in A} for some formula ψ(y1, . . . ,

yk) ∈ IF[L].
2. F = {Y : (A, Y ) |! φ(R)} for some sentence φ ∈ "1

1[L ∪ {R}], in which R occurs
only negatively.
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6 Uniform Definability of a Quantifier

In this section we discuss some consequences of Theorem 4.10 and present an open
problem.

Recall that the existential quantifier of D is defined by

A |!X ∃xnψ iff A |!X (F/xn)|! ψ for some F : X → A.

Denote by ∃1 the following variant of the existential quantifier

A |!X ∃1xnψ iff there is an a ∈ A such that A |!X (a/xn)|! ψ.

It is easy to see that ∃1xψ can be expressed in a “uniform” way as

∃x(=(x) ∧ ψ).

The analogue of ∃1 for the universal quantifier is

A |!X ∀1xnψ iff for all a ∈ A holds that A |!X (a/xn)|! ψ.

It is an open question whether the quantifier ∀1 can be given a uniform definition in
the logic D. It is easy to verify that extending the syntax of D by ∀1 does not increase
the expressive power of D. This follows from the fact that Theorem 6.2 in Väänänen
(2007) generalizes to cover also the case of ∀1. More interestingly, Theorem 4.10,
and the fact that Proposition 2.6 can be also shown to hold for the extension of D in
terms of ∀1, shows that the quantifier ∀1 does not increase the expressive power of
D with respect to open formulas either. It remains open whether the quantifier ∀1 is
“uniformly” definable in the logic D.
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