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Constructible hierarchy generalized

L′0 = ∅
L′α+1 = DefL∗(L′α)

L′ν =
⋃
α<ν L′α for limit ν

We use C(L∗) to denote the class
⋃
α L′α.
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Thus a typical set in L′α+1 has the form

X = {a ∈ L′α : (L′α,∈) |= ϕ(a, ~b)}
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Higher order logicsHigher order logics
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Examples

• C(Lωω) = L
• C(Lω1ω) = L(R)

• C(Lω1ω1) = Chang model
• C(L2) = HOD
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Possible attributes of inner models

• Forcing absolute.
• Support large cardinals.
• Satisfy Axiom of Choice.
• Arise “naturally".
• Decide questions such as CH.
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Inner models we have

• L: Forcing-absolute but no large cardinals (above WC)
• HOD: Has large cardinals but forcing-fragile
• L(R): Forcing-absolute, has large cardinals, but no AC
• Extender models: Tailor made to support given large

cardinals
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Absolute logics—nothing new

Theorem
Suppose L∗ is ZFC+V=L-absolute with parameters from L, and
the syntax of L∗ is ZFC+V=L-absolute with parameters from L.
Then C(L∗) = L.

Corollary
C(L(Qα)) = L

Väänänen, Jouko A
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Magidor-Malitz quantifier

Definition
Magidor-Malitz quantifier of dimension n:

M |= QMM,n
α x1, ..., xnϕ(x1, ..., xn) ⇐⇒

∃X ⊆ M(|X | ≥ ℵα ∧ ∀a1, ...,an ∈ X :M |= ϕ(a1, ...,an)).
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Magidor-Malitz quantifier, assuming 0]

Consistently, C(QMM,2
1 ) 6= L, but:

Theorem
If 0] exists, then C(QMM,<ω

α ) = L.

Lemma
Suppose 0] exists and A ∈ L, A ⊆ [α]2. If there is an
uncountable B such that [B]2 ⊆ A, then there is such a set B in
L.
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Shelah’s cofinality quantifier

Definition
The cofinality quantifier Qcf

ω is defined as follows:

M |= Qcf
ω xyϕ(x , y , ~a) ⇐⇒ {(c,d) :M |= ϕ(c,d , ~a)}

is a linear order of cofinality ω.

• Axiomatizable
• Fully compact
• Downward Löwenheim-Skolem down to ℵ1
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The “cof-model" C∗

Definition

C∗ =def C(Qcf
ω )

Example:
{α < β : cfV (α) > ω} ∈ C∗
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Theorem
If 0] exists, then 0] ∈ C∗.

Proof.
Let

X = {ξ < ℵω : ξ is a regular cardinal in L and cf(ξ) > ω}

Now X ∈ C∗ and

0] = {pϕ(x1, ..., xn)q : Lℵω |= ϕ(γ1, ..., γn) for some γ1 < ... < γn in X}.
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• More generally, the above argument shows that x ] ∈ C∗(x)
for any x ∈ C∗ such that x ] exists.

• Hence C∗ 6= L(x) whenever x is a set of ordinals such that
x ] exists in V .
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Theorem
The Dodd-Jensen Core model is contained in C∗.

Theorem
Suppose Lµ exists. Then some Lν is contained in C∗.
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Theorem
If there is a measurable cardinal κ, then V 6= C∗.

Proof.
Suppose V = C∗ and κ is a measurable cardinal. Let
i : V → M with critical point κ and Mκ ⊆ M. Now
(C∗)M = (C∗)V = V , whence M = V . This contradicts Kunen’s
result that there cannot be a non-trivial i : V → V .
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Theorem
If there is an infinite set E of measurable cardinals (in V ), then
E /∈ C∗. Moreover, then C∗ 6= HOD.

Proof.
As Kunen’s result that if there are uncountably many
measurable cardinals, then AC is false in the Chang model.
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Stationary Tower Forcing

Suppose λ is Woodin.
• There is a forcing Q such that in V [G] there is j : V → M

with V [G] |= Mω ⊆ M and j(ω1) = λ.
• For all regular ω1 < κ < λ there is a cofinality ω preserving

forcing P such that in V [G] there is j : V → M with
V [G] |= Mω ⊆ M and j(κ) = λ.
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Theorem
If there is a Woodin cardinal, then ω1 is (strongly) Mahlo in C∗.

Proof.
Let Q, G and j : V → M with Mω ⊂ M and j(ω1) = λ be as
above.
Now,

(C∗)M = C∗<λ ⊆ V .
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Theorem
Suppose there is a Woodin cardinal λ. Then every regular
cardinal κ such that ω1 < κ < λ is weakly compact in C∗.

Proof.
Suppose λ is a Woodin cardinal, κ > ω1 is regular and < λ. To
prove that κ is strongly inaccessible in C∗ we can use the
“second" stationary tower forcing P above. With this forcing,
cofinality ω is not changed, whence (C∗)M = C∗.
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Theorem
If there is a proper class of Woodin cardinals, then the regular
cardinals ≥ ℵ2 are indiscernible in C∗.

Proof.
We use the “second" stationary tower forcing P to show first
that the Woodin cardinals are indiscernible, and after that the
regular cardinals ≥ ℵ2 are indiscernible. Remember that the
here P and j preserve C∗.



Introduction The cof-model The aa-model HOD1

Theorem
If V = Lµ, then C∗ is exactly the inner model Mω2 [E ], where
Mω2 is the ω2th iterate of V and E = {κω·n : n < ω}.

Proof.

1. C∗ ⊆ Mω2 [E ]: In Mω2 [E ] we can detect which ordinals have
cofinality ω in V .

2. Mω2 [E ] ⊆ C∗: The set E is the set of ordinals < κω2 which
have cofinality ω in V but are regular in the core model.
The measure i0ω2(µ) on κω2 can be defined from E by
µ′(X ) = 1 if and only if ∃α ∈ E∀β ∈ E(α < β → β ∈ X )}.
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Theorem
Suppose there is a proper class of Woodin cardinals. Suppose
P is a forcing notion and G ⊆ P is generic. Then

Th((C∗)V ) = Th((C∗)V [G]).
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Proof.
Let H1 be generic for Q. Now

j1 : (C∗)V → (C∗)M1 = (C∗)V [H1] = (C∗<λ)V .

Let H2 be generic for Q over V [G]. Then

j2 : (C∗)V [G] → (C∗)M2 = (C∗)V [H2] = (C∗<λ)V [G] = (C∗<λ)V .
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Theorem
|P(ω) ∩ C∗| ≤ ℵ2.

Proof.
Suppose a ⊆ ω and a ∈ C∗. We build (Mα)α<ω1 such that

1. a ∈ M0, M0 |= a ∈ C∗, |Mα| ≤ ω, Mα ≺ H(µ).

2. Mγ =
⋃
α<γ Mα, if γ = ∪γ.

3. If β ∈ Mα and cfV (β) = ω, then Mα+1 contains an ω-sequence
from H(µ), cofinal in β.

4. If β ∈ Mα and cfV (β) > ω then for unboundedly many γ < ω1
there is ρ ∈ Mγ+1 with sup(

⋃
ξ<γ(Mξ ∩ β)) < ρ < β.

Let M be
⋃
α<ω1

Mα, N the transitive collapse of M, and ζ < ω2
the ordinal N ∩On. An ordinal in N has cofinality ω in V iff it
has cofinality ω in N. Thus (L′ξ)

N = L′ξ for all ξ < ζ. Since
N |= a ∈ C∗, we have a ∈ L′ζ . The claim follows.
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Theorem
If there are infinitely many Woodin cardinals and a measurable
cardinal above them, then there is a cone of reals x such that
C∗(x) satisfies CH.
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If two reals x and y are Turing-equivalent, then C∗(x) = C∗(y).
Hence the set

{y ⊆ ω : C∗(y) |= CH} (1)

is closed under Turing-equivalence. Need to show that
(I) The set (1) is projective.

(II) For every real x there is a real y such that x ≤T y and y is
in the set (1).
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Lemma
Suppose there is a Woodin cardinal and a measurable cardinal
above it. The following conditions are equivalent:

(i) C∗(y) |= CH.
(ii) There is a countable iterable structure M with a

Woodin cardinal such that y ∈ M,
M |= ∃α(“L′α(y) |= CH”) and for all countable
iterable structures N with a Woodin cardinal such
that y ∈ N: P(ω)(C

∗)N ⊆ P(ω)(C
∗)M

.
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Consistency results about C∗, I

Theorem
Suppose V = L and κ is a cardinal of cofinality > ω. There is a
forcing notion P which forces C∗ |= 2ω = κ and preserves
cardinals between L and C∗.
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Consistency results about C∗, II

Theorem
It is consistent, relative to the consistency of an inaccessible
cardinal, that V = C∗ and 2ℵ0 = ℵ2.
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Stationary logic

Definition
M |= aasϕ(s) ⇐⇒ {A ∈ [M]≤ω : M |= ϕ(A)} contains a club
of countable subsets of M. (i.e. almost all countable subsets A
of M satisfy ϕ(A).) We denote ¬aas¬ϕ by statsϕ.

C(aa) = C(L(aa))

C∗ ⊆ C(aa)
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Definition

1. A first order structureM is club-determined if

M |= ∀~s∀~x [aa~tϕ(~x ,~s,~t) ∨ aa~t¬ϕ(~x ,~s,~t)],

where ϕ(~x ,~s,~t) is any formula of L(aa).
2. We say that the inner model C(aa) is club-determined if

every level L′α is.
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Theorem
If there are a proper class of measurable Woodin cardinals or
MM++ holds, then C(aa) is club-determined.

Proof.
Suppose L′α is the least counter-example. W.l.o.g α < ωV

2 . Let δ
be measurable Woodin, or ω2 in the case of MM++. The
hierarchies

C(aa)M ,C(aa)V [G],C(aa<δ)V

are all the same and the (potential) failure of
club-determinateness occurs in all at the same level.

Väänänen, Jouko A
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Lemma

1. If δ is measurable Woodin, S ⊆ δ is in M and M thinks that
S is stationary, then V [G] thinks that S is stationary.

2. If MM++ holds and S is a set of countable subsets of ωV
2 in

M and M thinks that S is stationary, then V thinks that S is
a stationary set of subsets of size ≤ ℵV

1 of ωV
2 .

Väänänen, Jouko A
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Theorem
Suppose there are a proper class of measurable Woodin
cardinals or MM++. Then every regular κ ≥ ℵ1 is measurable
in C(aa).

Väänänen, Jouko A



Introduction The cof-model The aa-model HOD1

Theorem
Suppose there are a proper class of measurable Woodin
cardinals. Then the theory of C(aa) is (set) forcing absolute.

Proof.
Suppose P is a forcing notion and δ is a Woodin cardinal > |P|.
Let j : V → M be the associated elementary embedding. Now

C(aa) ≡ (C(aa))M = (C(aa<δ))V .

On the other hand, let H ⊆ P be generic over V . Then δ is still
Woodin, so we have the associated elementary embedding
j ′ : V [H]→ M ′. Again

(C(aa))V [H] ≡ (C(aa))M′ = (C(aa<δ))V [H].

Finally, we may observe that (C(aa<δ))V [H] = (C(aa<δ))V .
Hence

(C(aa))V [H] ≡ (C(aa))V .

Väänänen, Jouko A
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Definition
C(aa ′) is the extension of C(aa) obtained by allowing “implicit"
definitions.

• C∗ ⊆ C(aa) ⊆ C(aa ′).
• The previous results about C(aa) hold also for C(aa ′).

Theorem
If there is a proper class of measurable Woodin cardinals, or
MM++, then C(aa ′) satisfies CH (even ♦).

Väänänen, Jouko A
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Shelah’s stationary logic

Definition
M |= QStxyzϕ(x , ~a)ψ(y , z, ~a) if and only if (M0,R0), where

M0 = {b ∈ M :M |= ϕ(b, ~a)}

and
R0 = {(b, c) ∈ M :M |= ψ(b, c, ~a)},

is an ℵ1-like linear order and the set I of initial segments of
(M0,R0) with an R0-supremum in M0 is stationary in the set D
of all (countable) initial segments of M0 in the following sense:
If J ⊆ D is unbounded in D and σ-closed in D, then J ∩ I 6= ∅.
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• The logic L(QSt ), a sublogic of L(aa), is recursively
axiomatizable and ℵ0-compact. We call this logic Shelah’s
stationary logic, and denote C(L(QSt )) by C(aa−).

• We can say in the logic L(QSt ) that a formula ϕ(x) defines
a stationary (in V ) subset of ω1 in a transitive model M
containing ω1 as an element as follows:

M |= ∀x(ϕ(x)→ x ∈ ω1)∧QStxyzϕ(x)(ϕ(y)∧ϕ(z)∧y ∈ z).

Hence
C(aa−) ∩ NSω1 ∈ C(aa−).
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Theorem
If there is a Woodin cardinal or MM holds, then the filter
D = C(aa−) ∩ NSω1 is an ultrafilter in C(aa−) and

C(aa−) = L[D].
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Theorem
If there is a proper class of Woodin cardinals, then for all set
forcings P and generic sets G ⊆ P

Th(C(aa−)V ) = Th(C(aa−)V [G]).
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We write
HOD1 =df C(Σ1

1).

Note:

• {α < β : cfV (α) = ω} ∈ HOD1

• {(α, β) ∈ γ2 : |α|V ≤ |β|V} ∈ HOD1

• {α < β : α cardinal in V} ∈ HOD1

• {(α0, α1) ∈ β2 : |α0|V ≤ (2|α1|)V} ∈ HOD1

• {α < β : (2|α|)V = (|α|+)V} ∈ HOD1
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Lemma

1. C∗ ⊆ HOD1.
2. C(QMM,<ω

1 ) ⊆ HOD1

3. If 0] exists, then 0] ∈ HOD1
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Theorem
It is consistent, relative to the consistency of infinitely many
weakly compact cardinals that for some λ:

{κ < λ : κ weakly compact (in V )} /∈ HOD1,

and, moreover, HOD1 = L 6= HOD.
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Open questions

• C∗ has small large cardinals, is forcing absolute (assuming
PCW).

• OPEN: Can C∗ have a measurable cardinal?
• C∗ has some elements of GCH
• OPEN: Does C∗ satisfy CH if large cardinals are present?
• C(aa) has measurable cardinals.
• OPEN: Bigger cardinals in C(aa)?
• C(aa) satisfies CH.
• OPEN: Does C(aa) satisfy GCH?

Väänänen, Jouko A
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Thank you!

Happy Birthday Menachem!
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