The aa-model

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Inner models from extended logics

Joint work with Juliette Kennedy and Menachem Magidor

Department of Mathematics and Statistics, University of Helsinki

ILLC, University of Amsterdam

February 2016

(Corrections made 2023)

 The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

Constructible hierarchy generalized

$$\begin{array}{rcl} L'_0 &=& \emptyset\\ L'_{\alpha+1} &=& \mathsf{Def}_{\mathcal{L}^*}(L'_{\alpha})\\ L'_{\nu} &=& \bigcup_{\alpha < \nu} L'_{\alpha} \text{ for limit } \nu \end{array}$$

We use $C(\mathcal{L}^*)$ to denote the class $\bigcup_{\alpha} L'_{\alpha}$.

The aa-model

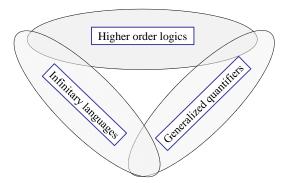
HOD₁ 000000

Thus a typical set in $L'_{\alpha+1}$ has the form

$$oldsymbol{X} = \{oldsymbol{a} \in oldsymbol{L}'_lpha : (oldsymbol{L}'_lpha, \in) \models arphi(oldsymbol{a}, ec{oldsymbol{b}})\}$$

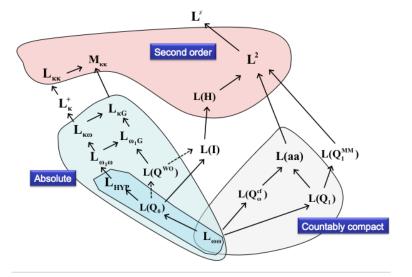
The aa-model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ



The cof-model

The aa-model

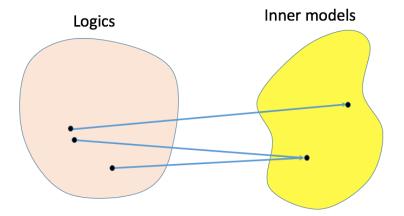


くして 前 ふかく ボット 間 うくの

The cof-model

The aa-model

HOD₁ 000000



The cof-model

The aa-model

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

HOD₁ 000000

- $C(\mathcal{L}_{\omega\omega}) = L$
- $C(\mathcal{L}_{\omega_1\omega}) = L(\mathbb{R})$
- $\mathcal{C}(\mathcal{L}_{\omega_1\omega_1}) = \text{Chang model}$
- $\mathcal{C}(\mathcal{L}^2) = \text{HOD}$

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HOD₁ 000000

Possible attributes of inner models

- Forcing absolute.
- Support large cardinals.
- Satisfy Axiom of Choice.
- Arise "naturally".
- Decide questions such as CH.

T<mark>he cof-model</mark>

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HOD₁ 000000

Inner models we have

- L: Forcing-absolute but no large cardinals (above WC)
- HOD: Has large cardinals but forcing-fragile
- $L(\mathbb{R})$: Forcing-absolute, has large cardinals, but no AC
- Extender models: Tailor made to support given large cardinals

The cof-model

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HOD₁ 000000

Absolute logics—nothing new

Theorem

Suppose \mathcal{L}^* is ZFC **where** absolute with parameters from L, and the syntax of \mathcal{L}^* is ZFC **where** absolute with parameters from L. Then $C(\mathcal{L}^*) = L$.

Corollary $C(\mathcal{L}(Q_{\alpha})) = L$

The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

Magidor-Malitz quantifier

Definition Magidor-Malitz quantifier of dimension *n*:

$$\mathcal{M} \models Q_{\alpha}^{\text{MM},n} x_1, ..., x_n \varphi(x_1, ..., x_n) \iff$$
$$\exists X \subseteq M(|X| \ge \aleph_{\alpha} \land \forall a_1, ..., a_n \in X : \mathcal{M} \models \varphi(a_1, ..., a_n)).$$

The aa-model

HOD₁ 000000

Magidor-Malitz quantifier, assuming 0[#]

Consistently, $C(Q_1^{MM,2}) \neq L$, but:

Theorem If 0^{\sharp} exists, then $C(Q_{\alpha}^{MM,<\omega}) = L$.

Lemma

Suppose 0^{\sharp} exists and $A \in L$, $A \subseteq [\alpha]^2$. If there is an uncountable B such that $[B]^2 \subseteq A$, then there is such a set B in L.

 The aa-model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

HOD₁ 000000

Shelah's cofinality quantifier

Definition

The cofinality quantifier Q_{ω}^{cf} is defined as follows:

$$\mathcal{M} \models \mathbf{Q}^{\mathrm{cf}}_{\omega} xy\varphi(x, y, \vec{a}) \iff \{ (c, d) : \mathcal{M} \models \varphi(c, d, \vec{a}) \}$$
 is a linear order of cofinality ω .

- Axiomatizable
- Fully compact
- Downward Löwenheim-Skolem down to ℵ1

The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

The "cof-model" C*

Definition

$$\mathcal{C}^* =_{\mathit{def}} \mathcal{C}(\mathcal{Q}^{\mathrm{cf}}_\omega)$$

Example:

 $\{\alpha < \beta : \mathrm{cf}^{V}(\alpha) > \omega\} \in C^{*}$

The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

Theorem If 0^{\sharp} exists, then $0^{\sharp} \in C^*$.

Proof.

Let

 $X = \{\xi < \aleph_{\omega} : \xi \text{ is a regular cardinal in } L \text{ and } cf(\xi) > \omega\}$ Now $X \in C^*$ and $0^{\sharp} = \{ \ulcorner \varphi(x_1, ..., x_n) \urcorner : L_{\aleph_{\omega}} \models \varphi(\gamma_1, ..., \gamma_n) \text{ for some } \gamma_1 < ... < \gamma_n \text{ in } X \}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- More generally, the above argument shows that x[♯] ∈ C^{*}(x) for any x ∈ C^{*} such that x[♯] exists.
- Hence $C^* \neq L(x)$ whenever x is a set of ordinals such that x^{\ddagger} exists in V.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem The Dodd-Jensen Core model is contained in C*.

Theorem Suppose L^{μ} exists. Then some L^{ν} is contained in C^* .

The aa-model

Theorem

If there is a measurable cardinal κ , then $V \neq C^*$.

Proof.

Suppose $V = C^*$ and κ is a measurable cardinal. Let $i: V \to M$ with critical point κ and $M^{\kappa} \subseteq M$. Now $(C^*)^M = (C^*)^V = V$, whence M = V. This contradicts Kunen's result that there cannot be a non-trivial $i: V \to V$.

Theorem

If there is an infinite set E of measurable cardinals (in V), then $E \notin C^*$. Moreover, then $C^* \neq \text{HOD}$.

Proof.

As Kunen's result that if there are uncountably many measurable cardinals, then AC is false in the Chang model.

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HOD₁ 000000

Stationary Tower Forcing

Suppose λ is Woodin.

- There is a forcing Q such that in V[G] there is j : V → M with V[G] ⊨ M^ω ⊆ M and j(ω₁) = λ.
- For all regular $\omega_1 < \kappa < \lambda$ there is a cofinality ω preserving forcing \mathbb{P} such that in V[G] there is $j : V \to M$ with $V[G] \models M^{\omega} \subseteq M$ and $j(\kappa) = \lambda$.

The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

If there is a Woodin cardinal, then ω_1 is (strongly) Mahlo in C^* .

Proof.

Let \mathbb{Q} , G and $j : V \to M$ with $M^{\omega} \subset M$ and $j(\omega_1) = \lambda$ be as above.

Now,

$$(C^*)^M = C^*_{<\lambda} \subseteq V.$$

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Suppose there is a Woodin cardinal λ . Then every regular cardinal κ such that $\omega_1 < \kappa < \lambda$ is weakly compact in C^* .

Proof.

Suppose λ is a Woodin cardinal, $\kappa > \omega_1$ is regular and $< \lambda$. To prove that κ is strongly inaccessible in C^* we can use the "second" stationary tower forcing \mathbb{P} above. With this forcing, cofinality ω is not changed, whence $(C^*)^M = C^*$.

The aa-model

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

If there is a proper class of Woodin cardinals, then the regular cardinals $\geq \aleph_2$ are indiscernible in C^* .

Proof.

We use the "second" stationary tower forcing \mathbb{P} to show first that the Woodin cardinals are indiscernible, and after that the regular cardinals $\geq \aleph_2$ are indiscernible. Remember that the here \mathbb{P} and *j* preserve C^* .

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

If $V = L^{\mu}$, then C^* is exactly the inner model $M_{\omega^2}[E]$, where M_{ω^2} is the ω^2 th iterate of V and $E = \{\kappa_{\omega \cdot n} : n < \omega\}$.

Proof.

- C^{*} ⊆ M_{ω²}[E]: In M_{ω²}[E] we can detect which ordinals have cofinality ω in V.
- 2. $M_{\omega^2}[E] \subseteq C^*$: The set *E* is the set of ordinals $< \kappa_{\omega^2}$ which have cofinality ω in *V* but are regular in the core model. The measure $i_{0\omega^2}(\mu)$ on κ_{ω^2} can be defined from *E* by $\mu'(X) = 1$ if and only if $\exists \alpha \in E \forall \beta \in E(\alpha < \beta \rightarrow \beta \in X)$ }.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Suppose there is a proper class of Woodin cardinals. Suppose \mathcal{P} is a forcing notion and $G \subseteq \mathcal{P}$ is generic. Then

$$Th((C^*)^V) = Th((C^*)^{V[G]}).$$

The cof-model

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

Proof. Let H_1 be generic for \mathbb{Q} . Now

$$j_1: (C^*)^V \to (C^*)^{M_1} = (C^*)^{V[H_1]} = (C^*_{<\lambda})^V.$$

Let H_2 be generic for \mathbb{Q} over V[G]. Then

$$j_2: ({\mathcal{C}}^*)^{V[G]} o ({\mathcal{C}}^*)^{M_2} = ({\mathcal{C}}^*)^{V[H_2]} = ({\mathcal{C}}^*_{<\lambda})^{V[G]} = ({\mathcal{C}}^*_{<\lambda})^V.$$

The aa-model

Theorem $|\mathcal{P}(\omega) \cap C^*| \leq \aleph_2.$

Proof.

Suppose $a \subseteq \omega$ and $a \in C^*$. We build $(M_{\alpha})_{\alpha < \omega_1}$ such that

1. $a \in M_0$, $M_0 \models a \in C^*$, $|M_{\alpha}| \le \omega$, $M_{\alpha} \prec H(\mu)$.

2.
$$M_{\gamma} = \bigcup_{\alpha < \gamma} M_{\alpha}$$
, if $\gamma = \cup \gamma$.

- If β ∈ M_α and cf^V(β) = ω, then M_{α+1} contains an ω-sequence from H(μ), cofinal in β.
- If β ∈ M_α and cf^V(β) > ω then for unboundedly many γ < ω₁ there is ρ ∈ M_{γ+1} with sup(⋃_{ξ<γ}(M_ξ ∩ β)) < ρ < β.

Let *M* be $\bigcup_{\alpha < \omega_1} M_{\alpha}$, *N* the transitive collapse of *M*, and $\zeta < \omega_2$ the ordinal $N \cap On$. An ordinal in *N* has cofinality ω in *V* iff it has cofinality ω in *N*. Thus $(L'_{\xi})^N = L'_{\xi}$ for all $\xi < \zeta$. Since $N \models a \in C^*$, we have $a \in L'_{\zeta}$. The claim follows.

Theorem

If there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is a cone of reals x such that $C^*(x)$ satisfies CH.

The cof-model

The aa-model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If two reals x and y are Turing-equivalent, then $C^*(x) = C^*(y)$. Hence the set

$$\{\mathbf{y} \subseteq \omega : \mathbf{C}^*(\mathbf{y}) \models \mathbf{C}\mathbf{H}\}$$
(1)

is closed under Turing-equivalence. Need to show that

- (I) The set (1) is projective.
- (II) For every real x there is a real y such that $x \leq_T y$ and y is in the set (1).

The cof-model

The aa-model

HOD₁ 000000

Lemma

Suppose there is a Woodin cardinal and a measurable cardinal above it. The following conditions are equivalent:

(i) $C^*(y) \models CH$.

(ii) There is a countable iterable structure M with a Woodin cardinal such that y ∈ M, M ⊨ ∃α("L'_α(y) ⊨ CH") and for all countable iterable structures N with a Woodin cardinal such that y ∈ N: P(ω)^{(C*)^N} ⊆ P(ω)^{(C*)^M}.

The aa-model

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

HOD₁ 000000

Consistency results about C^* , I

Theorem

Suppose V = L and κ is a cardinal of cofinality $> \omega$. There is a forcing notion \mathbb{P} which forces $C^* \models 2^\omega = \kappa$ and preserves cardinals between L and C^* .

The aa-model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

HOD₁ 000000

Consistency results about C^* , II

Theorem

It is consistent, relative to the consistency of an inaccessible cardinal, that $V = C^*$ and $2^{\aleph_0} = \aleph_2$.

he cof-model

The aa-model

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

HOD₁ 000000

Stationary logic

Definition

 $\mathcal{M} \models aa s\varphi(s) \iff \{A \in [M]^{\leq \omega} : \mathcal{M} \models \varphi(A)\}$ contains a club of countable subsets of M. (i.e. almost all countable subsets A of M satisfy $\varphi(A)$.) We denote $\neg aa s \neg \varphi$ by stat $s\varphi$.

$$C(aa) = C(\mathcal{L}(aa))$$

$$C^* \subseteq C(aa)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

1. A first order structure \mathcal{M} is *club-determined* if

$$\mathcal{M} \models \forall \vec{s} \forall \vec{x} [aa \vec{t} \varphi(\vec{x}, \vec{s}, \vec{t}) \lor aa \vec{t} \neg \varphi(\vec{x}, \vec{s}, \vec{t})]$$

where $\varphi(\vec{x}, \vec{s}, \vec{t})$ is any formula of $\mathcal{L}(aa)$.

2. We say that the inner model C(aa) is *club-determined* if every level L'_{α} is.

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem If there are a proper class of **Moderate Woodin** cardinals or MM⁺⁺ holds, then C(aa) is club-determined.

Proof.

Suppose L'_{α} is the least counter-example. W.l.o.g $\alpha < \omega_2^V$. Let δ be measurable Woodin, or ω_2 in the case of MM⁺⁺. The hierarchies

$$C(aa)^M, C(aa)^{V[G]}, C(aa_{<\delta})^V$$

are all the same and the (potential) failure of club-determinateness occurs in all at the same level.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma

- 1. If δ is measurable Woodin, $S \subseteq \delta$ is in M and M thinks that S is stationary, then V[G] thinks that S is stationary.
- 2. If MM^{++} holds and S is a set of countable subsets of ω_2^V in M and M thinks that S is stationary, then V thinks that S is a stationary set of subsets of size $\leq \aleph_1^V$ of ω_2^V .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem Suppose there are a proper class of **Mathematic** Woodin cardinals or MM^{++} . Then every regular $\kappa \geq \aleph_1$ is measurable in C(aa).

The cof-model

The aa-model

HOD₁ 000000

Theorem

Suppose there are a proper class of **measurable** Woodin cardinals. Then the theory of C(aa) is (set) forcing absolute.

Proof.

Suppose \mathbb{P} is a forcing notion and δ is a Woodin cardinal $> |\mathbb{P}|$. Let $j: V \to M$ be the associated elementary embedding. Now

$$C(aa) \equiv (C(aa))^M = (C(aa_{<\delta}))^V.$$

On the other hand, let $H \subseteq \mathbb{P}$ be generic over *V*. Then δ is still Woodin, so we have the associated elementary embedding $j' : V[H] \rightarrow M'$. Again

$$(C(aa))^{V[H]} \equiv (C(aa))^{M'} = (C(aa_{<\delta}))^{V[H]}.$$

Finally, we may observe that $(C(aa_{<\delta}))^{V[H]} = (C(aa_{<\delta}))^{V}$. Hence

$$(C(aa))^{V[H]} \equiv (C(aa))^{V}.$$

The cof-model

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

C(aa') is the extension of C(aa) obtained by allowing "implicit" definitions.

• $C^* \subseteq C(aa) \subseteq C(aa').$

• The previous results about C(aa) hold also for C(aa').

Theorem If there is a proper class of **meansurable** Woodin cardinals, or MM^{++} , then C(aa') satisfies CH (even \Diamond).

The cof-model

The aa-model

HOD₁ 000000

Shelah's stationary logic

Definition $\mathcal{M} \models Q^{St}xyz\varphi(x, \vec{a})\psi(y, z, \vec{a})$ if and only if (M_0, R_0) , where

$$M_0 = \{ b \in M : \mathcal{M} \models \varphi(b, \vec{a}) \}$$

and

$$R_0 = \{ (b, c) \in M : \mathcal{M} \models \psi(b, c, \vec{a}) \},\$$

is an \aleph_1 -like linear order and the set \mathcal{I} of initial segments of (M_0, R_0) with an R_0 -supremum in M_0 is stationary in the set \mathcal{D} of all (countable) initial segments of M_0 in the following sense: If $\mathcal{J} \subseteq \mathcal{D}$ is unbounded in \mathcal{D} and σ -closed in \mathcal{D} , then $\mathcal{J} \cap \mathcal{I} \neq \emptyset$.

The cof-model

The aa-model

(日) (日) (日) (日) (日) (日) (日)

- The logic L(QSt), a sublogic of L(aa), is recursively axiomatizable and ℵ₀-compact. We call this logic Shelah's stationary logic, and denote C(L(QSt)) by C(aa⁻).
- We can say in the logic L(QSt) that a formula φ(x) defines a stationary (in V) subset of ω₁ in a transitive model M containing ω₁ as an element as follows:

$$M \models \forall x(\varphi(x) \to x \in \omega_1) \land Q^{St} xyz\varphi(x)(\varphi(y) \land \varphi(z) \land y \in z).$$

Hence

$$C(aa^{-}) \cap NS_{\omega_1} \in C(aa^{-}).$$

The aa-model

Theorem If there is a Woodin cardinal or MM holds, then the filter $D = C(aa^{-}) \cap NS_{\omega_1}$ is an ultrafilter in $C(aa^{-})$ and

 $C(aa^{-}) = L[D].$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

If there is a proper class of Woodin cardinals, then for all set forcings P and generic sets $G \subseteq P$

$$Th(C(aa^{-})^{V}) = Th(C(aa^{-})^{V[G]}).$$

The cof-model

The aa-model

HOD₁ •00000

We write

$$HOD_1 =_{df} C(\Sigma_1^1).$$

Note:

•
$$\{\alpha < \beta : \mathrm{cf}^{V}(\alpha) = \omega\} \in \mathrm{HOD}_{1}$$

•
$$\{(\alpha,\beta)\in\gamma^2: |\alpha|^V\leq |\beta|^V\}\in \mathrm{HOD}_1$$

•
$$\{\alpha < \beta : \alpha \text{ cardinal in } V\} \in HOD_1$$

• {
$$(\alpha_0, \alpha_1) \in \beta^2 : |\alpha_0|^V \le (2^{|\alpha_1|})^V$$
} $\in \text{HOD}_1$

•
$$\{\alpha < \beta : (2^{|\alpha|})^V = (|\alpha|^+)^V\} \in HOD_1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The cof-model

The aa-model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

HOD₁ ○●○○○○○

Lemma

- 1. $C^* \subseteq HOD_1$.
- **2.** $C(Q_1^{MM,<\omega}) \subseteq HOD_1$
- 3. If 0^{\sharp} exists, then $0^{\sharp} \in \mathrm{HOD}_1$

Theorem

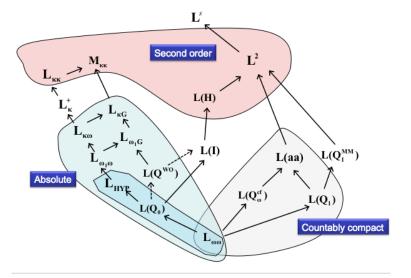
It is consistent, relative to the consistency of infinitely many weakly compact cardinals that for some λ :

 $\{\kappa < \lambda : \kappa \text{ weakly compact (in V)}\} \notin HOD_1,$

and, moreover, $HOD_1 = L \neq HOD$.

The cof-model

The aa-model



・ロト・(四ト・(川下・(日下))

The cof-model

The aa-model

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

HOD₁ 000000

Open questions

- *C** has small large cardinals, is forcing absolute (assuming PCW).
- OPEN: Can C* have a measurable cardinal?
- C* has some elements of GCH
- OPEN: Does C* satisfy CH if large cardinals are present?
- *C*(aa) has measurable cardinals.
- OPEN: Bigger cardinals in C(aa)?
- C(aa) satisfies CH.
- OPEN: Does C(aa) satisfy GCH?

The cof-model

The aa-model

HOD₁ 000000

Thank you!

Happy Birthday Menachem!

(ロ) (型) (主) (主) (三) の(で)