Inner models from extended logics

Joint work with Juliette Kennedy and Menachem Magidor

Department of Mathematics and Statistics, University of Helsinki
ILLC, University of Amsterdam

February 2016

(Corrections made 2023)
Constructible hierarchy generalized

\[L'_0 = \emptyset \]
\[L'_{\alpha+1} = \text{Def}_{L^*}(L'_\alpha) \]
\[L'_\nu = \bigcup_{\alpha < \nu} L'_\alpha \text{ for limit } \nu \]

We use \(C(L^*) \) to denote the class \(\bigcup_{\alpha} L'_\alpha \).
Thus a typical set in $L'_{\alpha+1}$ has the form

$$X = \{ a \in L'_\alpha : (L'_\alpha, \in) \models \varphi(a, \vec{b}) \}$$
Introduction

The cof-model

The aa-model

HOD

Higher order logics

Infinitary languages

Generalized quantifiers
Examples

- $C(\mathcal{L}_{\omega\omega}) = L$
- $C(\mathcal{L}_{\omega_1\omega}) = L(\mathbb{R})$
- $C(\mathcal{L}_{\omega_1\omega_1}) = \text{Chang model}$
- $C(\mathcal{L}^2) = \text{HOD}$
Possible attributes of inner models

- Forcing absolute.
- Support large cardinals.
- Satisfy Axiom of Choice.
- Arise "naturally".
- Decide questions such as CH.
Inner models we have

- L: Forcing-absolute but no large cardinals (above WC)
- HOD: Has large cardinals but forcing-fragile
- $L(R)$: Forcing-absolute, has large cardinals, but no AC
- Extender models: Tailor made to support given large cardinals
Absolute logics—nothing new

Theorem
Suppose \mathcal{L}^* is ZFC+V=L-absolute with parameters from L, and the syntax of \mathcal{L}^* is ZFC+V=L-absolute with parameters from L. Then $C(\mathcal{L}^*) = L$.

Corollary
$C(\mathcal{L}(Q^L_\alpha)) = L$
Magidor-Malitz quantifier

Definition
Magidor-Malitz quantifier of dimension n:

$$
\mathcal{M} \models Q_{\alpha}^{\text{MM},n} x_1, \ldots, x_n \varphi(x_1, \ldots, x_n) \iff \\
\exists X \subseteq M(|X| \geq \aleph_\alpha \land \forall a_1, \ldots, a_n \in X : \mathcal{M} \models \varphi(a_1, \ldots, a_n)).
$$
Magidor-Malitz quantifier, assuming $0^\#$

Consistently, $C(Q_{1}^{MM,2}) \neq L$, but:

Theorem

If $0^\#$ exists, then $C(Q_{\alpha}^{MM,<\omega}) = L.$

Lemma

Suppose $0^\#$ exists and $A \in L$, $A \subseteq [\alpha]^2$. If there is an uncountable B such that $[B]^2 \subseteq A$, then there is such a set B in $L.$
Shelah’s cofinality quantifier

Definition
The cofinality quantifier Q^cf_{ω} is defined as follows:

$$\mathcal{M} \models Q^\text{cf}_{\omega} xy \varphi(x, y, \bar{a}) \iff \{(c, d) : \mathcal{M} \models \varphi(c, d, \bar{a})\}$$

is a linear order of cofinality ω.

- Axiomatizable
- Fully compact
- Downward Löwenheim-Skolem down to \aleph_1
The "cof-model" C^*

Definition

$$C^* = \text{def } C(Q^c_\omega)$$

Example:

$$\{\alpha < \beta : \text{cf}^V(\alpha) > \omega \} \in C^*$$
Theorem

If $0^\#$ exists, then $0^\# \in C^$.*

Proof.
Let

$$X = \{\xi < \aleph_\omega : \xi \text{ is a regular cardinal in } L \text{ and } \text{cf}(\xi) > \omega\}$$

Now $X \in C^*$ and

$$0^\# = \{\neg \varphi(x_1, \ldots, x_n) \vdash L_{\aleph_\omega} \models \varphi(\gamma_1, \ldots, \gamma_n) \text{ for some } \gamma_1 < \ldots < \gamma_n \text{ in } X\}.$$
• More generally, the above argument shows that $x^\# \in C^*(x)$ for any $x \in C^*$ such that $x^\#$ exists.
• Hence $C^* \neq L(x)$ whenever x is a set of ordinals such that $x^\#$ exists in V.
Theorem
The Dodd-Jensen Core model is contained in C^*.

Theorem
Suppose L^μ exists. Then some L^ν is contained in C^*.
Theorem

If there is a measurable cardinal κ, then $V \neq C^$.*

Proof.

Suppose $V = C^*$ and κ is a measurable cardinal. Let $i : V \to M$ with critical point κ and $M^\kappa \subseteq M$. Now $(C^*)^M = (C^*)^V = V$, whence $M = V$. This contradicts Kunen’s result that there cannot be a non-trivial $i : V \to V$.

\square
Theorem

If there is an infinite set E of measurable cardinals (in V), then $E \not\in C^*$. Moreover, then $C^* \neq \text{HOD}$.

Proof.

As Kunen’s result that if there are uncountably many measurable cardinals, then AC is false in the Chang model.
Stationary Tower Forcing

Suppose λ is Woodin.

- There is a forcing \mathbb{Q} such that in $V[G]$ there is $j : V \to M$ with $V[G] \models M^\omega \subseteq M$ and $j(\omega_1) = \lambda$.

- For all regular $\omega_1 < \kappa < \lambda$ there is a cofinality ω preserving forcing \mathbb{P} such that in $V[G]$ there is $j : V \to M$ with $V[G] \models M^\omega \subseteq M$ and $j(\kappa) = \lambda$.
Theorem

If there is a Woodin cardinal, then ω_1 is (strongly) Mahlo in C^*.

Proof.

Let Q, G and $j : V \rightarrow M$ with $M^\omega \subset M$ and $j(\omega_1) = \lambda$ be as above.

Now,

$$(C^*)^M = C^*_\lambda \subseteq V.$$
Theorem
Suppose there is a Woodin cardinal \(\lambda \). Then every regular cardinal \(\kappa \) such that \(\omega_1 < \kappa < \lambda \) is weakly compact in \(C^* \).

Proof.
Suppose \(\lambda \) is a Woodin cardinal, \(\kappa > \omega_1 \) is regular and \(< \lambda \). To prove that \(\kappa \) is strongly inaccessible in \(C^* \) we can use the “second” stationary tower forcing \(\mathbb{P} \) above. With this forcing, cofinality \(\omega \) is not changed, whence \((C^*)^M = C^*\). \(\Box \)
Theorem

If there is a proper class of Woodin cardinals, then the regular cardinals $\geq \aleph_2$ are indiscernible in C^*.

Proof.

We use the “second” stationary tower forcing \mathbb{P} to show first that the Woodin cardinals are indiscernible, and after that the regular cardinals $\geq \aleph_2$ are indiscernible. Remember that the here \mathbb{P} and j preserve C^*.

\square
Theorem

If \(V = L^\mu \), then \(C^* \) is exactly the inner model \(M_{\omega^2}[E] \), where \(M_{\omega^2} \) is the \(\omega^2 \)th iterate of \(V \) and \(E = \{ \kappa_{\omega \cdot n} : n < \omega \} \).

Proof.

1. \(C^* \subseteq M_{\omega^2}[E] \): In \(M_{\omega^2}[E] \) we can detect which ordinals have cofinality \(\omega \) in \(V \).

2. \(M_{\omega^2}[E] \subseteq C^* \): The set \(E \) is the set of ordinals \(\kappa_{\omega^2} \) which have cofinality \(\omega \) in \(V \) but are regular in the core model. The measure \(i_{0\omega^2}(\mu) \) on \(\kappa_{\omega^2} \) can be defined from \(E \) by \(\mu'(X) = 1 \) if and only if \(\exists \alpha \in E \forall \beta \in E (\alpha < \beta \rightarrow \beta \in X) \).
Theorem

Suppose there is a proper class of Woodin cardinals. Suppose \mathcal{P} is a forcing notion and $G \subseteq \mathcal{P}$ is generic. Then

$$\text{Th}((C^*)^V) = \text{Th}((C^*)^{V[G]}).$$
Proof.

Let H_1 be generic for \mathbb{Q}. Now

$$j_1 : (C^*)^V \to (C^*)^{M_1} = (C^*)^{V[H_1]} = (C^*_{<\lambda})^V.$$

Let H_2 be generic for \mathbb{Q} over $V[G]$. Then

$$j_2 : (C^*)^{V[G]} \to (C^*)^{M_2} = (C^*)^{V[H_2]} = (C^*_{<\lambda})^{V[G]} = (C^*_{<\lambda})^V.$$
Theorem
\[|\mathcal{P}(\omega) \cap C^*| \leq \aleph_2. \]

Proof.
Suppose \(a \subseteq \omega \) and \(a \in C^* \). We build \((M_\alpha)_{\alpha<\omega_1}\) such that

1. \(a \in M_0, M_0 |= a \in C^*, |M_\alpha| \leq \omega, M_\alpha < H(\mu). \)
2. \(M_\gamma = \bigcup_{\alpha<\gamma} M_\alpha \), if \(\gamma = \bigcup \gamma \).
3. If \(\beta \in M_\alpha \) and \(\text{cf}^V(\beta) = \omega \), then \(M_{\alpha+1} \) contains an \(\omega \)-sequence from \(H(\mu) \), cofinal in \(\beta \).
4. If \(\beta \in M_\alpha \) and \(\text{cf}^V(\beta) > \omega \) then for unboundedly many \(\gamma < \omega_1 \) there is \(\rho \in M_{\gamma+1} \) with \(\sup(\bigcup_{\xi<\gamma}(M_\xi \cap \beta)) < \rho < \beta \).

Let \(M = \bigcup_{\alpha<\omega_1} M_\alpha \), \(N \) the transitive collapse of \(M \), and \(\zeta < \omega_2 \) the ordinal \(N \cap \text{On} \). An ordinal in \(N \) has cofinality \(\omega \) in \(V \) iff it has cofinality \(\omega \) in \(N \). Thus \((L_\xi')^N = L_\xi' \) for all \(\xi < \zeta \). Since \(N |= a \in C^* \), we have \(a \in L_\zeta' \). The claim follows. \(\square \)
Theorem

If there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is a cone of reals x such that $C^*(x)$ satisfies CH.
If two reals x and y are Turing-equivalent, then $C^*(x) = C^*(y)$. Hence the set

$$\{ y \subseteq \omega : C^*(y) \models CH \}$$

is closed under Turing-equivalence. Need to show that

(I) The set (1) is projective.

(II) For every real x there is a real y such that $x \leq_T y$ and y is in the set (1).
Lemma

Suppose there is a Woodin cardinal and a measurable cardinal above it. The following conditions are equivalent:

(i) $C^*(y) \models CH$.

(ii) There is a countable iterable structure M with a Woodin cardinal such that $y \in M$, $M \models \exists \alpha ("L'_\alpha(y) \models CH")$ and for all countable iterable structures N with a Woodin cardinal such that $y \in N$: $\mathcal{P}(\omega)^{(C^*)_N} \subseteq \mathcal{P}(\omega)^{(C^*)_M}$.
Consistency results about C^*, I

Theorem

Suppose $V = L$ and κ is a cardinal of cofinality $> \omega$. There is a forcing notion \mathbb{P} which forces $C^* \models 2^\omega = \kappa$ and preserves cardinals between L and C^*.
Consistency results about C^*, II

Theorem

It is consistent, relative to the consistency of an inaccessible cardinal, that $V = C^$ and $2^\aleph_0 = \aleph_2$.*
Stationary logic

Definition
\(\mathcal{M} \models \text{aaS}\varphi(s) \iff \{ A \in [\mathcal{M}]^{\leq \omega} : \mathcal{M} \models \varphi(A) \} \) contains a club of countable subsets of \(M \). (i.e. almost all countable subsets \(A \) of \(M \) satisfy \(\varphi(A) \).) We denote \(\neg\text{aaS}\neg\varphi \) by \(\text{stat}s\varphi \).

\[
C(aa) = C(\mathcal{L}(aa))
\]

\(C^* \subseteq C(aa) \)
Definition

1. A first order structure \mathcal{M} is *club-determined* if

$$\mathcal{M} \models \forall \vec{s} \forall \vec{x}[\text{aa} \vec{t} \varphi(\vec{x}, \vec{s}, \vec{t}) \lor \text{aa} \vec{t} \neg \varphi(\vec{x}, \vec{s}, \vec{t})],$$

where $\varphi(\vec{x}, \vec{s}, \vec{t})$ is any formula of $L(\text{aa})$.

2. We say that the inner model $C(\text{aa})$ is *club-determined* if every level L'_{α} is.
Theorem

If there are a proper class of measurable Woodin cardinals or MM^{++} holds, then $C(aa)$ is club-determined.

Proof.

Suppose L'_α is the least counter-example. W.l.o.g $\alpha < \omega_2^V$. Let δ be measurable Woodin, or ω_2 in the case of MM^{++}. The hierarchies

$$C(aa)^M, C(aa)^{V[G]}, C(aa_{<\delta})^V$$

are all the same and the (potential) failure of club-determinateness occurs in all at the same level.
Lemma

1. If δ is Woodin, $S \subseteq \delta$ is in M and M thinks that S is stationary, then $V[G]$ thinks that S is stationary.

2. If MM^{++} holds and S is a set of countable subsets of ω_2^V in M and M thinks that S is stationary, then V thinks that S is a stationary set of subsets of size $\leq \aleph_1^V$ of ω_2^V.
Theorem
Suppose there are a proper class of measurable Woodin cardinals or MM^{++}. Then every regular $\kappa \geq \kappa_1$ is measurable in $C(aa)$.
Theorem

Suppose there are a proper class of measurable Woodin cardinals. Then the theory of $C(aa)$ is (set) forcing absolute.

Proof.

Suppose \mathbb{P} is a forcing notion and δ is a Woodin cardinal $> |\mathbb{P}|$. Let $j : V \rightarrow M$ be the associated elementary embedding. Now

$$C(aa) \equiv (C(aa))^M = (C(aa_{<\delta}))^V.$$

On the other hand, let $H \subseteq \mathbb{P}$ be generic over V. Then δ is still Woodin, so we have the associated elementary embedding $j' : V[H] \rightarrow M'$. Again

$$(C(aa))^V[H] \equiv (C(aa))^M' = (C(aa_{<\delta}))^{V[H]}.$$

Finally, we may observe that $(C(aa_{<\delta}))^{V[H]} = (C(aa_{<\delta}))^V$. Hence

$$(C(aa))^V[H] \equiv (C(aa))^V.$$
Definition

$C(aa')$ is the extension of $C(aa)$ obtained by allowing “implicit” definitions.

- $C^* \subseteq C(aa) \subseteq C(aa')$.
- The previous results about $C(aa)$ hold also for $C(aa')$.

Theorem

If there is a proper class of Woodin cardinals, or MM^{++}, then $C(aa')$ satisfies CH (even \diamond).
Shelah’s stationary logic

Definition

\[M \models Q^{St}xyz \varphi(x, \bar{a})\psi(y, z, \bar{a}) \] if and only if \((M_0, R_0)\), where

\[M_0 = \{ b \in M : M \models \varphi(b, \bar{a}) \} \]

and

\[R_0 = \{ (b, c) \in M : M \models \psi(b, c, \bar{a}) \}, \]

is an \(\aleph_1\)-like linear order and the set \(\mathcal{I}\) of initial segments of

\((M_0, R_0)\) with an \(R_0\)-supremum in \(M_0\) is stationary in the set \(\mathcal{D}\) of all (countable) initial segments of \(M_0\) in the following sense:

If \(\mathcal{J} \subseteq \mathcal{D}\) is unbounded in \(\mathcal{D}\) and \(\sigma\)-closed in \(\mathcal{D}\), then \(\mathcal{J} \cap \mathcal{I} \neq \emptyset\).
• The logic $\mathcal{L}(Q^{St})$, a sublogic of $\mathcal{L}(aa)$, is recursively axiomatizable and \aleph_0-compact. We call this logic **Shelah’s stationary logic**, and denote $C(\mathcal{L}(Q^{St}))$ by $C(aa^-)$.

• We can say in the logic $\mathcal{L}(Q^{St})$ that a formula $\varphi(x)$ defines a stationary (in V) subset of ω_1 in a transitive model M containing ω_1 as an element as follows:

$$M \models \forall x (\varphi(x) \rightarrow x \in \omega_1) \land Q^{St}xyz \varphi(x)(\varphi(y) \land \varphi(z) \land y \in z).$$

Hence

$$C(aa^-) \cap NS_{\omega_1} \in C(aa^-).$$
Theorem

If there is a Woodin cardinal or MM holds, then the filter
\(D = C(aa^-) \cap NS_{\omega_1} \) is an ultrafilter in \(C(aa^-) \) and

\[C(aa^-) = L[D]. \]
Theorem

If there is a proper class of Woodin cardinals, then for all set forcings P and generic sets $G \subseteq P$

$$Th(C(aa^-)^V) = Th(C(aa^-)^{V[G]})$$
We write

\[\text{HOD}_1 = \text{df } C(\Sigma^1_1). \]

Note:

- \(\{ \alpha < \beta : \text{cf}^V(\alpha) = \omega \} \in \text{HOD}_1 \)
- \(\{ (\alpha, \beta) \in \gamma^2 : |\alpha|^V \leq |\beta|^V \} \in \text{HOD}_1 \)
- \(\{ \alpha < \beta : \alpha \text{ cardinal in } V \} \in \text{HOD}_1 \)
- \(\{ (\alpha_0, \alpha_1) \in \beta^2 : |\alpha_0|^V \leq (2^{\alpha_1})^V \} \in \text{HOD}_1 \)
- \(\{ \alpha < \beta : (2^{\alpha})^V = (|\alpha|^+)^V \} \in \text{HOD}_1 \)
Lemma

1. $C^* \subseteq HOD_1$.
2. $C(Q^{MM,<_\omega}_1) \subseteq HOD_1$
3. If $0^\#$ exists, then $0^\# \in HOD_1$
Theorem

It is consistent, relative to the consistency of infinitely many weakly compact cardinals that for some λ:

$$\{\kappa < \lambda : \kappa \text{ weakly compact (in } V)\} \notin HOD_1,$$

and, moreover, $HOD_1 = L \neq HOD$.
Open questions

- C^* has small large cardinals, is forcing absolute (assuming PCW).
- **OPEN**: Can C^* have a measurable cardinal?
- C^* has some elements of GCH
- **OPEN**: Does C^* satisfy CH if large cardinals are present?
- $C^{(aa)}$ has measurable cardinals.
- **OPEN**: Bigger cardinals in $C^{(aa)}$?
- $C^{(aa)}$ satisfies CH.
- **OPEN**: Does $C^{(aa)}$ satisfy GCH?
Thank you!

Happy Birthday Menachem!