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Abstract

We introduce a new inner model C(aa) arising from stationary logic.
We show that assuming a proper class of Woodin cardinals, or alternatively
PFA, the regular uncountable cardinals of V are measurable in the inner
model C(aa) and C(aa) satisfies CH. Moreover, assuming a proper class of
Woodin cardinals, the theory of C(aa) is (set) forcing absolute. We intro-
duce an auxiliary concept that we call Club Determinacy, which simplifies
the construction of C(aa) greatly but may have also independent interest.
Based on Club Determinacy, we introduce the concept of aa-mouse which
we use to prove CH and other properties of the inner model C(aa).
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1 Introduction
This is the second part of a two-part paper on inner models obtained by means of
extended logics. A generally acknowledged weakness of Gödel’s in many ways
robust inner model L is that it cannot support large cardinals, beyond such “small”
large cardinals as inaccessible, Mahlo, and weakly compact cardinals. In the so-
called Inner Model Program inner models are built for bigger and bigger large
cardinals, reaching currently as far as a Woodin limit of Woodin cardinals. These
models resemble Gödel’s L in that deep fine-structure can be established for them
leading, among other things, to canonical proofs of CH, 3, 2, etc. in those
inner models. While these so-called fine-structural inner models are extremely
useful in almost all areas of modern set theory, it cannot be denied that they are
built somewhat “opportunistically”, by assuming a large cardinal and building a
carefully crafted model around it. With our new inner models we look for a more
canonical inner model construction which would still have desirable properties.

But what should one expect from a canonical inner model? First of all we
propose that we should expect robustness. We have in mind three meanings of
robustness: (1) Stability of the model under changes in the definition (in the fixed
universe of set theory). (2) Robustness across universes of set theory, stability
under forcing extensions. (3) The theory of the model (or an important part of
it) should be invariant under forcing extensions. A second quality we propose to
expect from a canonical inner model is completeness in the sense that canonical
definable objects should be included. A litmus test of this would be closure under
sharps or other canonical operations.

The first part [7] of this two-part paper dealt mainly with some general ques-
tions concerning inner models obtained from extended logics, and more specifi-
cally the inner model C∗ defined by means of the cofinality quantifier [13]. In this
second part we focus on the a priori bigger inner model C(aa) defined by means
of the stationary logic [1]. Note that

L ⊆ C∗ ⊆ C(aa) ⊆ HOD. (1)

The main results about C∗ in [7] were that under the assumption of a proper
class of Woodin cardinals, the theory of C∗ is set forcing absolute, uncountable
cardinals > ω1 of V are weakly compact in C∗ (and ω1 is Mahlo), and the theory
of C∗ is independent of the cofinality used. Moreover, C∗ is closed under sharps.
We were not able to solve the problem of CH inC∗ although we showed, assuming
three Woodin cardinals and a measurable above them, that for a cone of reals r
the relativized inner model C∗[r] satisfies CH.
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Here we show that if there is a proper class of Woodin cardinals, then uncount-
able cardinals of V are measurable in C(aa), and the theory of the model C(aa)
is invariant under set forcing. This raises naturally the question of the truth-value
of CH in C(aa). We show, assuming a proper class of Woodin cardinals, or alter-
natively PFA, that C(aa) satisfies CH. Again, we point out that C(aa) is closed
under sharps. We also consider some variants of C(aa).

The models C∗ and C(aa) arise from general considerations involving such
basic set-theoretical concepts as cofinality and stationarity. It is quite remarkable
that we can achieve the level of robustness that these models manifest. It should
come as no news that we have to make set-theoretical assumptions before we
can obtain robustness results for C∗ and C(aa). For example, if V = L, then
both models are simply identical to L. Our assumptions are either large cardinal
axioms or forcing axioms.

There are two new tools that we develop for the proofs of the results men-
tioned. The first tool is Club Determinacy which simplifies stationary logic con-
siderably in our construction. Roughly speaking, Club Determinacy says that
every stationary definable set of countable subsets of C(aa) contains a club. The
second tool is the concept of an aa-mouse. Roughly speaking, an aa-mouse con-
sists of a transitive set together with a theory formulated in stationary logic. In-
tuitively speaking, the transitive set satisfies the theory-part, but this is not true in
general. For example, it is not true if the transitive set is countable. The major
part of this paper is devoted to proving Club Determinacy under large cardinal
assumptions, or PFA, and to developing the theory of aa-mice and, what we call,
aa-ultrapowers of aa-mice.

We feel that there are a wealth of questions worth studying about the new inner
models. At the end of the paper we list some such questions.

Notation: If κ is a cardinal and M a set, we denote the set of subsets M of
cardinality < κ by Pκ(M). We use vector notation ~a,~b, ~x etc for finite sequences.
∀~xϕ is short for ∀x1 . . . ∀xnϕ and aa~sϕ is short for aas1 . . .aasn ϕ. If h is a
function and x ⊆ dom(f), then we use h[x] to denote the set {h(y) : y ∈ x}.
H(µ) is the set of sets of hereditary cardinality less than µ. The class of limit
ordinals is denoted Lim.

2 Basic concepts
Let us recall that a set S of countable subsets of a set M is said to be closed
unbounded (club) if for every countable s ⊆ M there is s′ ∈ S such that s ⊆ s′,

3



and for every {sn : n < ω} ⊆ S such that ∀n(sn ⊆ sn+1) the set
⋃
n sn is in S,

or equivalently, S is the set of countable subsets of M closed under a fixed given
countable set of functions. The set S is stationary if it meets every club set of
countable subsets of M . Stationary logic is the extension of first order logic by
the following second order quantifier:

Definition 2.1. If ~a is a finite sequence of elements ofM and ~t is a finite sequence
of countable subsets of M , then we define

M |= aas ϕ(s,~t,~a)

if and only if {A ∈ Pω1(M) : (M, A) |= ϕ(A,~t,~a)} contains a club of countable
subsets ofM . We denote ¬aas ¬ϕ by statsϕ. The extension of first order logic
by the quantifier aa is denoted L(aa).

This quantifier was essentially introduced in [13] and studied extensively in
[1]. The idea is that rather than asking whether there is some countable set A sat-
isfying ϕ(A), or whether all countable sets A satisfy ϕ(A), we ask whether most
A satisfy ϕ(A). The second order “some/all” quantifiers are generally believed to
be too strong to give rise to interesting model theory, but the “most” quantifier has
turned out to be better behaved. There is a complete axiomatization, a Compact-
ness Theorem in countable vocabularies, and a Downward Löwenheim-Skolem
Theorem down to ℵ1 for countable theories (i.e. every countable consistent theory
has a model of cardinality ℵ1).

Some examples of the expressive power of stationary logic are the following:
We can express “ϕ(·) is countable” with aas ∀y(ϕ(y)→ s(y)). If we have a lin-
ear order ϕ(·, ·), we can express it having cofinality ω with aas ∀x∃y(ϕ(x, y) ∧
s(y)). We can express ϕ(·, ·) being ℵ1-like with ∀xaas ∀y(ϕ(y, x) → s(y)).
The set {α < κ : cf(α) = ω} is L(aa)-definable on (κ,<) by means of
aas(sup(s) = α), where sup(s) is a shorthand notation for the supremum of
s. The property of a set A ⊆ {α < κ : cf(α) = ω} being stationary is definable
in L(aa) by means of stats(sup(s) ∈ A). Finally, we can express an ℵ1-like
linear order ϕ(·, ·) containing a closed unbounded subset (i.e. a copy of ω1) with
aas(sup(s) ∈ dom(ϕ)).

We will need below the concept of relativisation of L(aa)-formulas. Rel-
ativisation is defined inductively as in first order logic except that the relativi-
sation (aas ψ(s))(x) of aas ψ(s) to x is defined as aas((ψ(s ∩ x))(x)), where
ψ(s ∩ x) denotes the formula obtained from ψ(s) by replacing everywhere y ∈ s
by y ∈ s ∧ y ∈ x.
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The axioms of the logic L(aa) are [1]:

(A0) aas ϕ(s)↔ aatϕ(t)
(A1) ¬aas(⊥)
(A2) aas(x ∈ s), aat(s ⊆ t)
(A3) (aas ϕ ∧ aas ψ)→ aas(ϕ ∧ ψ)
(A4) aas(ϕ→ ψ)→ (aas ϕ→ aas ψ)
(A5) ∀xaas ϕ(x, s)→ aas ∀x ∈ sϕ(x, s).


(2)

The rules are Modus Ponens, the usual rule of generalisation and the new rule
of aa-generalisation i.e. if T ` ϕ → ψ and s is not free in T ∪ {ϕ}, then
T ` ϕ → aas ψ. These are complete in the sense that any countable L(aa)-
theory consistent with them has a model of cardinality ℵ1. Intuitively, (A1) says
that ∅ is not club. (A2) says that the set of countable sets having a fixed element
as an element, as well as the set of countable sets containing a fixed countable set
as a subset, are club. (A3) and (A4) simply say that the club-filter (of definable
sets) is a filter. Finally, (A5) is a formulation of Fodor’s Lemma.

Suppose A is a stationary subset of a regular κ > ω such that ∀α ∈ A(cf(α) =
ω). The ω-club filter Fω(A) is the set of subsets of A which contain the in-
tersection of A with a club subset of κ. Note that Fω(A) is < κ-closed. The
property of B ⊆ κ belonging to Fω(A) is definable from A in L(aa) by means
of aas(sup(s) ∈ A→ sup(s) ∈ B).

There are generalizations of the notions of club and stationarity from Pω1(A)
to Pλ(A), where λ is a regular cardinal. Since there are slight variations in the
way clubs and stationary subsets of Pλ(A) are defined, we specify below what we
mean by this terminology.

Definition 2.2. C ⊆ Pλ(A) is closed unbounded (club) in Pλ(A) if for every
X ∈ Pλ(A) there is Y ∈ C such that X ⊆ Y and, moreover, if 〈Xj : j < δ〉,
δ < λ, is an increasing sequence of members of C, then

⋃
α<δXα is in C. A set

S ⊆ Pλ(A) is called stationary in Pλ(A) if it meets every club of Pλ(A).

If λ ⊆ A, then {X ∈ Pλ(A) : X ∩ λ ∈ λ} is a club in Pλ(A). Also, if
λ ⊆ A then D ⊆ Pλ(A) contains a club if and only if there is an algebra on
A (with countably many operations) such that (the domains of) all subalgebras
whose intersection with λ is an ordinal, are in D.

If δ is an uncountable cardinal such that δ = δ<δ, we consider the quantifier
aaδ with the following meaning: If ~a is a finite sequence of elements of M and ~t
is a finite sequence of subsets of M of cardinality < δ, then we define

M |= aaδsϕ(s,~t,~a)
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if and only if {A ∈ Pδ(M) : (M, A) |= ϕ(A,~t,~a)} contains a club of Pδ(M). It
is proved in [11] that a sentence of L(aa) has a model if and only if it has a model
when aa is interpreted as aaδ.

3 Inner model C(aa)
The idea is that C(aa) is the inner model that results if in the usual definition
of Gödel’s constructible hierarchy L the role of first order logic as a vehicle of
definability is played by stationary logic. In fact, we model our definition of
C(aa) more in the style of Jensen’s J-hierarchy [5], which is, after all, equivalent
to Gödel’s L-hierarchy. We add stationary logic to the usual definition of the J-
hierarchy. The addition takes place by adding the truth-definition of stationary
logic as a special predicate to the usual definition.

Since the definition of C(aa) applies to any logic L∗, we formulate the fol-
lowing definition for an arbitrary logic L∗:

Definition 3.1. Suppose L∗ is a logic the sentences of which are1 (coded by)
natural numbers. We define the hierarchy (J ′α), α ∈ Lim, of sets constructible
using L∗ and the class Tr, by transfinite double induction, as follows: 2

Tr = {(α, ϕ(~a)) : (J ′α,∈,Tr�α) |= ϕ(~a), ϕ(~x) ∈ L∗,~a ∈ J ′α, α ∈ Lim},

where
Tr�α = {(β, ψ(~a)) ∈ Tr : β ∈ α ∩ Lim},

and 
J ′0 = ∅
J ′α+ω = rudTr(J

′
α ∪ {J ′α})

J ′ων =
⋃
α<ν J

′
ωα, for ν ∈ Lim .

(3)

Here the rudimentary closure operation rudTr includes the operation x 7→ x∩Tr.
We use C(L∗) to denote the class

⋃
α∈Lim J

′
α and use J ′α to denote the structure

(J ′α,∈,Tr�α).

1For the sake of simplicity.
2The vocabulary of ϕ(~x), ~x = (x1, . . . , xn), below consists of two binary predicate symbols.

The sentence ϕ(~a), ~a = (a1, . . . , an), is the result of substituting a constant symbol cai , denoting
ai, for xi for i = 1, . . . , n. We generally use ai to denote (also) the constant symbol cai when no
confusion arises.

6



Additionally, we denote

Trα = {ϕ(~a) : (α, ϕ(~a)) ∈ Tr},

whence
Tr =

⋃
{{α} × Trα : α ∈ Lim}.

The point of the definition of J ′α is that we do not only add in successor stages
sets that are definable (or images under rudimentary functions) from elements of
the lower levels but we also add a truth-definition Tr�α which makes reference to
definable sets particularly smooth. In particular, it helps us produce a uniformly
definable well-order of each of the levels J ′α.

In the special case that L∗ is L(aa), we denote C(L(aa)) by

C(aa).

We also consider the inner model C(aaδ) i.e C(L(aaδ)). Since the quantifierQcf
ω ,

which gives rise to the inner model C∗ (= C(L(Qcf
ω ))) is definable in L(aa), we

have the trivial relations of (1).

Lemma 3.2. C(aa) is a model of ZFC. The model C(aa) has a canonical (first
order) definable well-order ≺.

Proof. The claim follows from general properties of the J-hierarchy (see e.g. [12,
Lemma 5.26]).

We recall the following connection between the J-hierarchy of Jensen and the
L-hierarchy of Gödel3 in the definition of C(aa):

Lemma 3.3 ([5, 12]). Suppose (J ′α) is the hierarchy generating C(aa). A set A ⊆
J ′α is in J ′α+ω if and only if there are a first order formula ϕ(x, y) and b ∈ J ′α such
that A = {a ∈ J ′α : (J ′α,∈,Tr�α,Trα) |= ϕ(a, b)}.

We used a different definition for C(L∗) in [7]. There we introduced an inner
model obtained in the same way as Gödel’s constructible hierarchy L, but replac-
ing in the definition first order logic by the logic L∗. The general construction was
as follows:

3Note that we do not claim that the structures J ′α are amenable.
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Definition 3.4 ([7]). Suppose L∗ is a logic. If M is a set, let DefL∗(M) denote
the set of all sets of the form X = {a ∈M : (M,∈) |= ϕ(a,~b)}, where ϕ(x, ~y) is
an arbitrary formula of the logic L∗ and ~b ∈ M . We define the hierarchy (L′α) as
follows:

L′0 = ∅
L′α+1 = DefL∗(L′α)
L′ν =

⋃
α<ν L

′
α for limit ν.

Let us use Co(L∗) to denote the class
⋃
α L
′
α. In the special case that L∗ is

L(aa), we denote Co(L(aa)) by Co(aa). The reason for changing the definition
from Co(L∗) (as in [7]) to the current C(L∗) is that it turned out to be unclear,
as pointed out by Gabriel Goldberg4, whether the former satisfies the Axiom of
Choice. For the logic L(Qcf

ω ) there is no difference: C(L(Qcf
ω )) = Co(L(Qcf

ω ))(=
C∗). We could give the new definition of C(L∗) in terms of the L-hierarchy in-
stead of the J-hierarchy, because of the close relationship between the two hierar-
chies, see e.g. [5, §2.4], but the J-hierarchy is more convenient because its levels
are closed under the pairing function which we need to code finite sequences used
in the definition of Trα.

In the course of this paper we will see that C(aa) is in many ways a fairly
robust inner model in the sense of our Introduction, at least if there are big enough
large cardinals.

It is important to keep in mind that the quantifier aas in the construction
of C(aa) asks whether there is a club in V of countable sets s in V with some
property. Neither the club nor the countable sets need be inC(aa). Thus, although
we focus on an inner model C(aa), we let the quantifier aa “reach out” to V .
Thus C(aa) knows certain facts about V but it may not be able to have witnesses
to corroborate those facts. The whole point of using L(aa) in the definition of
C(aa) is that L(aa) provides some information about V but not too much.

The countable levels J ′α, α < ωV1 , bring nothing new, although ωV1 may be
a large cardinal in C(aa). They are the same as the respective levels of the con-
structible hierarchy, as the aa-quantifier is eliminable in countable models.

Note that S = {α < κ : cfV (α) = ω} ∈ C(aa). The property of A ⊆ S of
being stationary (in V ) is definable in C(aa), as is the property of containing the
ω-cofinal elements of a club. Thus, if A ∈ C(aa), then the “trace” of the ω-club
filter of V on A, namely (Fω(A))V ∩C(aa), is in C(aa). One of the main results

4Personal communication.
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of this paper is that (Fω(κ))V ∩C(aa) is a normal ultrafilter on κ, whenever κ > ω
is regular, assuming large cardinals.

The following robustness property of C(aa) is often useful:

Proposition 3.5. Suppose P is a σ-closed notion of forcing and G is P-generic.
Then C(aa)V = C(aa)V [G].

Proof. Let J ′′α be the J ′α as computed in V [G]. We prove J ′α = J ′′α for all α,
by induction on α. The induction step boils down to the following claim: If
S ⊆ Pω(J ′α) is an L(aa)-definable set with parameters in V and S ∈ V , then
S is stationary in V if and only if S is stationary in V [G]. To prove this, let us
assume S is stationary in V . Then S is stationary in V [G] because P is proper. On
the other hand, if S ∈ V is stationary in V [G], then S is obviously stationary in
V .

Many natural questions about C(aa) immediately suggest themselves:

• Does it satisfy CH?

• Does it have large cardinals?

• How absolute is it?

• Is its theory forcing absolute?

• How is it related to other known inner models such as L, HOD, etc?

We will provide some answers in this paper, but many natural questions remain
also unanswered. We shall prove C(aa) |= CH from large cardinal assumptions,
but let us immediately observe that ZFC alone does not limit the cardinality of the
continuum in C(aa) to either ℵ1 or to ≤ ℵ2. This is in sharp contrast to the case
of C∗ (see [7]) where the continuum is always at most ℵ2 of V .

Theorem 3.6. Con(ZF ) implies Con(|R ∩ C(aa)| ≥ ℵV3 ).

Proof. Assume V = L. Let S ⊆ ω3 be a non-reflecting stationary set of ordinals
of cofinality ω with fat complement (i.e. for every club C ⊆ ω3, C \ S contains
closed sets of ordinals of arbitrarily large order types below ω3). Let Sα, α < ω3,
be a partitioning of S into disjoint stationary sets. Let us now work in a generic
extension obtained by adding Cohen reals rα, α < ω3. The sets Sα are still
stationary, because the forcing is CCC. Let A be the set {ω · α + n : n ∈ rα, α <
ω3}. Let E be the union of the sets Sα, where α ∈ A. Let us move to a forcing
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extension obtained by forcing a club D through the fat stationary set ω3 \E. This
forcing does not add bounded subsets of ω3, whence ω3 does not change. If α ∈ A,
then Sα∩D = ∅ and Sα is therefore non-stationary after the forcing. On the other
hand, If α /∈ A, then Sα ∩ E = ∅ and shooting a club through ω3 \ E preserves
the stationarity of Sα. Hence for any α ∈ ω3, α ∈ A if and only if Sα is non-
stationary. Hence A ∈ C(aa). Now rα = {n : ω · α + n ∈ A}. Hence each rα is
in C(aa), and therefore |R ∩ C(aa)| ≥ ℵV3 .

The role of ℵ3 in the above theorem is not crucial, but just an example. It can
be replaced by any cardinal. Since ZFC ` |R ∩ C∗| ≤ ℵ2 [7], we obtain5 :

Corollary 3.7. Con(ZF ) implies Con(C∗ 6= C(aa)).

We can use the proof of Theorem 3.6 to prove the consistency of the non-
absoluteness of C(aa) in the sense that inside C(aa) the C(aa) may look different
than from outside:

Proposition 3.8. Con(ZF ) implies Con(C(aa)C(aa) 6= C(aa))6.

Proof. We proceed as in the proof of Theorem 3.6. Assume V = L. Let Sn, n <
ω, be a partitioning of ω1 into disjoint stationary sets. Let us then work in a generic
extension obtained by adding a Cohen real r. The sets Sα are still stationary. LetE
be the union of Sn, where n ∈ r. Let us move to a forcing extension V [G] obtained
by forcing a club D through the stationary set ω1 \ E. Now n ∈ r if and only if
Sn is non-stationary. Hence r ∈ C(aa), whence L(r) ⊆ C(aa) and C(aa) 6= L.
One can prove by induction on α that (J ′α)V [G] = (J ′α)L[r]. The non-trivial step
says that if T ⊆ Pω1(B) where B, T ∈ L[r], then T is stationary in V [G] iff for
some n ∈ ω \ {r} the set {s ∈ T |s∩ω1 ∈ Sn} is a stationary subset of Pω1(B) in
L[r]. Note that all countable subsets of V [G] are in L[r]. Hence C(aa) ⊆ L(r),
and, in consequence, we obtain C(aa) = L(r). But C(aa)L(r) = L. Hence
V [G] |= C(aa)C(aa) 6= C(aa).

If x ∈ C(aa) and x# exists, then x# ∈ C(aa). This is proved as for C∗ in
[7]. If Lµ exists, then Lν ⊆ C∗ for some ν, and hence Lν ⊆ C(aa) for some
ν. However, we do not know whether Lµ, where µ is a measure on the smallest
possible ordinal, is contained in C(aa).

5Work in progress by a SQuaRE group shows that C∗ 6= C(aa) follows also from the existence
of a measurable cardinal of Mitchell-order > 1.

6Ur Ya’ar has proved stronger results, see [16].
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4 Club determinacy
We introduce the useful auxiliary concept of Club Determinacy and show that
C(aa) satisfies it, assuming large cardinals or PFA. Roughly speaking, Club De-
terminacy says that definable sets of ordinals of cofinality ω in C(aa) either con-
tain a club or their complement contains a club. This simplifies the structure of
C(aa) as we do not have any definable stationary co-stationary sets. The main
results of the later sections are heavily based on this.

Definition 4.1 ([3]). A first order structureM is club determined7 if

M |= ∀~x[aas ϕ(~x, s,~t) ∨ aas ¬ϕ(~x, s,~t)], (4)

where ϕ(~x, s,~t) is any formula in L(aa) and ~t is a finite sequence of countable
subsets of M .

On a club determined structure the quantifiers stat (“stationarily many”) and
aa (“club many”) coincide on definable sets. The truth of aas ϕ(s,~b,~t) in a struc-
tureM can be written in the form of a two-person perfect information zero-sum
gameG(ϕ,M,~b,~t): the players alternate to pick elements a0, a1, . . . fromM . Af-
ter ω moves Player II wins if s = {a0, a1, . . .} satisfies ϕ(s,~b,~t) inM. A structure
M is club determined if and only if the game G(ϕ,M,~b,~t) is determined for all
formulas ϕ and all parameters~b. Hence the name.

There are several results in [3] suggesting that club determined structures have
a ‘better’ model theory than arbitrary structures. For a start, every consistent
first order theory has a club determined model. Moreover, every club determined
uncountable model has an L(aa)-elementary submodel of cardinality ℵ1, while
for arbitrary structures this cannot be proved in ZFC. It fails if V = L ([2]), but
holds if we assume PFA++ (folklore).

Lemma 4.2. If a first order structureM is club determined, then

M |= ∀~x[aa~sϕ(~x,~s,~t) ∨ aa~s¬ϕ(~x,~s,~t)], (5)

where ϕ(~x,~s,~t) is any formula in L(aa) and ~t is a finite sequence of countable
subsets of M .

Proof. Suppose ϕ(~x, s1, . . . , sn,~t) is a formula in L(aa), ~t is a finite sequence
of countable subsets of M , and ~x is a finite sequence of elements of M . We use

7In [3] the name “finitely determinate” is used.
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induction on n. If n = 1, the claim is true by assumption. Suppose then n > 1
andM |= ¬aas1 aas2 . . .aasn ϕ(~x, s1, . . . , sn,~t). By the assumption (4),

M |= aa s1¬aa s2 . . .aa snϕ(~x, s1, . . . , sn,~t),

whence by the Induction Hypothesis,

M |= aa s1 aa s2 . . .aa sn¬ϕ(~x, s1, . . . , sn,~t).

Definition 4.3. We say that the inner model C(aa) is club determined, or that
Club Determinacy holds, if every level (J ′α,∈,Tr�α) in the construction of C(aa)
is club determined as a first order structure, i.e. for all α:

(J ′α,∈,Tr�α) |= ∀~x[aas ϕ(~x,~t, s) ∨ aas ¬ϕ(~x,~t, s)], (6)

where ϕ(~x,~t, s) is any formula in L(aa) and ~t is a finite sequence of countable
subsets of J ′α. We say that C(aa) is club determined for ϕ(~x,~t, s), or that Club
Determinacy for ϕ(~x,~t, s) holds, if (6) holds (at least) for the formula ϕ(~x,~t, s).

Intuitively speaking, ifC(aa) is club determined, its definition is more robust—
the quantifier aa is more lax than it would be otherwise, and in consequence,
C(aa) is a little easier to compute.

We consider Club Determinacy also with the quantifier aa interpreted as aaδ.
We say that C(aaδ) satisfies δ-Club Determinacy (for ϕ) if it satisfies Club De-
terminacy (for ϕ) with aa replaced by aaδ.

The main technical result of this paper says that if there are a proper class of
Woodin cardinals, then C(aa) is club determined (Theorem 4.12). We prove the
same conclusion also under the alternative assumption of PFA (Theorem 4.17).
In view of the below Theorem 5.1 some large cardinal assumption (in V or in
an inner model) is necessary for Club Determinacy. Of course, a proper class of
measurable cardinals, as in Theorem 5.1, is a much weaker assumption than a
proper class of Woodin cardinals, and we do not know the exact large cardinal
assumption needed here.

4.1 Club determinacy from Woodin cardinals
We are going to prove Club Determinacy in two cases. The first case is a proper
class of Woodin cardinals. This will be the topic of the current section. In the next
section we use the assumption PFA.

12



Suppose δ is a Woodin cardinal. We use P<δ to denote the stationary tower
forcing at δ and Q<δ to denote the corresponding countable stationary tower forc-
ing. For details concerning the stationary tower we refer to [8].

Here is a sketch of the proof of Club Determinacy. We look at the earliest
stage at which Club Determinacy fails for C(aa). Let us suppose it fails because
a set

S = {s ∈ Pω1(J ′α) : (J ′α,∈,Tr�α) |= ϕ(~a, s,~t)} (7)

is stationary co-stationary, where ~a is a finite sequence of elements of J ′α and
~t is a finite sequence of countable subsets of J ′α. We may assume that α and
ϕ(s, ~x,~t) are minimal for which this happens. We show with a separate argument
that we can assume w.l.o.g. that |α| = ℵ1 and δ1

2 = ω2, where δ1
2 = sup{ξ :

ξ is the length of a Σ1
2- prewellordering}. Let now δ be a Woodin cardinal. We

force withQ<δ and obtain the associated generic embedding j : V →M ⊆ V [G].
Recall that j(ω1) = δ and ωM ⊆ M . In M the set j(S) is, in the sense of M , the
set of s ∈ Pω1(J ′γ) such that (J ′γ,∈,Tr�γ) |= ϕ(j(~a), s, j(~t)), where γ = j(α).
We use the minimality of α and ϕ to argue that (J ′γ)

M is the γ th level, which we
denote J∗γ , of the hierarchy of C(aaδ) in V . We also show that j(~a) is an element
a∗ of V , and j(~t) is an element t∗ of V .

We now argue that we can pick a bijection h : ω1 → J ′α so that also j(h) ∈ V
and it is independent of the generic G. Hence S∗ = {β < ω1 : h[β] ∈ S}
is a stationary co-stationary subset of ω1. So also j(S∗) is in V and j(S∗) is
independent of G. Now we can pick G such that S∗ ∈ G , which implies ω1 ∈
j(S∗) and another generic filter G such that ω1 − S∗ ∈ G which implies ω1 6∈
j(S∗), a contradiction. A detailed proof is below in Theorem 4.12.

The following general fact about forcing will be used below:

Lemma 4.4. Suppose δ is a regular cardinal, P is a forcing notion such that
|P| = δ, and G is P-generic. If δ is still a regular cardinal in V [G], then for all
N ∈ V , every club of (Pδ(N))V is stationary in (Pδ(N))V [G].

Proof. Without loss of generality,N is an ordinal β. LetC be a club in (Pδ(N))V .
Suppose τ is a forcing term for an algebra on β. Let µ be a big enough regular
cardinal. We build in V a chainMα, α < δ, of elementary substructures ofH(µ)V

of cardinality < δ in such a way that P, τ, β ∈ M0, Mα ∈ C, Mν =
⋃
α<νMα for

limit ν, and P ⊆
⋃
α<δMα. Let G be P-generic. Since δ is regular in V [G], we

can construct, in V [G], an ordinal γ < δ such that if D ⊆ P is a dense set in Mγ ,
then D∩G∩Mγ 6= ∅. Now Mγ ∩ β ∈ V is closed under the algebraic operations
of the value [τ ]G of τ in V [G].
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The main technical tool in proving the Club Determinacy is the following
result about preservation of stationarity in the forcing Q<λ:

Proposition 4.5. Suppose that λ is Woodin andG isQ<λ generic over V . If S ⊆ λ
and S ∈ V is stationary in V then S is stationary in V [G].

Proof. Suppose that S is not stationary in V [G]. Let τ be a Q<λ term for a club
subset of λ forced to be disjoint from S. To simplify notation we assume that the
maximal condition forces that τ ∩ S = ∅. For every α < λ let Dα be a maximal
anti-chain of conditions which force some ordinal > α into τ . For every α < λ
let Fα be the function defined on Dα such that Fα(q) is the minimal ordinal above
α which is forced into τ by q. Let N be an elementary substructure of H(κ) for a
big enough κ such that 〈Dα : α < λ〉 and other relevant elements of the proof are
in N . Also we require that N ∩λ is an ordinal δ ∈ S and that Vδ ⊆ N . Clearly Vδ
is closed under Fα for every α < δ.

We use the following definition:

Definition 4.6. Let D be a maximal anti-chain in Q<λ. We say that X ∈ Pω1(Vλ)
catches D below ρ if there is q ∈ D ∩X ∩ Vρ such that X ∩ ∪q ∈ q.

The following definition is a modification to Q<λ of definition 2.5.1 of [8].

Definition 4.7. LetD be a maximal anti-chain inQ<λ. We say thatD is semiproper
at ρ if for every X ≺ Vρ+2, X countable, there is a countable Y ≺ Vρ+2 such that
Y catches D below ρ and Y end extends X below ρ (i.e. if α ∈ (Y −X)∩ ρ then
α ≥ sup(X ∩ ρ)).

The following fact follows immediately from the modification to Q<λ of the-
orem 2.5.9 of [8]:
Claim. For every Dα there are unboundedly many inaccessible cardinals γ < λ
such that Dα is semiproper at γ.

From N ≺ H(κ) and N ∩ λ = δ it follows that for every α < δ, there are
unboundedly many γ < δ such that Dα is semiproper at γ.

In the following arguments we assume that Vδ+2 is also endowed with a fixed
well order.

Lemma 4.8. For every countable X ≺ Vδ+2 such that 〈Dα ∩ Vδ : α < δ〉 ∈ X
there is a countable Y ≺ Vδ+2 such that X ⊆ Y and for every α ∈ Y ∩ δ, Y
catches Dα below δ.

14



Proof. We define by induction an increasing sequence 〈Xn : n < ω〉 of countable
elementary substructures of Vδ+2 where X0 = X , a sequence 〈αn : n < ω〉 of
ordinals less than δ such that αn ∈ Xn, and an increasing sequence 〈γn : n < ω〉,
γn ∈ Xn, such that Dαn is semiproper at γn. By dovetailing we make sure that
for every n < ω and α ∈ Xn ∩ δ there is k such that α = αk. Also we keep
the inductive assumption that Xn+1 catches Dαn below γn and that it is an end
extension of Xn below γn. So it follows that Xn+1 continues to catch Dαk below
γk for all k < n.

Given Xn. Pick αn ∈ Xn so as to continue our dovetailing process. Let γn be
an element of Xn above γn−1 such that Dαn is semiproper at γn. Such a γn exists
in Xn since Xn is an elementary substructure of Vδ+2 and Dαn ∈ Xn. (Recall that
〈Dα : α < λ〉 ∈ X ⊆ Xn.)

Since Xn ≺ Vδ+2, we have R = Xn ∩ Vγn+2 ≺ Vγn+2, hence there is a
countable Z ≺ Vγn+2 such that R ⊆ Z, Z is an end extension of R below γn, and
Z catches Dαn below γn. We define Xn+1 to be all the elements of Vδ+2 which
are definable in Vδ+2 from Xn ∪ Z. Clearly Xn+1 ≺ Vδ+2.
Claim. Xn+1 ∩ Vγn = Z ∩ Vγn .

Proof. Clearly Z ∩Vγn ⊆ Xn+1∩Vγn . For the other direction let a ∈ Xn+1∩Vγn .
Then a is definable from some elements ~b of Xn and an element c of Z by a
formula ϕ(x,~b, c). (It is enough to consider a single element c of Z, since Z
is closed under forming finite sequences.) Consider the following function h :
Vγn → Vγn . We let h(y) to be the unique element d of Vγn satisfying ϕ(d,~b, y) if
there is such a unique element, and 0 otherwise. Now h ∈ Vδ+2 and h is definable
in Vδ+2 from ~b. Moreover, it is a function from Vγn to Vγn . So h ∈ Xn ∩ Vγn+2.
So h ∈ Z. Clearly a = h(c). Hence a = h(c) ∈ Z.

Continuing the proof of Lemma 4.8, it follows from the claim that Xn+1 end
extends Xn below γn and catches Dαn From our inductive assumptions it follows
that Xn+1 catches Dαk below γk for all k ≤ n. Now, if we define Y = ∪nXn,
then Y satisfies the requirements of the lemma.

We continue the proof of Proposition 4.5 with the following:
Claim. The set T =

{X ∈ Pω1(Vδ+1) : X ≺ Vδ+1, X catches Dα below δ for every α ∈ X ∩ δ}
(8)

is stationary in Pω1(Vδ+1).
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Proof. Assume otherwise, then there is a function g : Vδ+1 → Vδ+1 such that
every countable X ⊆ Vδ+1 which is closed under g is not in T . The function g
can be coded as an element of Vδ+2. (We use g also for the code in Vδ+2.) Let
X be a countable elementary substructure of Vδ+2 containing g and the sequences
〈Dα∩Vδ : α < δ〉. By the above lemma, there is a countable X ⊆ Y ≺ Vδ+2 such
that Y catches Dα below δ for every α ∈ Y . It is obvious that Y ∩ Vδ+1 ∈ T , but
g ∈ Y so Y ∩ Vδ+1 is closed under the function g, which is a contradiction.

We can now finish the proof of Proposition 4.5. By the above claim T ∈ Q<λ.
We claim that T 
 δ ∈ τ . Suppose that T ′ ≤ T such that T ′ forces α < δ to be a
bound for τ ∩ λ. We can assume without loss of generality that for every Z ∈ T ′
α ∈ Z. Since T ′ ≤ T we can also assume that every Z ∈ T ′ catches Dα below δ.
For Z ∈ T ′ let G(Z) ∈ Z ∩ Dα witness the fact that Z catches Dα. By Fodor’s
lemma there is q ∈ Dα such that the set T ′′ = {Z ∈ T ′ : G(Z) = q} is stationary
in ∪T ′. But T ′′ forces T ′′ ≤ q. But using the function Fα we can see that q forces
some ordinal above α to be in τ ∩ δ. We have a contradiction.

Proposition 4.9. Suppose λ is Woodin and G is Q<λ-generic over V . For every
setA in V , if S ⊆ Pλ(A) is stationary in V , then it is a stationary subset of Pλ(A)
in V [G].

Proof. Without loss of generality we can assume that λ ⊆ A and that for all
X ∈ S, X ∩ λ is an ordinal. If S is not stationary in V [G], there is an algebra
A ∈ V [G] with countably many operations 〈fn : n < ω〉 where the arity of fk is
kn, such that no member of S is closed under these operations. Let τn be a Q<λ-
name for fn. In order to simplify notation we assume that the maximal condition
of Q<λ forces that no member of S is closed under all the functions τn. For every
n and kn-tuple ~a of members of A, let Dn,~a be a maximal antichain of Q<λ of
conditions which force a value for τn(~a). Now the proof continues as the proof of
Proposition 4.5. Especially after the model N has been chosen as an elementary
substructure of a big enough H(θ) so that A, τn’s , etc are all in N , A ∩ N ∈ S,
N ∩ λ = δ for some δ < λ, as well as π : A ∩ N → δ, one proves the following
modification of Lemma 4.8:

For every countable X ≺ Vδ+2 such that 〈Dn,~a ∩ Vδ : ~a ∈ (A ∩
N)kn , n < ω〉 ∈ X there is a countable Y ≺ Vδ+2 such that X ⊆ Y
and Y catchesDn,~a below δ for every n < ω and every ~a ∈ (A∩N)kn

with π[~a] ∈ Y kn .

The rest is as in Proposition 4.5.

16



As above, let J ′α = (J ′α,∈,Tr�α) be the hierarchy of C(aa) in V . Let J∗α =
(J∗α,∈,Tr∗�α) be the corresponding hierarchy of C(aaδ) in V . We will compare
these two inner models, or rather C(aaδ) and the image of C(aa) under a generic
ultrapower embedding. We use A |=δ ϕ to denote A |= ϕ when we think of ϕ as
a sentence of L(aaδ) rather than of L(aa).

Suppose now δ is a Woodin cardinal. Let G be Q<δ-generic and j : V →
M ⊆ V [G] the generic ultrapower embedding. Let J ′′α = (J ′′α,∈,Tr′′�α) be
the hierarchy of C(aa) in M . As a part of the proof that C(aa) satisfies Club
Determinacy we show that this inner model C(aa) in the sense of M is actually
the inner model C(aaδ) in the sense of V (see Proposition 5.2). We show this by
a level by level analysis of the two aa-hierarchies (J ′′α) and (J∗α).

In the subsequent proofs we will use parameters from V although we are deal-
ing also with M . Lemma 4.11 below shows that while j is certainly not definable
in V , it maps relevant parameters to V . First we need an auxiliary result. The
following result is a widely known folklore result, but we include a sketch of the
proof for the reader’s convenience:

Lemma 4.10. Assume x# exists for every x ⊆ ω. Then

δ1
2 = sup{((ℵV1 )+)L[x] : x ⊆ ω}. (9)

Proof. Kunen’s proof of the result of Martin ([9]) to the effect that every well
founded Σ1

2 relation has rank < ω2, shows that this rank is actually less than
((ℵV1 )+)L[x], where x is the real parameter of the Σ1

2-definition. This gives one
direction of (9). For the other direction, suppose x is a real and η = ((ℵV1 )+)L[x].
Every ordinal less than η is definable in L[x] from some x-indiscernibles ≤ ℵV1 .
This gives the other direction and finishes the proof of (9). We can define a relation
between n-tuples of reals coding the indiscernibles and the formula. This relation
is ∆1

2 using x# as a parameter. The rank of the relation is η and therefore η <
δ1

2 .

Lemma 4.11. Assume δ1
2 = ω2 and δ is a Woodin cardinal. Suppose we force

with Q<δ and the associated generic embedding is j : V → M ⊆ V [G]. Then
j�ω2 ∈ V . In particular, if s is a countable subset of ω2, then j(s) ∈ V . Moreover,
there is t ∈ V such that 
Q<δ j(š) = ť.

Proof. Let, by Lemma 4.10, g ∈ V be a function on ω2 such that for all α < ω2,
g(α) is a subset of ω with α < ((ℵV1 )+)L[g(α)]. Since g(α)] exists, there is a
term τ

g(α)]

α (~x, y) such that α = τ
g(α)]

α (~β, ωV1 ), where ~β < ωV1 . Note that now
j(α) = τ

g(α)]

α (~β, δ). It follows that j � ω2 is in V .
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We now prove the main result of this section:

Theorem 4.12. If there is a proper class of Woodin cardinals, then C(aa) is club
determined.

Proof. Suppose α is the smallest ordinal for which (J ′α,∈,Tr�α) fails to satisfy
Club Determinacy. We can collapse |α| to ℵ1 without changing C(aa) (Proposi-
tion 3.5). Hence we may assume w.l.o.g. |α| = ℵ1. By a result of Shelah we
can, starting from a Woodin cardinal, force the ω2-saturation of the non-stationary
ideal on ω1 with semi-proper forcing. Since |α| = ℵ1, this forcing does not change
C(aa) up to the level α + 1. Since we have also a measurable cardinal, we may
conclude that δ1

2 = ω2 ([15, Theorem 3.17]). Hence we may assume, w.l.o.g.
δ1

2 = ω2. By Lemma 4.10 there is a real x and f ∈ L[x] such that f : α → ωV1 is
a bijection. Suppose f is the least in the canonical well-order of L[x]. Let δ > α
be a Woodin cardinal and j : V → M ⊆ V [G] as above. Let γ = j(α). Now
g = j(f) : γ → δ is a bijection and the L[x]-least such. Clearly, g ∈ V .

Suppose ϕ witnesses the failure of Club Determinacy of J ′α, i.e. there is a
stationary co-stationary set

P = {s ∈ Pω1(J ′α) : (J ′α,∈,Tr�α) |= ϕ(~a, s, t)}, (10)

where ~a ∈ J ′α and t is a countable subset of J ′α. We may assume that ϕ is minimal
for such an ~a ∈ J ′α and t, a countable subset of J ′α, to exist. By the elementarity
of j,

Q =def j(P )

is a counter-example to Club Determinacy of (J ′′γ ,∈,Tr′′�γ) inM in the sense that

Q = {s ∈ (Pδ(J ′′γ ))M : ((J ′′γ ,∈,Tr′′�γ) |= ϕ(j(~a), s, j(t)))M}, (11)

where j(t) ∈ (Pδ(J ′′γ ))M , is stationary co-stationary in M . Moreover, γ is min-
imal such that Club Determinacy fails in (J ′′γ ,∈,Tr′′�γ) in M , and ϕ is minimal
such that Club Determinacy fails for ϕ in (J ′′γ ,∈,Tr′′�γ) in M with some param-
eters ~a and t. In other words,

(a) If η ∈ γ ∩ Lim, then (J ′′η ,∈,Tr′′�η) satisfies
Club Determinacy in M ,

(b) If ψ is a subformula of ϕ, then (J ′′γ ,∈,Tr′′�γ) satisfies
Club Determinacy for ψ in M ,

(12)
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We need an auxiliary concept relevant only for this proof: Let us say that
(J∗ξ ,∈,Tr∗�ξ) satisfies weak δ-Club Determinacy (for ψ) if it satisfies δ-Club De-
terminacy (for ψ) with the restriction that the parameters (~t in Definition 4.1) are
in V ∩M .

Lemma 4.13. For all η ∈ γ ∩ Lim, J ′′η = J∗η and (J∗η ,∈,Tr∗�η) satisfies weak
δ-Club Determinacy (in V ).

Proof. We prove the claim by induction on limit ordinals η.

Successor case

Let us assume the Lemma for η ∈ γ ∩ Lim and prove it for η + ω < γ. By
definition,

J∗η+ω = (J∗η+ω,∈,Tr∗�η + ω),

where
J∗η+ω = rudTr∗(J

∗
η ∪ {J∗η}).

By Induction Hypothesis,

Tr∗�η + ω =
⋃
δ∈η∩Lim({δ} × Tr∗δ)

=
⋃
δ∈η∩Lim({δ} × Tr′′δ)

= Tr′′�η + ω.

and therefore
J∗η+ω = rudTr∗(J

∗
η ∪ {J∗η})

= rudTr′′(J
′′
η ∪ {J ′′η })

= J ′′η+ω.

Next we prove Tr∗η+ω = Tr′′η+ω. To this end, let N = J∗η+ω = J ′′η+ω and
R = Tr∗�η + ω = Tr′′�η + ω. We prove that the following equivalence holds,8

whenever ψ(~a,~t) is an L(aa)-formula:


(a) If ~a ∈ N(⊆M) and ~t in (Pδ(N))V ∩M , then

((N,∈, R) |=δ ψ(~a,~t))V ⇐⇒ ((N,∈, R) |= ψ(~a,~t))M .

(b) (N,∈, R) has weak δ-Club Determinacy for ψ(~a,~t) (in V ).
(13)

The claim Tr∗η+ω = Tr′′η+ω follows from (13) by forgetting the parameter ~t,
which, however, is important for the success of the inductive proof of (13). By

8Note that M<δ ⊆M in V [G], whence (Pδ(N))V ⊆ (Pδ(N))M .
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the nature of this inductive proof, it suffices to consider the restricted case ~t ∈
(Pδ(N))V ∩M . Of course, the right hand side of the equivalence in (13a) makes
sense only if ~t ∈ M . Respectively the left hand side requires ~t ∈ V . Therefore it
is reasonable to assume in (13a) that ~t ∈ V ∩M . This is also the assumption in
weak δ-Club Determinacy.

We prove the conditions (13) by induction on ψ. It suffices to prove the induc-
tion step for the aa-quantifier. Thus we assume (13) for ψ = θ(~a, s,~t) and prove
(13) for ψ(~a,~t) = aas θ(~a, s,~t).

To prove “⇒” in (13a) for ψ(~a,~t) = aas θ(~a, s,~t), suppose

((N,∈, R) |=δ aas θ(~a, s,~t))
V .

Let K ∈ V , K ⊆ Pδ(N)V , be a club of s such that

((N,∈, R) |=δ θ(~a, s,~t))
V . (14)

By Lemma 4.4 K is stationary in V [G]. If ((N,∈, R) 6|= θ(~a, s,~t))M , then by
(12a) there is a club H of s ∈ Pω1(N)M such that ((N,∈, R) 6|= θ(~a, s,~t))M .
Since ωM ⊆ M , this club H is also a club in V [G]. Let s ∈ K ∩ H . Note that
s ∈ M . By Induction Hypothesis, ((N,∈, R) 6|= θ(~a, s,~t))V , contrary to (14).
Thus ((N,∈, R) |= θ(~a, s,~t))M .

To prove “⇐”, suppose

((N,∈, R) |= aas θ(~a, s,~t))M .

Let K ∈M , K ⊆ Pδ(N)M , be a club of s such that

((N,∈, R) |= θ(~a, s,~t))M . (15)

Since ωM ⊆M , this clubK is also a club in V [G]. If ((N,∈, R) 6|=δ aas θ(~a, s,~t))V ,
then by the weak δ-Club Determinacy for θ(~a, s,~t) of (N,∈, R) in V there is a
club H of s ∈ Pδ(N)V such that ((N,∈, R) 6|=δ θ(~a, s,~t))

V . By Lemma 4.4 H is
stationary in V [G]. Let s ∈ K ∩H . Note that s ∈ M . By Induction Hypothesis,
((N,∈, R) 6|= θ(~a, s,~t))M , contrary to (15).

We move to proving (13b) for ψ(~a,~t) = aas θ(~a, s,~t). Let ~t = (u, t1, . . . , tn)
and ~t′ = (t1, . . . , tn). We need to prove

N |=δ aau ψ(~a, u, ~t′) ∨ aau ¬ψ(~a, u, ~t′), (16)

where ~a ∈ N and ~t′ ∈ (Pδ(N))V ∩M .
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By (12a),
(N |= aau ψ(~a, u, ~t′) ∨ aau ¬ψ(~a, u, ~t′))M .

For example, there is a club K in M of countable subsets u of N such that
(N |= ψ(~a, u, ~t′))M . The set K is still club in V [G]. We can now argue that
N |=δ aau ψ(~a, u, ~t′), for otherwise there is a stationary set U of elements of
(Pδ(N))V such that N |= ¬ψ(~a, u, ~t′). By Theorem 4.9 the set U is stationary in
V [G]. Intersecting K and U leads to a contradiction with (13a). The argument is
essentially the same if there is a club K in M of countable subsets u of N such
that (N |= ¬ψ(~a, u, ~t′))M . We have proved (16).

This ends the proof on (13) and ends the successor case.

Limit case

Let us assume ν < γ is a limit of limit ordinals and the claim of the Lemma holds
for η ∈ ν ∩ Lim. Now we show that it holds for ν, too.

By Induction Hypothesis,

J∗ν =
⋃
η∈ν∩Lim J

∗
η =

⋃
η∈ν∩Lim J

′′
η = J ′′ν .

Tr∗�ν =
⋃
η∈ν∩Lim Tr∗�η =

⋃
η∈ν∩Lim Tr′′�η = Tr′′�ν.

Next we note that Tr∗ν = Tr′′ν can be proved with exactly the same argument as
above for Tr∗η+ω = Tr′′η+ω. This ends the proof for the limit case.

Lemma 4.14. J ′′γ = J∗γ , Tr′′�γ = Tr∗�γ, and letting N = J ′′γ and R = Tr′′�γ, the
equivalence (13a) holds for ϕ9 in place of ψ.

Proof. Clearly, by Lemma 4.13, J ′′γ = J∗γ and Tr′′�γ = Tr∗�γ. We now prove
(13a) with γ in place of ξ by induction on subformulas ψ of ϕ. It suffices to prove
the induction step for the aa-quantifier. Thus we assume (13a) for ψ = θ(~a, s,~t)
and prove (13a) for ψ = aas θ(~a, s,~t).

To prove “⇒”, suppose ((N,∈, R) |=δ aas θ(~a, s,~t))V . Let K ∈ V , K ⊆
Pδ(N)V , be a club of s such that

((N,∈, R) |=δ θ(~a, s,~t))
V . (17)

By Lemma 4.4 K is stationary in V [G]. If ((N,∈, R) 6|= θ(~a, s,~t))M , then by
(12b) there is a club H of s ∈ Pω1(N)M such that ((N,∈, R) 6|= θ(~a, s,~t))M .

9ϕ is the minimal counter-example chosen in the beginning of the proof.
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Since ωM ⊆M , this club H is also a club in V [G]. Let s ∈ K ∩H . By Induction
Hypothesis, ((N,∈, R) 6|= θ(~a, s,~t))V , contrary to (17).

To prove “⇐”, suppose ((N,∈, R) |= aas θ(~a, s,~t))M . Let K ∈ M , K ⊆
Pδ(N)M , be a club of s such that

((N,∈, R) |= θ(~a, s,~t))M . (18)

Since ωM ⊆M , this clubK is also a club in V [G]. If ((N,∈, R) 6|=δ aas θ(~a, s,~t))V ,
then by the weak δ-Club Determinacy for θ of (N,∈, R) in V , which is part of our
Induction Hypothesis, there is a club H of s ∈ Pδ(N)V such that ((N,∈, R) 6|=δ

θ(~a, s,~t))V . By Lemma 4.4H is stationary in V [G]. Let s ∈ K∩H . By Induction
Hypothesis, ((N,∈, R) 6|= θ(~a, s,~t))M , contrary to (18).

This ends the proof on (13).

Recall the definition of P in (10) and of Q in (11). By Lemma 4.11 there are
~a∗ ∈ V and t∗ ∈ V such that j(~a) = ~a∗ and j(t) = t∗. Moreover, ~a∗ and t∗ are
independent of G.

The mapping f was defined as a bijection of α onto ωV1 . There is a bijection of
J ′α onto α, definable over J ′α. By combining the two bijections, we get a bijection
f̃ : J ′α → ωV1 . Similarly we get in bijection of J ′′γ onto γ, definable over j(J ′α) =
J ′′γ = J∗γ . Since J ′′γ ∈ V this bijection is in V and by combining it with g we get a
bijection g̃ : J ′′γ → δ. Since j(f) = g ∈ V , then also g̃ = j(f̃), it is in V , and it is
independent of the generic G.

By Lemma 4.14 and (13)

Q ∩ V = {s ∈ Pδ(J∗γ ) : (J∗γ ,∈,Tr∗�γ) |= ϕ(~a∗ s, t̄∗)} (19)

and therefore Q ∩ V ∈ V , and the identity (19) holds independently of G. Let

S = {β < ω1 : f̃−1[β] = s for some s ∈ P}.

It is easy to see that S is stationary co-stationary on ω1. Note that the set

j(S) = {β < δ : g̃−1[β] = s for some s ∈ j(P )},

= {β < δ : g−1[β] = s for some s ∈ j(P ) ∩ V (= Q ∩ V )},
is in V , and is independent of G. Let G1 be Q<δ-generic such that S ∈ G1 and
let j1 : V → M1 be the associated embedding. Let G2 be Q<δ-generic such that
ω1 \ S ∈ G2 and let j2 : V →M2 be the associated embedding. Now ω1 ∈ j1(S)
and ω1 /∈ j2(S). But, j1(S) = j2(S), a contradiction.
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Corollary 4.15. Suppose there is a supercompact cardinal. Then Club Determi-
nacy holds.

Proof. Suppose κ is supercompact. Let α be the least such that (J ′α,∈,Tr�α) is
not club determined. Since Vκ ≺2 V , we can assume α < κ. Since κ is a limit of
Woodin cardinals, we can proceed as above.

Proposition 4.16 ([6]). Assuming PFA, there is, for every set X , an inner model
with a proper class of Woodin cardinals, containing X .

Proof. We modify Theorem 0.1 of [6] as follows. Suppose X is an arbitrary set
of ordinals, e.g. X ⊆ δ. Let an X-mouse be a mouse as in [6] except that the
mouse is assumed to contain X and, moreover, it is required that all the extenders
on the coherent sequence have the critical point above δ. With this modification
the proof of Theorem 0.1 in [6] gives the result that if 2(κ) and 2κ+ fail for some
κ > δ, a consequence of PFA, then there is an inner model with a proper class of
Woodin cardinals containing X .

Theorem 4.17. Assuming PFA, Club Determinacy holds.

Proof. Suppose Club Determinacy fails at (J ′α,∈,Tr �α) and α is minimal. Let
X contain everything we need for the failure of Club Determinacy, e.g. X = Vω2 .
By Proposition 4.16 there is an inner model M with a proper class of Woodin
cardinals such that M contains X . By the choice of X , M fails to satisfy Club
Determinacy. But this contradicts Theorem 4.12.

5 Applications of Club Determinacy
We give three types of applications of Club Determinacy. The first is the im-
mediate consequence that uncountable cardinals are measurable in C(aa). Our
large cardinal assumption in the proof of Club Determinacy was a proper class
of Woodin cardinals, so we are far from an optimal result. Our second applica-
tion is the forcing absoluteness of the theory of C(aa). Here we assume a proper
class of Woodin cardinals and use Club Determinacy merely as a tool in the proof.
Our third and more substantial application is a proof of CH in C(aa), using Club
Determinacy.
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5.1 Large cardinals
Recall that, assuming a proper class of Woodin cardinals, uncountable cardinals
are Mahlo in C∗, and even weakly compact above ℵ1. In [7] we were not able
to prove that there are measurable cardinals in C∗ under any assumption, even
consistently. For the presumably bigger inner model C(aa) we establish now the
measurability of all uncountable regular cardinals. As it turns out, the proof is an
immediate consequence of Club Determinacy.

Theorem 5.1. Suppose C(aa) is club determined. Then every regular κ ≥ ℵ1 is
measurable in C(aa).

Proof. For α big enough for J ′α to contain all subsets of κ in C(aa), consider the
normal filter:

F = {X ⊆ κ : X ∈ J ′α, (J ′α,∈,Tr �α) |= aas(sup(s ∩ κ) ∈ X)}.

Suppose X ⊆ κ is in C(aa). Since (J ′α,∈,Tr �α) is club determined,

(J ′α,∈,Tr �α) |= aas(sup(s ∩ κ) ∈ X) or

(J ′α,∈,Tr �α) |= aas(sup(s ∩ κ) /∈ X).

In the first case X ∈ F . In the second case κ \X ∈ F .

It remains open whether Club Determinacy, or some reasonable stronger as-
sumption, implies that there are higher measurable cardinals in C(aa). By Corol-
lary 5.33 below, we cannot hope to have Woodin cardinals in C(aa) as a con-
sequence of some large cardinal assumptions. It remains open what happens to
singular cardinals. Are they regular, or even large cardinals in C(aa)?

5.2 Forcing absoluteness
The first order theory of L(R) is absolute under set forcing, assuming a proper
class of Woodin cardinals. With a stronger assumption the same is true of the
Chang modelC(Lω1ω1). We can prove the absoluteness ofC(aa) under set forcing
assuming a proper class of Woodin cardinals.

Proposition 5.2. Suppose club-determinacy holds, δ is Woodin, G ⊆ Q<δ is
generic and M is the associated generic ultrapower. Then C(aa)M = C(aaδ)V .
Hence C(aaδ)V satisfies club-determinacy.
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Proof. The proof is similar elements to the proof of Theorem 4.12. Let j : V →
M be the elementary embedding associated with G. Note that since we assume
Club Determinacy in V for J ′α for all α, we have Club Determinacy in M for J ′′α
for all α. We show by induction on α and on the L(aa)-formula ϕ(s, ~z, ~y) that
if we denote N = (J ′′α)M and assume, as part of the Induction Hypothesis, that
N = (J∗α)V , then for every ~b ∈ N and ~t ∈ Pδ(N) ∩ V ∩M (note that ωM1 = δ)
the following are equivalent.

(A1) (N |=δ aas ϕ(s,~t,~b))V .

(A2) (N |= aas ϕ(s,~t,~b))M .

Suppose first (A1). Let C be a club in V of sets s ∈ Pδ(N) satisfying (N |=δ

ϕ(s,~t,~b))V . By (4.4), C is stationary in V [G]. Suppose (A2) fails. Then by
Club Determinacy in M , there is a club K in M of countable s such that (N |=
¬ϕ(s,~t,~b))M . Since ωM ⊆ M , the set K is still club in V [G]. Let s ∈ K ∩ C.
Note that s ∈M . By Induction Hypothesis, (N |=δ ¬ϕ(s,~t,~b))V , a contradiction.

For the other direction: suppose (A2) i.e. in M there is a club D of countable
sets s such that (N |= ϕ(s,~t,~b))M . This D is still club in V [G]. Suppose that
(A1) fails. Hence the set S of s ∈ Pδ(N) in V that satisfy (N |=δ ¬ϕ(s,~t,~b))V

is stationary in V . By (4.9) it is stationary in V [G]. Let s ∈ D ∩ S. Now s ∈
Pδ(N) ∩ V ∩M , so we have a contradiction with the Induction Hypothesis.

Theorem 5.3. Suppose there are a proper class of Woodin cardinals. Then the
first order theory of C(aa) is (set) forcing absolute.

Proof. Suppose P is a forcing notion and δ be a Woodin cardinal > |P|. Let
j : V → M be the associated elementary embedding. By Proposition 5.2 we can
argue

C(aa) ≡ (C(aa))M = C(aaδ).

On the other hand, let H ⊆ P be generic over V . Then δ is still Woodin in
V [H], so we have the associated elementary embedding j′ : V [H] → M ′. By
Proposition 5.2 we can again argue

(C(aa))V [H] ≡ (C(aa))M
′
= (C(aaδ))

V [H].

Using the fact that |P| < δ and that both C(aaδ)V and C(aaδ)V [H] satisfy club
determinacy one can show by induction on α that

(J∗α)V = (J∗α)V [H].
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It follows that
(C(aaδ))

V [H] = C(aaδ)
V .

Hence
(C(aa))V [H] ≡ C(aa).

5.3 The Continuum Hypothesis
The fact (Theorem 5.3) that under large cardinal hypotheses the theory of C(aa)
is forcing absolute, strongly suggest that we should be able to determine the truth
value of the Continuum Hypothesis in C(aa). Indeed, in this section we use Club
Determinacy to prove the Continuum Hypothesis in C(aa) (Theorem 5.31 below).
The proof uses the auxiliary concepts of an aa-mouse and an aa-ultrapower, which
have hopefully also other uses in the study of C(aa). For example we use them
below to prove also 3 in C(aa). Our method yields 2κ = κ+ for κ ≤ ωV1 in
C(aa). (Recall that ωV1 is a measurable cardinal in C(aa).) Our method seems to
yield also full GCH in C(aa)10. Our previous paper [7] gives the consistency of
the failure of CH in C∗ relative to the consistency of ZFC. This result extends to
C(aa) (see Theorem 3.6 above).

Convention: In the rest of this Section we assume Club Determinacy.

5.3.1 aa-premice

Our proof uses a new inner model concept which we call aa-premouse. Roughly
speaking, an aa-premouse is a pair (M,T ∗), where M is a model and T ∗ is an
L(aa)-theory. Intuitively, but not in reality, T ∗ is theL(aa)-theory ofM . HereM
can very well by countable. In countable domains the aa-quantifier is eliminable,
so in general we do not assume M to be a model of T ∗. Rather, M is a model
that has potential to become a model of T ∗. We fulfil this potential by building an
ωV1 -chain of elementary extensions of M with the idea that in the limit the theory
T ∗ is really true. For this purpose we define an ultrapower construction—called
the aa-ultrapower—for aa-premice. It allows us to iterate a well-chosen countable
aa-premouse (iterable aa-premice are called aa-mice) to a big uncountable aa-
premouse (Mω1 , T

∗
ω1

) where T ∗ω1
is an L(aa)-theory that is actually true in Mω1 .

10See footnote 14.
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We use the concepts of aa-premouse and aa-ultrapower to prove CH in C(aa).
The proof is reminiscent of Silver’s proof of GCH in Lµ [14]. Since we assume
Club Determinacy, ωV1 is actually a measurable cardinal in C(aa). Thus from
the point of view of C(aa) we start with a countable premouse and iterate it a
measurable cardinal times.

We fix the following notation: τξ = {R∈,RT ,RT ∗} ∪ {Pη : η < ξ}, τ−ξ =
τξ \ {RT ∗}. Here R∈ and RT are binary and RT ∗ ,Pη (η < ξ), are unary. We use
(P )ξ to denote a sequence 〈Pη : η < ξ〉.

Definition 5.4. An aa-premouse is a structure

JT
α = (JTα ,∈, T, T ∗, (P )ξ)

in the vocabulary τξ such that

(1) T ⊆ α× L(aa)× JTα , and for all11 β < α, the set

Tβ = {ϕ(~a) : (β, ϕ(~a)) ∈ T,~a ∈ JTβ }

is a complete consistent L(aa)-theory in the vocabulary τ−0 extending the
first order theory of (JTβ ,∈, T �β), where we allow constants ca for a ∈ JTβ .

(2) T ∗ is a complete consistent L(aa)-theory in the vocabulary τ−ξ extending
the first order theory of (JTα ,∈, T, (P )ξ) with constants ca for a ∈ JTα .

(3) 〈Pη : η < ξ〉 is a continuously increasing sequence of subsets of JTα and
aas ∀x(Pη(x)→ x ∈ s) ∈ T ∗, if η < ξ.

(4) If ∃xϕ(x,~a) ∈ T ∗, then there is b ∈ JTα such that ϕ(cb,~a) ∈ T ∗, whenever
ϕ(~x) is an L(aa)-formula in the vocabulary τ−ξ and ~a ∈ JTα .

(5) The sentence

aa~s∃xϕ(x,~s,~a)→ aa~s∃x(ϕ(x,~s,~a) ∧ ∀y ≺ x¬ϕ(y, ~s,~a))

is in T ∗, whenever ϕ(x,~s, ~y) is an L(aa)-formula in the vocabulary τ−ξ and
~a ∈ JTα . (For the definition of ≺, see Lemma 3.2.)

11To simplify notation we use ~a to denote ca1 , . . . , can .
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(6) The Club Determinacy schema

aa~t(aas ϕ(~a, s,~t ) ∨ aas ¬ϕ(~a, s,~t )), (20)

where ϕ(~a, s,~t) is in L(aa) in the vocabulary τ−ξ and ~a ∈ J ′α, is contained
in T ∗.

(7) The sentences aas ∃x¬x ∈ s and aas(ω ⊆ s) are in T ∗.

(8) If β ∈ α ∩ Lim, ϕ(~y) is an L(aa)-formula in the vocabulary τ−0 , ~b ∈ JT
β ,

and ϕ(~b) ∈ Tβ , then ϕ(~b)(JTβ ) ∈ T ∗.

(9) If ϕ(s, x, ~y) is an L(aa)-formula in the vocabulary τ−ξ and ~a ∈ JTα such that
aas ∃xϕ(s, x,~a) ∈ T ∗, then aas ∃xϕ(s, x,~a) → aas ϕ(s, fϕ(s,x,~a)(s),~a)
is in T ∗. Here we use the term fϕ(s,x,~a)(s) to denote the ≺-minimal x intu-
itively satisfying ϕ(s, x,~a), i.e. we work in a conservative extension of T ∗,
denoted also T ∗, which contains:

aas ∃xϕ(s, x,~a)→ aas(ϕ(s, fϕ(s,x,~a)(s),~a)∧

∀z(z ≺ fϕ(s,x,~a)(s)→ ¬ϕ(s, z,~a))).

Condition 5 simply says that if we can find, for a club of s, an x such that
ϕ(s, x, ~y), then for a club of swe can find a≺-minimal x such that ϕ(s, x, ~y). This
assumption allows us to have, in a sense, definable Skolem-functions. Conditions
(8)-(9) establish important coherence between the predicates T and T ∗.

Lemma 5.5. If (JTα ,∈, T, T ∗, (P )ξ) is an aa-premouse and β ∈ α ∩ Lim, then

(JTβ ,∈, T ∩ JTβ , T ∗ ∩ JTβ , (P ∩ JTβ )ξ)

is an aa-premouse and JT
β = J

T∩JTβ
β .

In harmony with Lemma 4.2 we now prove that Club Determinacy holds in an
aa-premouse also for nested aa-quantifiers:

Lemma 5.6. aa~t(aa~sϕ(~a,~s,~t ) ∨ aa~s¬ϕ(~a,~s,~t )) ∈ T ∗, where ϕ(~a,~s,~t ) is in
L(aa) in the vocabulary τ−ξ .
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Proof. We use induction on the length n of ~s. For n = 1 the claim is true by defini-
tion. Let us then assume the claim for n and prove it for n+1. Let ψ be the formula
aas2 . . .aasn+1 ϕ. By Club Determinacy of T ∗, aa~t(aas1 ψ ∨ aas1 ¬ψ) ∈ T ∗.
By Induction Hypothesis, aa~taas1(¬ψ ↔ aas2 . . .aasn+1 ¬ϕ) ∈ T ∗. Hence
aa~t(aas1 ψ ∨ aas1 . . .aasn+1 ¬ϕ) ∈ T ∗, as desired.

Definition 5.7. Suppose JT
α = (JTα ,∈, T, T ∗, (P )ξ) is an aa-premouse and JS

β =
(JSβ ,∈, S, S∗, (P ′)ξ′) is an aa-premouse with ξ ≤ ξ′ and α ≤ β. A mapping
π : JTα → JSβ is called a weak elementary embedding of JT

α into JS
β , in symbols

π : JT
α → JS

β ,

if π is a first order elementary embedding

(JTα ,∈, T, (P )ξ)→ (JSβ ,∈, S, (P ′)ξ′)�τ−ξ

and for all ϕ(~x) ∈ L(aa) in the vocabulary τ−ξ and all ~a ∈ JTα ,

ϕ(~a) ∈ T ∗ ⇐⇒ ϕ(π(~a)) ∈ S∗.

Example 5.8. The canonical example of an aa-premouse is

N = (J ′α,∈,Tr�α,Trα, (P )0),

where Tr and Trα are as in Definition 3.1 and (P )0 is the empty sequence. Note
that N ∈ C(aa). We obtain other examples of aa-premice by taking elementary
substructures of N . Since N ∈ C(aa), we can take such also inside C(aa).

5.3.2 The aa-ultrapower

We define now what we call the aa-ultrapower (M,E, S, S∗) of an aa-premouse
JT
α . We do not use an ultrafilter for the construction, but rather the family F

of L(aa)-definable sets which contain (in V ) a club of countable subsets of JTα .
Since we assume Club Determinacy, this family behaves sufficiently like an ultra-
filter. Thus, intuitively we define

M =def (JT
α )Pω1 (JTα )/F ,

where Pω1(JTα ) is computed in V . However, in the end, we cannot define M in
this way, at least if we want to build M inside C(aa). We certainly cannot count
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on Pω1(JTα ) being in C(aa), even though JTα ∈ C(aa), and even though we can
define sets in C(aa) by reference to clubs in Pω1(JTα ).

In order to prove CH in C(aa), we want to build the ultrapower M in C(aa)
and therefore we modify the usual ultraproduct construction in a special way.
Instead of defining M as the set of equivalence classes of definable functions
f : Pω1(JTα ) → JTα , we define M as the set of equivalence classes of L(aa)-
formulas ϕ(s, x) that define functions f : Pω1(JTα )→ JTα .

Let us now go into the details.

Definition 5.9. Suppose (JTα ,∈, T, T ∗, (P )ξ) is an aa-premouse.

1. Let M ′ be the set of all ϕ(s, x,~a) in L(aa) in the vocabulary τ−ξ , where
~a ∈ JTα and aas ∃xϕ(s, x,~a) ∈ T ∗.

2. Define in M ′:

ϕ(s, x,~a) ∼ ϕ′(s, x,~a′) ⇐⇒ aas(fϕ(s,x,~a)(s) = fϕ′(s,x,~a′)(s)) ∈ T ∗.

Note that ∼ is an equivalence relation in M ′. Moreover, if (1) R ∈ τ−ξ , (2) the
sentence aas R(fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) is in T ∗, and (3) ϕi(s, x,~ai) ∼
ϕ′i(s, x,~a

′
i) for i = 1, . . . , n, then we may easily conclude that

aas R(fϕ′1(s,x,~a′1)(s), . . . , fϕ′n(s,x,~a′n)(s))

is in T ∗.

Definition 5.10 (aa-ultrapower). The aa-ultrapower of an aa-premouse

(JTα ,∈, T, T ∗, (P )ξ),

denoted Ult(JTα ,∈, T, T ∗, (P )ξ), is the τξ+1-structure

M = (M,E, S, S∗, (P ′)ξ+1),

where

1. M is the set of equivalence classes [ϕ(s, x,~a)] of ∼ on M ′.

2. [ϕ1(s, x,~a1)]E[ϕ2(s, x,~a2)] iff aas R∈(fϕ1(s,x,~a1)(s), fϕ2(s,x,~a2)(s)) ∈ T ∗.

3. ([ϕ1(s, x,~a1)], [ϕ2(s, x,~a2)]) ∈ S iff aas RT (fϕ1(s,x,~a1)(s), fϕ2(s,x,~a2)(s)) ∈
T ∗.
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4. S∗ consists of ψ(Pξ, [ϕ1(s, x,~a)], . . . , [ϕn(s, x,~a)]), where ψ(s, x1, . . . , xn)
is a τ−ξ -formula of L(aa) such that

aas ψ(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ∈ T ∗.

5. [ϕ(s, x,~a)] ∈ P ′η iff aas Pη(fϕ(s,x,~a)(s)) ∈ T ∗, for η < ξ.

6. P ′ξ = {j(a) : a ∈ JTα }, where j : JTα → M is the canonical embedding
j(a) = [x = a].

Note that Ult(JTα ,∈, T, T ∗, (P )ξ)) has one unary predicate more in its vocab-
ulary than (JTα ,∈,T, T ∗, (P )ξ) itself, namely Pξ. Thus the aa-ultrapower extends
the model but also expands the vocabulary. These new unary predicates play a
crucial role when we apply aa-ultrapowers.

We will show that Ult(JTα ,∈, T, T ∗, (P )ξ)), if well-founded, is an aa-premouse.
To that end we need a sequence of lemmas.

Lemma 5.11. S∗ is a complete and consistent L(aa)-theory in the vocabulary
τ−ξ+1 with constants ca for a ∈M .

Proof. As to consistency, suppose ψi(Pξ, [ϕ1(t, x,~a)], . . . , [ϕn(t, x,~a)]), where
i = 1, . . . ,m, is a finite set of sentences in S∗ such that

m∧
i=1

ψi(Pξ, , [ϕ1(s, x,~a)], . . . , [ϕn(s, x,~a)]) ` ⊥. (21)

By the definition of S∗, for i = 1, . . . ,m

m∧
i=1

aas ψi(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ∈ T ∗,

whence

aas
m∧
i=1

ψi(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ∈ T ∗.

It can be shown by induction on L(aa)-proofs that (21) implies

aa s
m∧
i=1

ψi(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ` aas⊥,

whence aas⊥ ∈ T ∗, contrary to the consistency of T ∗.
Completeness follows from Club Determinacy.

31



Lemma 5.12. aas ∀x(Pξ(x)→ s(x)) ∈ S∗ i.e. Pξ is “countable” in the sense of
S∗.

Proof. Clearly, aat aas ∀x(t(x) → s(x)) ∈ T ∗. Hence by Definition 5.10, we
have aas ∀x(Pξ(x)→ s(x)) ∈ S∗.

We prove an analogue of Łoś Lemma first for first order formulas only. In
fact, we do not have proper control of truth of formulas of stationary logic in the
potentially countable model M .

Lemma 5.13 (Łoś Lemma for first order formulas). Suppose (JTα ,∈, T, T ∗, (P )ξ)
is an aa-premouse and

M = Ult(JTα ,∈, T, T ∗, (P )ξ) = (M,E, S, S∗, (P ′)ξ+1).

The following are equivalent for first order formulas ϕ(s, x1, . . . , xn) in the vo-
cabulary τ−ξ+1:

(1) M |= ϕ(Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)]).

(2) aas ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗

Proof. This is proved by induction on ϕ(s, x1, . . . , xn). The case of the atomic
formula Pξ(x) follows from Definition 5.10 (6) and axiom (A2). As the formula
ϕ(s, x1, . . . , xn) is first order, the only other case that requires a proof is the case of
the existential quantifier. Assume ϕ(s, x1, . . . , xn) is ∃yψ(y, s, x1, . . . , xn). Then:

M |= ϕ(Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)])⇒
M |= ∃yψ(y,Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)])⇒
M |= ψ([θ(s, x,~b)],Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)]) for some θ(s, x,~b)⇒
aas ψ(fθ(s,x,~b)(s), s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗ for some θ(s, x,~b)⇒
aas ∃yψ(y, s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗ ⇒
aas ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(~s)) ∈ T ∗

and, on the other hand, letting θ(s, y,~a1, . . . ,~an) be the formula

ψ(y, s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)),

we obtain
aas ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗ ⇒
aas ∃yψ(y, s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗ ⇒
aas ψ(fθ(s,y,~a1,...,~an)(s), s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗ ⇒
M |= ψ([θ(s, y,~a1, . . . ,~an],Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)])⇒
M |= ∃yψ(y,Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)])⇒
M |= ϕ(Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)])
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We can now show that the canonical embedding is a first order elementary
embedding:

Lemma 5.14. If ϕ is a first order formula in τ−0 , then the following conditions are
equivalent:

(1) JT
α |= ϕ(~a).

(2) M |= ϕ(j(~a)).

Proof. If (1) holds, then ϕ(~a) ∈ T ∗, whence aas ϕ(~a) ∈ T ∗, and further M |=
ϕ(j(~a)) by Lemma 5.13. If (1) fails, then ¬ϕ(~a) ∈ T ∗, whence aas ¬ϕ(~a) ∈ T ∗,
and further M 6|= ϕ(i(~a)), by the consistency of T ∗.

Lemma 5.15. j[Pη] = P ′η for any predicate Pη ∈ τ−ξ .

Proof. The inclusion j[Pη] ⊆ P ′η is trivial. The opposite direction follows from
Axiom (A5) and Definition 5.4 (3).

It is a consequence of the above Lemma that the following are equivalent for
first order formulas ϕ(x1, . . . , xn) in the vocabulary τ−0 :

(1) ϕ(~a) ∈ Tβ .

(2) ϕ(j(~a)) ∈ Sj(β).

Now we prove an analogue of Łoś Lemma for L(aa). Unlike in Lemma 5.13
we do not talk about truth in the aa-ultrapower but only about membership in the
theories T ∗ and S∗.

Lemma 5.16 (Łoś Lemma for L(aa)). Suppose (JTα ,∈, T, T ∗, (P )ξ) is an aa-
premouse and

(M,E, S, S∗, (P ′)ξ+1) = Ult(JTα ,∈, T, T ∗, (P )ξ).

The following are equivalent for L(aa)-formulas ϕ(Pξ, x1, . . . , xn) in the vocab-
ulary τ−ξ+1:

(1) ϕ(Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)]) ∈ S∗.

(2) aas ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗.
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Proof. The implication (2)→(1) is built into the definition of S∗. If (2) fails, then
¬aas ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗, by the completeness of T ∗ in
the vocabulary τ−ξ . By Club Determinacy of T ∗,

aas ¬ϕ(s, fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗,

whence ¬ϕ(Pξ, [ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)]) ∈ S∗. Now (1) fails because of
the consistency of S∗ (Lemma 5.11).

It is a consequence of the above Lemma that the following are equivalent for
L(aa)-formulas ϕ(x1, . . . , xn) in the vocabulary τ−ξ :

(1) ϕ([ϕ1(s, x,~a1)], . . . , [ϕn(s, x,~an)]) ∈ S∗.

(2) aas ϕ(fϕ1(s,x,~a1)(s), . . . , fϕn(s,x,~an)(s)) ∈ T ∗.

In particular, ϕ(~a) ∈ T ∗ iff ϕ(j(~a)) ∈ S∗ forL(aa)-sentences ϕ in the vocabulary
τ−ξ .

Lemma 5.17. The aa-ultrapower (M,E, S, S∗, (P ′)ξ+1), if well-founded, col-
lapses to an aa-premouse (J T̄β ,∈, T̄ , T̄ ∗, (P̄ )ξ+1) with vocabulary τξ+1. The canon-
ical mapping j, composed with the collapse function π : (M,E) → (J T̄β ,∈), is a
weak elementary embedding12

i : (JTα ,∈, T, T ∗, (P )ξ)→ (J T̄β ,∈, T̄ , T̄ ∗, (P̄ )ξ+1).

Proof. It follows from Lemma 5.14, that the aa-ultrapower (M,E, S, S∗, (P ′)ξ+1),
if well-founded, collapses to a structure of the type (J T̄β ,∈, T̄ , T̄ ∗, (P̄ )ξ+1) with
vocabulary τξ+1. We only have to show that the conditions of Definition 5.4 are
satisfied by this structure.

(1) It follows from Lemma 5.14 and an argument similar to the proof of
Lemma 5.11, that T̄ ⊆ β × L(aa), and for all γ ∈ β ∩ Lim, the set T̄γ =
{ϕ(~a) : (γ, ϕ(~a)) ∈ T̄ , and ~a ∈ J T̄γ } is a complete consistent L(aa)-theory in the
vocabulary τ−0 extending the first order theory of (J T̄γ ,∈, T̄ �γ), where we allow
constants ca for a ∈ J T̄γ .

(2) The completeness and consistency of S∗ was already proved in Lemma 5.11.
By Lemma 5.13, S∗ extends the first order theory of (J T̄β ,∈, T̄ , (P̄ )ξ+1).

(3) By Lemma 5.15 the sequence (P ′)ξ is continuously increasing. Moreover,
Definition 5.4 (3) implies P ′η ⊆ P ′ξ for all η < ξ.

12In the sense of Definition 5.7.
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(4) We show, that if ∃xϕ(x,Pξ, π(~a)) ∈ T̄ ∗, where ~a ∈ M , then there is
b ∈M such that ϕ(π(b),Pξ, π(~a)) ∈ T̄ ∗. Assume ~a has length one, for simplicity.
Accordingly, suppose ∃xϕ(x,Pξ, π([ψ(s, x,~c)])) ∈ T̄ ∗ for some ψ(s, x,~c) with
~c ∈ J ′α and aas ∃xψ(s, x,~c) ∈ T ∗. This implies ∃xϕ(x,Pξ, [ψ(s, x,~c)]) ∈ S∗.
Hence aas ∃xϕ(x, s, fψ(s,x,~c)(s)) ∈ T ∗. Therefore

aas ϕ(fϕ(x,s,fψ(s,x,~c)(s))(s), s, fψ(s,x,~c)(s)) ∈ T ∗.

Hence
ϕ([ϕ(x, s, fψ(s,x,~c)(s))],Pξ, [ψ(s, x,~c)]) ∈ S∗.

We let b = [ϕ(x, s, fψ(s,x,~c)(s))] and the claim is proved.
(5) If

aa~s∃xϕ(Pξ, x, ~s, π(~a))→
aa~s∃x(ϕ(Pξ, x, ~s, π(~a)) ∧ ∀y ≺ x¬ϕ(Pξ, y, ~s, π(~a)))

is not in T̄ ∗, then aa~s∃xϕ(Pξ, x, ~s, π(~a)) ∈ T̄ ∗ and

¬aa~s∃x(ϕ(Pξ, x, ~s, π(~a)) ∧ ∀y ≺ x¬ϕ(Pξ, y, ~s, π(~a)))

is in T̄ ∗. Hence aa taa~s∃xϕ(t, x, ~s,~a) ∈ T ∗ and

aa t¬aa~s∃x(ϕ(t, x, ~s,~a) ∧ ∀y ≺ x¬ϕ(t, y, ~s,~a)) ∈ T ∗.

By Club Determinacy of T ∗,

aa taa~s¬∃x(ϕ(t, x, ~s,~a) ∧ ∀y ≺ x¬ϕ(t, y, ~s,~a)) ∈ T ∗,

a contradiction with the assumption that T ∗ satisfies condition (5) of Definition 5.4.
(6) We show that the Club Determinacy schema (20) is contained in T̄ ∗. Sup-

pose ψ(Pξ, x1, . . . , xn) is an L(aa)-formula in the vocabulary τ−ξ and

[ϕ1(u, x,~a)], . . . , [ϕn(u, x,~a)] ∈M.

By the Club Determinacy of T ∗

aauaa~t(aas ψ(u,~t, fϕ1(u,x,~a)(u), . . . , fϕn(u,x,~a)(u))∨
aas ¬ψ(u,~t, fϕ1(u,x,~a)(u), . . . , fϕn(u,x,~a)(u))) ∈ T ∗.

Hence,

aa~t(aas ψ(Pξ,~t, [ϕ1(u, x,~a)], . . . , [ϕn(u, x,~a)])∨
aas ¬ψ(Pξ,~t, [ϕ1(u, x,~a)], . . . , [ϕn(u, x,~a)])) ∈ S∗.
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(7) It is a consequence of Lemma 5.16 and {aas ∃x¬x,aas(ω ⊆ s)} ⊆ T ∗,
that aas ∃x¬x ∈ s and aas(ω ⊆ s) are in T̄ ∗.

(8) This condition can be expressed, in view of Definition 5.4 (4) as the mem-
bership of a universal sentence in T ∗. The vocabulary of this sentence is τ−0 , and
so it is also an element of S∗.

(9) This is obvious.
Finally, j is weak elementary by Lemma 5.13 and because

ϕ(a1, . . . , an) ∈ T ∗ ⇐⇒ aas ϕ(fx=a1(s), . . . , fx=an(s)) ∈ T ∗

⇐⇒ ϕ([x = a1], . . . , [x = an]) ∈ S∗ ⇐⇒ ϕ(j(a1), . . . , j(an)) ∈ S∗.

Lemma 5.18. j[JTα ] 6= M .

Proof. We consider [¬x ∈ s] ∈ M . Suppose [¬x ∈ s] = i(a) for some a ∈
JTα , i.e. [¬x ∈ s] = [x = a]. Then aas(f¬x∈s(s) = fx=a(s)) ∈ T , whence
aas(a 6∈ s) ∈ T . But by Axiom (A2) of stationary logic aas(a ∈ s) ∈ T , a
contradiction.

Lemma 5.19. If there is γ < α such that ¬aas(γ ⊆ s) ∈ T ∗ and γ is the least
such, then γ is the critical point of j.

Proof. Suppose α < γ. If [ϕ(s, x,~a)] < j(α), then Axiom A5 (Fodor’s Lemma)
implies that there is δ < γ such that [ϕ(s, x,~a)] = δ. Hence i(α) = α. On the
other hand [x ∈ γ ∧ x /∈ s] demonstrates that i(γ) > γ.

We shall now prove an important Lemma which, among other things, shows
that for the kind of aa-premice that we are mainly interested in, namely those
arising from Example 5.8, the aa-ultrapower of a well-founded aa-premouse is
well-founded.

Definition 5.20. A τξ-structure (J ′β,∈,Tr�β,Tr′, (P )ξ) is called aa-like with re-
spect to (w.r.t.) M , M ⊆ J ′β , if Tr′ is a complete consistent L(aa)-theory in the
vocabulary τ−ξ with parameters from J ′β , Tr′ � τ−0 = Trβ and

ϕ(Pγ1 , . . .Pγn ,~a) ∈ Tr′ ⇒ (J ′β,∈,Tr�β, (P )ξ) |= aas ϕ(Pγ1 , . . .Pγn−1 , s,~a)

for all sentencesϕ(Pγ1 , . . .Pγn ,~a) ∈ L(aa) in the vocabulary τ−0 ∪{Pγ1 , . . . ,Pγn},
where γ1 < . . . < γn < ξ, and for all ~a ∈M .
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Lemma 5.21. Suppose (JTα ,∈, T, T ∗, (P )ξ) is a countable aa-premouse and

π : (JTα ,∈, T, T ∗, (P )ξ)→ N = (J ′β,∈,Tr�β,Tr′, (P ′)ξ) (22)

is a weak elementary embedding such that N is aa-like w.r.t. rng(π). There are
P ′ξ ⊆ J ′β and a weak elementary

π∗ : Ult(JTα ,∈, T, T ∗, (P )ξ)→ N̄ = (J ′β,∈,Tr�β,Tr′′, (P ′)ξ+1)

such that π∗(i(a)) = π(a) for all a ∈ JTα , and N̄ is aa-like w.r.t. rng(π∗).

Proof. Suppose [ϕ(s, x,~a)] ∈ M . Then aas ∃xϕ(s, x,~a) ∈ T ∗, whence we have
aas ∃xϕ(s, x, π(~a)) ∈ Tr′ and hence by aa-likeness, N |= aas ∃xϕ(s, x, π(~a)).
LetC~a,ϕ be a club of countable subsets s of J ′β such thatN |= ∃xϕ(s, x, π(~a)). Let
Q be the intersection of the countably many C~a,ϕ where ~a ∈ JTα , ϕ ∈ L(aa), and
aas ∃xϕ(s, x, π(~a)) ∈ Tr′. Let us fix s∗ ∈ Q. Note that s∗ need not be in C(aa).
Now for all ~a ∈ JTα and ϕ ∈ L(aa) such that aas ∃xϕ(s, x, π(~a)) ∈ Tr′ there is
a ≺-least z~a,ϕ ∈ N such that N |= ϕ(s∗, z~a,ϕ, π(~a)), i.e. fϕ(s,x,π(~a))(s

∗) = z~a,ϕ.
We let π∗([ϕ(s, x,~a)]) = z~a,ϕ and P ′ξ = s∗. Obviously, π∗(j(a)) = π(a) for all
a ∈ JTα . Let Tr′′ be a complete extension of Tr′ together with the τ−ξ+1-sentences

ψ(Pξ, π
∗([ϕ1(s, x,~a)]), . . . , π∗([ϕm(s, x,~a)]))

such that
aas ψ(s, fϕ1(s,x,π(~a))(s), . . . , fϕn(s,x,π(~a))(s)) ∈ Tr′.

Clearly now N̄ is aa-like w.r.t. rng(π∗).
Now we prove that π∗ is elementary. Because of Club Determinacy of T ∗ it

suffices to prove one direction. Suppose

(M,E, S, (P )ξ+1) |= ψ(Pξ, [ϕ1(s, x,~a)], . . . , [ϕm(s, x,~a)]),

where ψ(s, x1, . . . , xm) is a first order τ−ξ -formula. By Lemma 5.13

aas ψ(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ∈ T ∗,

whence by (22)

aas ψ(s, fϕ1(s,x,π(~a))(s), . . . , fϕn(s,x,π(~a))(s)) ∈ Tr′.

Hence

ψ(Pξ, π
∗([ϕ1(s, x, π(~a))]), . . . , π∗([ϕm(s, x, π(~a))])) ∈ Tr′′.
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Suppose next ψ(Pξ, ~x) ∈ L(aa) in the vocabulary τ−ξ+1 and

ψ(Pξ, [ϕ1(s, x,~a)], . . . , [ϕm(s, x,~a)]) ∈ S∗.

By the definition of S∗ in Definition 5.10, condition 4,

aas ψ(s, fϕ1(s,x,~a)(s), . . . , fϕn(s,x,~a)(s)) ∈ T ∗,

whence by (22)

aas ψ(s, fϕ1(s,x,π(~a))(s), . . . , fϕn(s,x,π(~a))(s)) ∈ Tr′.

Hence

ψ(Pξ, π
∗([ϕ1(s, x, π(~a))]), . . . , π∗([ϕm(s, x, π(~a))])) ∈ Tr′′.

We can iterate the aa-ultrapower construction and this will be henceforth our
main tool:

Definition 5.22. We define a directed system

〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jα,β : α < β ≤ ω1〉 (23)

of structures,13 called an aa-iteration starting from (M0,∈, T0, T
∗
0 , (P

0)0), as fol-
lows:

(1) The vocabulary of the structure (Mβ, Eβ, Tβ, T
∗
β , (P

β)β) is τβ .

(2) We have a commuting system of weak elementary embeddings

jαβ : (Mα, Eα, Tα, T
∗
α, (P

α)α)→ (Mβ, Eβ, Tβ, T
∗
β , (P

β)β)�τα.

(3) (M0,∈, T0, T
∗
0 , (P

0)0) is a countable aa-premouse with vocabulary τ0.

(4) At successor stages we let

(Mα+1, Eα+1, Tα+1, T
∗
α+1, (P

α+1)α+1) = Ult(Mα, Eα, Tα, T
∗
α, (P

α)α).

The mapping jα,α+1 is the canonical elementary mapping of an aa-premouse
into its aa-ultrapower.

13Each structure (Mβ , Eβ) will be shown to be well-founded, when we actually use this con-
struction, so then these structures are aa-premice, up to isomorphism.
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(5) At limit stages (Mα, Eα, Tα, T
∗
α, (P

α)α) is the direct limit of the directed sys-
tem

〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jγ,β : γ < β < α, γ, β〉,

i.e. (Mα, Eα, Tα, T
∗
α, (P

α)η) is the direct limit of

〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)η), jγ,β : η ≤ γ < β < α, γ〉,

for η < α.

Lemma 5.23. Suppose

〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jα,β : α < β ≤ ω1, α〉

is as in Definition 5.22. Let δ ≤ ω1, δ ∈ Lim. Suppose each of the mod-
els (Mβ, Eβ, Tβ, T

∗
β , (P

β)β), β < δ, is isomorphic to an aa-premouse. Then, if
well-founded, (Mδ, Eδ, Tδ, T

∗
δ , (P

δ)δ) collapses to an aa-premouse. The canoni-
cal mappings iν,δ are elementary embeddings

jν,δ : (Mν ,∈, Tν , T ∗ν , (P ν)ν)→ (Mδ, Eδ, Tδ, T
∗
δ , (P

δ)δ)�τν .

Proof. This is like the proof of Lemma 5.17.

We now extend the important Lemma 5.21 from single aa-ultrapowers to the
context of iterated aa-ultrapowers:

Lemma 5.24. Let N = (J ′ζ ,∈,Tr�ζ), where ζ is any limit ordinal. Let

〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jβ,γ : β ≤ γ ≤ ω1〉,

be an aa-iteration. Let δ be a limit ordinal ≤ ω1. Suppose for all β < δ there is a
weak elementary

σβ : (Mβ, Eβ, Tβ, T
∗
β , (P

β)β)→ Nβ,

where Nβ is an expansion of N , aa-like w.r.t.
⋃
γ<β rng(σγ), to a τβ-structure

such that Nβ = Nγ � τβ whenever β < γ ≤ δ. Then there is an expansion Nδ of
N to a τωδ-structure and an elementary

σδ : (Mδ, Eδ, Tδ, T
∗
δ , (P

δ)δ)→ Nδ

such that Nβ = Nδ � τβ and σβ(x) = σδ(jβ,δ(x)) for all x ∈ Mβ and all β ∈ δ.
Moreover, Nδ is aa-like w.r.t. rng(σδ).
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Proof. The condition Nβ = Nωδ � τβ for β ∈ ωδ determines a unique τωδ-
structure Nδ apart from the interpretation of P δ

δ . We let the interpretation of Pδ
δ

in Nδ to be the union of the interpretations of Pδ
β , β < δ, in Nδ. For defining

σδ, let a ∈ Mδ. There is β < δ such that a = jβ,δ(b) for some b ∈ Mβ . We let
σδ(a) = σβ(b). Basic properties of directed limits guarantee that this is a coherent
definition of a function and that the mapping σδ is an elementary embedding.

By combining Lemma 5.21 and Lemma 5.24 we can be sure that all structures
in the directed system of Definition 5.22 are well-founded and by Lemma 5.17
collapse to aa-premice.

Definition 5.25. We call the aa-premice (Mβ, Eβ, Tβ, T
∗
β , (P

β)β) iterates of the
aa-premouse (M0, E0, T0, T

∗
0 , (P )0). An aa-premouse (M0, E0, T0, T

∗
0 , (P )0) is

an aa-mouse if its β’th iterate (Mβ, Tβ, T
∗
β , (P

β)β) is well-founded for all β < ω1.
In this case we say that the aa-premouse (M0, E0, T0, T

∗
0 , (P )0) is iterable.

Note that if the iterates (Mα, Tα, T
∗
α, (P

α)α), α < ω1, are all well-founded,
then also the iterate (Mω1 , Tω1 , T

∗
ω1
, (P ω1)ω1) is well-founded.

Lemma 5.26. Suppose M0 is countable and

(M0, E0, T0, T
∗
0 , (P )0) 4 (J ′α,∈,Tr�α,Trα, (P

′)0).

Then each iterate (Mβ, Eβ, Tβ, T
∗
β , (P

β)β), β ≤ ω1, in the aa-iteration starting
from (M0, E0, T0, T

∗
0 , (P )0) is (isomorphic to) an aa-mouse.

Proof. We may use Lemmas 5.21 and 5.24 inductively to build

πβ : (Mβ, Eβ, Tβ, T
∗
β , (P

β)β)→ Nβ

for all β ≤ ω1, where each Nβ is an aa-like w.r.t.
⋃
γ<β rng(σγ) expansion of

(J ′α,∈,Tr�α), with the consequence that each (Mβ, Eβ) is well-founded.

Lemma 5.27. Let 〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jβ,γ : β ≤ γ ≤ ω1〉 be an aa-
iteration. Then the set C = {(Pα)Mω1 : α ∈ ω1} is a club in Pω1(Mω1).

Proof. By Lemmas 5.12 and 5.15, and since we take direct limits at limit stages,
the sequence (Pα)Mω1 , α < ω1, is continuously increasing. By Lemma 5.18 it is
properly increasing. Suppose now s is a countable subset of Mω1 . There are α <
ω1 and a countable s∗ ⊆Mα such that s = jαω1 [s∗]. Hence s ⊆ (Pα+1)Mω1 .
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We can now prove that the final model (Mω1 , Eω1 , Tω1 , T
∗
ω1
, (P ω1)ω1) of an

iteration of aa-premice actually satisfies in the usual sense everything that the
theory T ∗ω1

predicts:

Proposition 5.28. Let 〈(Mβ, Eβ, Tβ, T
∗
β , (P

β)β), jβ,γ : β ≤ γ ≤ ω1〉 be an aa-
iteration of aa-mice. Then for all formulas ϕ(~a) of stationary logic in vocabulary
τ−ω1

and all ~a ∈Mω1:

ϕ(~a) ∈ T ∗ω1
⇐⇒ (Mω1 , Eω1 , Tω1 , (P

ω1)ω1) |= ϕ(~a).

Proof. We prove the claim by induction on ϕ(~x). Let β be the least β such that
~a = jβ,ω1(~a∗) for some ~a∗ ⊆Mβ .

1. Atomic ϕ(~a). If ϕ(~a) ∈ T ∗ω1
, then ϕ(~a∗) ∈ T ∗β , whence (Mβ, Eβ, Tβ, (P

β)β) |=
ϕ(~a∗) and (Mω1 , Eω1 , Tω1 , (P

ω1)ω1) |= ϕ(~a) follows because jβ,ω1 is weakly ele-
mentary. The converse follows from the completeness of T ∗β .
2. Conjunction and negation: Trivial.
3. Existential quantifier: Suppose ∃xϕ(x,~a) ∈ T ∗ω1

i.e. ∃xϕ(x,~a∗) ∈ T ∗β . Then
by Definition 5.4 condition (4) there is b ∈ Mβ such that ϕ(b,~a∗) ∈ T ∗β , whence
ϕ(jβ,ω1(b),~a) ∈ T ∗ω1

. By the Induction Hypothesis (Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |=

ϕ(jβ,ω1(b),~a).Hence we have (Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |= ∃xϕ(x,~a).Conversely,

if (Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |= ∃xϕ(x,~a), then there is γ ≥ β and b ∈ Mγ such

that (Mγ, Eγ, Tγ, (P
γ)γ) |= ϕ(b, jβ,γ(~a

∗)). By Induction Hypothesis and the com-
pleteness of T ∗ω1

we have ∃xϕ(x,~a) ∈ T ∗ω1
.

4. aas ϕ(s,~a): W.l.o.g. ϕ(s,~a) is in vocabulary τ−β . Suppose first the sen-
tence aas ϕ(s,~a) is in T ∗ω1

. By weak elementarity of the mapping jβ,ω1 , we have
aas ϕ(~a∗) ∈ T ∗β , and, moreover, aas ϕ(s, jβ,γ(~a

∗)) ∈ T ∗γ for β ≤ γ < ω1. Since
the successor stages of the aa-iteration are aa-ultraproducts, ϕ(Pγ, jβ,γ+1(~a∗)) ∈
T ∗γ+1 for β ≤ γ < ω1. By Induction Hypothesis,

(Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |= ϕ(Pγ,~a)

whenever β ≤ γ < ω1. By Lemma 5.27,

(Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |= aas ϕ(s,~a).

Conversely, if aas ϕ(s,~a) /∈ T ∗β , then aas ¬ϕ(s,~a∗) ∈ T ∗β and we can argue as
above.
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5.3.3 The Continuum Hypothesis in C(aa)

We use the method of iterating the aa-ultrapower construction ω1 times to prove
the Continuum Hypothesis and 3 in C(aa). The proof is reminiscent of Silver’s
proof of GCH in Lµ [14].

To this end, let 〈((Mβ,∈, Tβ, T ∗β , (P β)β), jβ,γ) : β ≤ γ ≤ ω1〉 be as in Defini-
tion 5.22.

Lemma 5.29. Suppose

(M0,∈, T0, T
∗
0 , (P )0) ≺ (J ′ωα,∈,Tr�ωα,Trωα, (P

′)0),

where α is a limit ordinal andM0 is countable. ThenMω1 does not have new reals
over those in M0.

Proof. Suppose r is a real in Mω1 and not of the form j0,ω1(r∗) for any real
r∗ ∈ M0. Let ξ < ω1 such that r = jξ+1,ω1(r∗) for some r∗ ∈ Mξ+1 and no
such r∗ exists in Mξ. Then r∗ = [ϕ(s, x,~a)] for some ϕ(s, x, ~y) ∈ L(aa) in the
vocabulary τ−ξ+1 and some ~a ∈ Mξ such that aas ∃xϕ(s, x,~a) ∈ T ∗ξ . In par-
ticular, Mω1 |= aas ∃xϕ(s, x, jξ,ω1(~a)). Since Mω1 |= “[ϕ(s, x, jξ,ω1(~a))] ⊆
ω”, the sentence ∃x(x ⊆ ω ∧ ∀n(n ∈ [ϕ(s, x, jξ,ω1(~a))] ↔ n ∈ x)) is in
T ∗ω1

, whence aas ∃x(x ⊆ ω ∧ ∀n(n ∈ fϕ(s,x,~a)(s) ↔ n ∈ x)) is in T ∗ξ and
therefore aas ∃x(x ⊆ ω ∧ ∀n(n ∈ fϕ(s,x,σξ(~a))(s) ↔ n ∈ x)) is true in J ′ωα,
where σξ is as in Lemma 5.24. So there is a club of sets s such that J ′ωα |=
∃x(x ⊆ ω ∧ ∀n(n ∈ fϕ(s,x,σξ(~a))(s) ↔ n ∈ x)). Since J ′ωα has only count-
ably many reals (a consequence of Club Determinacy, see Theorem 5.1), this
club is divided into countably many parts according to the x ⊆ ω such that
J ′ωα |= ∀n(n ∈ fϕ(s,x,σξ(~a))(s) ↔ n ∈ x). One of those parts is stationary and
therefore, by Club Determinacy, contains a club. Hence ∃xaas(x ⊆ ω ∧ ∀n(n ∈
fϕ(s,x,~a)(s) ↔ n ∈ x)) is in T ∗ξ . Since (Mξ,∈, Tξ, T ∗ξ ) is an aa-mouse, there is
b ∈ Mξ such that aas(b ⊆ ω ∧ ∀n(n ∈ fϕ(s,x,~a)(s) ↔ n ∈ b)) is in T ∗ξ . Hence
aas(jξ,ω1(b) ⊆ ω ∧ ∀n(n ∈ fϕ(s,x,σξ(~a))(s) ↔ n ∈ jξ,ω1(b))) is true in J ′ωα, and
therefore r = jξ,ω1(b), a contradiction.

Let 〈πα : α ≤ ω1, α〉 be collapse functions such that

1. π0 = id : M0 = (JTα ,∈, T, T ∗, (P )0) = N0 = (JS0
ζ0
,∈, S0, S

∗
0 , (P̄ )0)

2. πα+1 : Mα+1 = Ult(Mα) ∼= Nα+1 = (J
Sα+1

ζα+1
,∈, Sα+1, S

∗
α+1, (P̄

α+1)α+1)

3. πν : Mν
∼= Nν = (JSνζν ,∈, Sν , S

∗
ν , (P̄

ν)ν), limit ν.

42



j01 j12 jξξ+1
M0 −→ M1 −→ M2 . . . −→ Mξ −→ Mξ+1 . . . Mω1

π0

y π1

y π2

y πξ
y πξ+1

y πω1

y
N0 −→ N1 −→ N2 . . . −→ Nξ −→ Nξ+1 . . . Nω1

i01 i12 iξξ+1

Figure 1: The iteration.

Let iα,β : Nα → Nβ be defined by iα,β(πα(a)) = πβ(jα,β(a)). We get the
commuting diagram of Figure 1.

Suppose β ∈ OnMγ . Let (J ′′β )Mγ the variant we obtain from J ′β when we
use Tγ in place of Tr in Definition 3.1. Recall that Mγ is well-founded, so β is
well-founded but may not be a real ordinal. Respectively, (J ′′β )Nγ .

Lemma 5.30. Suppose β ∈ Nω1 .

1. Tr �β = πω1(Tω1)�β.

2. J ′β = (J ′′β )Nω1 .

Proof. Both claims are proved by simultaneous induction on β. Suppose the
claims holds for β = πω1(β̄), β̄ ∈ Mω1 . Thus, J ′β = (J ′′β )Nω1 and Tr �β =
πω1(Tω1)�β. By definition,

J ′β+ω = rudTr(J
′
β ∪ {J ′β})

(J ′′β+ω)Nω1 = rudπω1 (Tω1 )(J
′
β ∪ {J ′β}).

We prove:
Tr �β + ω = πω1(Tω1)�β + ω.

Suppose to this end, (β, ϕ(~a)) ∈ πω1(Tω1). Let β̄ be such that β = πω1(β̄) and ā
such that ~a = πω1(~̄a). Let γ < ω1 be such that β̄ = jγω1(β∗), and ~̄a = jγω1(~a∗).
Thus (β∗, ϕ(~a∗)) ∈ Tγ . It follows that ϕ(J ′

β∗ )(~a∗) ∈ T ∗γ , whence ϕ(J ′
β̄

)
(~̄a) ∈ T ∗ω1

.
By Theorem 5.28,

(Mω1 , Eω1 , Tω1 , (P
ω1)ω1) |= ϕ

(J ′
β̄

)
(~̄a)

and therefore (Nω1 ,∈, πω1(Tω1)) |= ϕ(J ′β)(~a). Since J ′β = (J ′′β )Nω1 and Tr �β =
πω1(Tω1)�β, we obtain

(J ′β,∈,Tr �β) |= ϕ(~a)

i.e. (β, ϕ(~a)) ∈ Tr. The other direction is similar.
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jγω1

(Mγ, Eγ, Tγ, T
∗
γ ) −−−−−−→ (Mω1 , Eω1 , Tω1 , T

∗
ω1

)

⊂ ⊂

(J ′β∗)
Mγ −−−−−−→ (J ′

β̄
)Mω1

πγ
y yπω1

(J ′β)Nγ −−−−−−→ (J ′β)Nω1

⊂ ⊂

(Nγ,∈, πγ(Tγ), πγ(T ∗γ )) −−−−−−→ (Nω1 ,∈, πω1(Tω1), πω1(T ∗ω1
))

iγω1

Figure 2: The levels.

We are now ready to prove the main result of this section. Since we assume
Club Determinacy, there are only countably many reals in C(aa), but we show
that there are, in the sense of C(aa), only ℵC(aa)

1 many. Let ωaa1 denote the ω1 of
C(aa). The ordinal ℵaa1 is in our case a countable ordinal in the sense of V .

Theorem 5.31. CH holds in C(aa).

Proof. Suppose J ′α is a stage where a new real r of C(aa) is constructed, i.e.

r ∈ J ′α+ω \ J ′α, (24)

and α is uniquely determined from r by this equation. We show that J ′α ∩ 2ω is
countable in C(aa). It follows that C(aa)∩2ω has cardinality ℵ1 in C(aa). Hence
C(aa) |= CH.

We can collapse |α| to ℵ1 without changingC(aa) (Proposition 3.5) orC(aa)∩
2ω. Also Club Determinacy is preserved in this forcing, because the forcing is
countably closed. Therefore we can assume, w.l.o.g., that |α| = ℵV1 .

Let (M,∈, T, T ∗) ∈ C(aa) be countable in C(aa) such that

{r, α, J ′α, J ′α+ω} ⊆ (M,∈, T, T ∗) 4 (J ′ℵV2
,∈,Tr�ℵV2 ,TrℵV2 ). (25)

Let us use, as above, J ′′β for β ∈ M to denote J ′β constructed using Tω1 instead of
Tr. So now by (25),

r ∈ J ′′α+ω \ J ′′α. (26)
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The idea of the rest of the proof is the following. We iterate (M,∈, T, T ∗, (P )0),
P = ∅, inside C(aa) until we obtain (Mω1 ,∈, Tω1 , T

∗
ω1
, (P ω1)ω1). We have shown

in Lemma 5.30 that J ′′α = J ′α,whence J ′α∩2ω ⊆Mω1 . Lemma 5.29 impliesMω1∩
2ω ⊆ M. It will follow that J ′α ∩ 2ω is countable, as we wished to demonstrate.
By Lemma 5.29, no new reals are generated in the iteration. By Lemma 5.30
J ′β = (J ′′β )Nω1 . Now:

r = i0ω1(π0(r))

∈ i0ω1(π0(J ′′α+ω)) \ i0ω1(π0(J ′′α))

= (J ′i0ω1 (π0(α))+ω)Nω1 \ (J ′i0ω1 (π0(α)))
Nω1

= J ′i0ω1 (π0(α))+ω \ J ′i0ω1 (π0(α)).

By (24), i0ω1(π0(α)) = α ∈ Nω1 and further by Lemma 5.30, i0ω1(π0(J ′α)) =
J ′α. Thus all the reals of J ′α are in Nω1 and hence in M , and therefore they are
countably many only.

The above proof shows that C(aa) |= 2ℵα = ℵα+1 for all α ≤ ω1(= ωV1 ). For
α < ω1 the above proof works, and for α = ω1 the claim therefore follows from
the fact (Theorem 5.1) that ω1 is measurable in C(aa)14.

Theorem 5.32. There is a ∆1
3 well-ordering of the reals in C(aa).

Proof. We show that the canonical well-order ≺ of C(aa) is ∆1
3. The proof of

Theorem 5.31 essentially shows that for any reals x, y in C(aa):

x ≺ y ⇐⇒ ∃z ⊆ ω( z codes an aa-mouse M such that

x, y ∈M and M |= “x ≺ y”).

Being a real that codes a countable aa-mouse is Π1
2. Hence the right hand side of

the equivalence is Σ1
3 and the claim follows.

Corollary 5.33. There are no Woodin cardinals in C(aa)14.

Proof. The proof of Theorem 5.32 shows that, assuming Club Determinacy, there
is a ∆1

3-well-ordering of the reals, this well-ordering is in C(aa) and ∆1
3 in C(aa).

14Work in progress by a SQuaRE group shows that if Club Determinacy holds, C(aa) satisfies
full GCH and has no inner model with a Woodin cardinal.
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Suppose there is a Woodin cardinal in C(aa). There would be a measurable car-
dinal above it by Theorem 5.1. A measurable cardinal above a Woodin cardinal
implies Σ1

2-determinacy ([10]). On the other hand, Σ1
2-determinacy implies that

Σ1
3-sets of reals are Lebesgue measurable which contradicts the existence of a

Σ1
3-well-ordering of the reals.

Theorem 5.34. 3 holds in C(aa).

Proof. We define Sα for α < ωaa1 as follows: Let (C,X) be the ≺C(aa)-minimal
pair (C,X), where C ⊆ α is a club and X ∩ β 6= Sβ for β ∈ C. We then let
Sα = X . Suppose the set S = 〈Sα : α < ωaa1 〉 thus built is not a 3-sequence in
C(aa). Then there are X ⊆ ωaa1 and a club C ∈ C(aa) such that C ⊆ ωaa1 and
β ∈ C implies X ∩ β 6= Sβ . Let δ be minimal such that such a pair can be found
in J ′δ. W.l.o.g., δ < ℵV2 . Let (M,T ) ∈ C(aa) be countable (in C(aa)) such that

{S, δ, J ′δ,Tr�δ,Trδ, ω
aa
1 , C,X} ⊆ (M,∈, T, T ∗) � (J ′ℵV2

,∈,Tr�ℵ2,Trℵ2). (27)

We build models Mξ and Nξ as well as elementary mappings iαβ, jαβ and isomor-
phisms πα for α < β ∈ Nω1 with M0 = M as in the proof of Theorem 5.31, see
Figure 1. Let α = M ∩ ωaa1 , C̄ = C ∩ α and X̄ = X ∩ α. Clearly α ∈ C, as C
is club. Let δ∗ = i0ω1(π0(δ)). The ordinal δ∗ is the minimal δ∗ such that there is a
counterexample such as (C̄, X̄) in J ′δ∗ in Nω1 . The ordinal α is below the critical
point of i01, whence

i0ω1(〈Sβ : β < α〉) = 〈Sβ : β < α〉.

Therefore, according to our definition, Sα = X̄ , contradicting α ∈ C.

6 Variants of stationary logic
There are several variants of stationary logic. The earliest variant is based on the
following quantifier introduced in [13], a predecessor of the quantifier aa:

Definition 6.1. M |= QStxyzϕ(x,~a)ψ(y, z,~a) if and only if (M0, R0), where
M0 = {b ∈ M : M |= ϕ(b,~a)} and R0 = {(b, c) ∈ M : M |= ψ(b, c,~a)} is
an ℵ1-like linear order and the set I of initial segments of (M0, R0) with an R0-
supremum inM0 is stationary in the setD of all (countable) initial segments ofM0

in the following sense: If J ⊆ D is unbounded inD (i.e. ∀x ∈ D∃y ∈ J (x ⊆ y))
and σ-closed in D (i.e. if x0 ⊆ x1 ⊆ . . . in J , then

⋃
n xn ∈ J ), then J ∩ I 6= ∅.
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The logic L(QSt), a sublogic of L(aa), is recursively axiomatizable and ℵ0-
compact [13]. We call this logic Shelah’s stationary logic, and denote C(L(QSt))
by C(aa−)15. For example, we can say in the logic L(QSt) that a formula ϕ(x)
defines a stationary (in V ) subset of ω1 in a transitive model M containing ω1 as
an element as follows:

M |= ∀x(ϕ(x)→ x ∈ ω1) ∧QStxyzϕ(x)(ϕ(y) ∧ ϕ(z) ∧ y ∈ z).

Hence
C(aa−) ∩ Fω1 ∈ C(aa−),

where Fω1 is the club-filter on ω1, and in fact the set D = C(aa−) ∩ Fω1 suffices
to characterise C(aa−) completely: C(aa−) = L[D], as we shall prove in the
next Lemma. In particular, C(aa−) ⊆ C(aa).

Lemma 6.2. C(aa−) = L[D].

Proof. We already know L[D] ⊆ C(aa−). We prove the converse by induction
on the structure of C(aa−). This boils down to showing that we can recognize in
L[D] whether a subset M0 of an ℵ1-like linear order R0, both M0 and R0 in L[D],
satisfy QSt in the sense that the set of initial segments of R0 with supremum in
M0 is stationary in the set of all initial segments of R0. The model L[D] knows
a cofinal mapping π from an ordinal α into the domain of R0. Since R0 is ℵ1-
like, α = ωV1 . Now L[D] can use π and D to decide whether M0 and R0 satisfy
QSt.

Theorem 6.3. If there are two Woodin cardinals, then D = C(aa−) ∩ Fω1 is an
ultrafilter in C(aa−). In particular, C(aa−) |= GCH.

Proof. We know C(aa−) = L[Fω1 ]. We show that D = Fω1 ∩C(aa−) measures
every set in C(aa−). Let us assume the contrary. We take a minimal α such that
there is a (minimal) setB ⊆ ω1 in J ′α (the hierarchy generating C(aa−)) such that
B /∈ D and ωV1 \ B /∈ D. The logic L(aa−) satisfies a Downward Löwenheim
Skolem Tarski Theorem down to ℵ1 ([13]). Hence |α| ≤ ℵ1. As in the beginning
of the proof of Theorem 4.12, we can assume, w.l.o.g., that δ1

2 = ω2 and we have
still one Woodin cardinal δ left. Let G be Q<δ-generic and j : V → M ⊆ V [G]
the generic ultrapower embedding. Let j(α) = β. Now j(B) is a stationary
co-stationary subset of δ (= ωM1 ) in M . Moreover, β is the minimal ordinal for

15It should be noted that there is no difference between C(aa−) and Co(aa−).
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which there is such a set in J ′β in M , and j(B) is minimal such a set in L(aa−).
As in the proof of Theorem 4.12 we can now argue that j(B) ∈ V . We get a
contradiction by taking two different generic sets for Q<δ, one containing B and
the other containing ω1 \B.

Proposition 6.4. If 0# exists, then 0# ∈ C(aa−).

Proof. Assume 0]. A first order formula ϕ(x1, . . . , xn) holds in L for an increas-
ing sequence of indiscernibles below ωV1 if and only if there is a club C of ordi-
nals < ωV1 such that every increasing sequence a1 < . . . < an from C satisfies
ϕ(a1, . . . , an) in L. Similarly, ϕ(x1, . . . , xn) does not hold in L for an increas-
ing sequence of indiscernibles below ωV1 if and only if there is a club of ordi-
nals a1 < ω1 such that there ia a club of ordinals a2 with a1 < a2 < ω1 such
that . . . such that there is a club of ordinals an with an−1 < an < ω1 satisfying
¬ϕ(a1, . . . , an). From this it follows that 0# ∈ C(aa−).

Theorem 6.5. It is consistent relative to the consistency of ZFC that

C∗ * C(aa−) ∧ C(aa−) * C∗.

Proof. We force over L and first we add two Cohen reals r0 and r1, to obtain V1.
Now we use modified Namba forcing to make cf(ℵLn+1) = ω if and only if n ∈ r0.
This forcing satisfies the S-condition (see [7]), and therefore will not—by [4]—
kill the stationarity of any stationary subset of ω1. The argument is essentially
the same as for Namba forcing. Let the extension of V1 by P be V2. In V2 we
have C(aa−) = L because we have not changed stationary subsets of ω1. But
V2 |= r0 ∈ C∗.

Let Sn, n < ω, be in L a definable sequence of disjoint stationary subsets of
ω1 such that

⋃
n Sn = ω1. Working in V2, we use the canonical forcing notion

which kills the stationarity of Sn if and only if n ∈ r1. Let the resulting model
be V3. The cofinalities of ordinals are the same in V2 and V3, whence (C∗)V2 is
the same as (C∗)V3 . Thus V3 |= r1 ∈ C(aa−) \ C∗. Now we argue that V3 |=
C(aa−) = L(r1). First of all, L(r1) ⊆ C(aa−) by the construction of V3. Next
we prove by induction on the construction of C(aa−) as a hierarchy J ′α, α ∈ On,
that J ′α ⊆ L(r1). When we consider J ′α+1 and assume J ′α ⊆ L(r1), we have to
decide whether a subset S of ω1, constructible from r1, is stationary or not. The
set S is stationary in V3 if and only if it is stationary in L(r1) and it is not included
modulo the club filter in

⋃
n∈r1 Sn. Thus J ′α+1 ⊆ L(r1).

In V3 the real r0 is in C∗ \ C(aa−) and the real r1 is in C(aa−) \ C∗.
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The logics L(Qcf
ω ), giving rise to C∗, and L(aa−), giving rise to C(aa−), are

two important logics, both introduced by Shelah. Since L(Qcf
ω ) is fully compact,

L(aa−) cannot be a sub-logic of it. On the other hand, it is well-known and easy
to show that L(Qcf

ω ) is a sub-logic of L(aa). Therefore it is interesting to note the
following corollary to the above theorem:

Corollary 6.6. It is consistent, relative to the consistency of ZFC, that L(Qcf
ω ) *

L(QSt) and hence L(QSt) 6= L(aa).

We do not know whetherL(Qcf
ω ) ⊆ L(aa−) orL(aa−) = L(aa) is consistent.

A modification of C(aa−) is the following C(aa0):

Definition 6.7. M |= QSt,0xyzuϕ(x, y,~a)ψ(u,~a) if and only if M0 = {(b, c) ∈
M : M |= ϕ(b, c,~a)} is a linear order of cofinality ω1 and every club of initial
segments has an element with supremum in R0 = {b ∈ M :M |= ψ(b,~a)}. The
inner model C(aa0) is defined as C(L(QSt,0)).

Proposition 6.8. If there are two Woodin cardinals, then C(aa0) |= “ℵV1 is a
measurable cardinal”.

Proof. The proof of this is—mutatis mutandis—as the proof for C(aa−).

Proposition 6.9. If 0† exists, then 0† ∈ C(aa0).

Proof. Assume 0†. There is a club class of indiscernibles for the inner model
L[U ] where U is (in L[U ]) a normal measure on an ordinal δ. Let us choose an
indiscernible α above δ of V -cofinality ωV1 . We can define 0† as follows: An in-
creasing sequence of indiscernibles satisfies a given formula ϕ(x1, . . . , xn) if and
only if there is a club C of ordinals below α such that every increasing sequence
a1 < . . . < an from C satisfies ϕ(a1, . . . , an) in L[U ]. Similarly, ϕ(x1, . . . , xn)
does not hold in L[U ] for an increasing sequence of indiscernibles below α if and
only if there is a club of ordinals a1 < α such that there is a club of ordinals
a2 with a1 < a2 < α such that . . . such that there is a club of ordinals an with
an−1 < an < α satisfying ¬ϕ(a1, . . . , an). From this it follows that 0† ∈ C(aa0).

Corollary 6.10. If there are two Woodin cardinals, thenC(aa−) 6= C(aa0). Then
also the logics L(QSt) and L(QSt,0) are non-equivalent.

Proof. If there are two Woodin cardinals, then then 0† exists and C(aa−) does not
contain 0† by Theorem 6.3, while C(aa0) does contain by Proposition 6.9.
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Note that it is probably possible to prove the non-equivalence of the logics
L(QSt) and L(QSt,0) in ZFC with a model theoretic argument using the exact
definitions of the logics and by choosing the structures very carefully. But the non-
equivalence result given by the above Corollary is quite robust in the sense that
it is not at all sensitive to the exact definitions of the logics as long as the central
separating feature, manifested in structures of the form (α,<), is respected.

7 Open problems
There are many open questions about C(aa). We list here the some of the most
prominent ones:

1. Do regular cardinals of V have stronger large cardinal properties in C(aa)
than measurability, under the assumption of large cardinals?

2. Which inner models for large cardinals (below one Woodin cardinal) exist
inside C(aa)?

3. What is the consistency strength of Club Determinacy?

4. Is AC true in Co(aa)? Is Co(aa) = C(aa)?

8 Appendix: A counter-example to AC in Co(L∗)
Consider the quantifier

M |= QST
n xyzϕ(x,~a)ψ(y, z,~a) ⇐⇒ ψ(·, ·,~a) has order-type ℵn+1

and ϕ(·,~a) is a stationary set of points of cofinality ℵn in ψ(·, ·,~a).

We let L∗ be the extension of first order logic by the infinitely many quantifiers
QST
n , n < ω. Note that Co(L∗) |= ZF .

Proposition 8.1. Con(ZF ) implies Con(Co(L
∗) |= ¬AC).

Proof. We start with V = L. Let Sn,m, m < ω, be disjoint stationary sets of
ordinals < ℵn+1 of cofinality ℵn such that the set {α < ℵn+1 : cf(α) = ℵn} \⋃
m Sn,m is also stationary. We force mutually generic Cohen-reals an, n < ω.

Let us call the po-set of this forcing Q. Let Pn(an) force an ℵn-closed unbounded
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set Cn+1 into the set
⋃
m∈an Sn,m. Let ~a = 〈an : n < ω〉 and let P(~a) be the

product of Pn(an), n < ω. In the extension by P(~a) we have for all m,n < ω:

m ∈ an ⇐⇒ Sn,m is stationary,

whence ~a ⊆ Co(L
∗).

Assume now V = L[~a][〈Cn+1 : n < ω〉].

Claim A: Co(L∗) ⊆ L[~a] and 〈L′α : α < δ〉 ∈ L[~a] for all δ.

Proof. For a proof by induction, suppose L′α ∈ L[~a]. Suppose Z ∈ L′α+1 is an
L∗-definable (with parameters) subset of L′α. We shall show that Z is in L[~a].
Since we proceed by induction, this boils down to showing that if X ∈ L[~a] is set
of ordinals < ℵn+1 ≤ α of cofinality ℵn, then we can decide in L[~a] whether X
is stationary in V or not. To this end we shall show that the following conditions
are equivalent:

(∗) X is stationary in V .

(∗∗) There are m ∈ an and Y ⊆ X such that Y ∈ L and Y ∩ Sn,m is stationary
in L.

(∗) → (∗∗): Since L[~a] is obtained from L by the countable po-set Q, the V -
stationary set X is a countable union of sets in L. Thus X contains a V -stationary
subset Y in L. We have forced an ℵn-closed unbounded set Cn+1 into the set⋃
m∈an Sn,m. There must be m ∈ an such that Y ∩ Sm,n ∈ L is stationary in V ,

hence in L.
(∗∗) → (∗): Suppose m and Y are as in (∗∗). Thus Y ∩ Sn,m is stationary in L.
Adding the Cohen reals preserves the stationarity of Y ∩ Sn,m. Thus Y ∩ Sn,m is
stationary in L[~a]. If k < n, the po-set Pk(ak) is of cardinality < ℵk+1. Hence it
does not kill the stationarity of Y ∩ Sn,m. If k > n, the po-set Pk(ak) is < ℵn+1-
distributive. Hence it does not kill the stationarity of Y ∩ Sn,m. Finally, Pn(an)
forces the ℵn-closed unbounded set Cn+1 into the set

⋃
l∈an Sn,l. But Y ∩ Sn,m ⊆⋃

l∈an Sn,l. It is a standard fact about the club shooting forcing that if you add a
generic club through the complement of a stationary set S then the stationarity of
any stationary set disjoint from S is preserved. Hence the stationarity of Y ∩Sn,m
is preserved by Pn(an). All in all, X is stationary in V . We have proved the
equivalence of (∗) and (∗∗) and thereby Claim A.
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Let us fix n∗ < ω and form a new sequence

~a∗ = 〈al : l < n∗〉_〈a∗n∗〉_〈al : l > n∗〉,

where a∗n∗ is a finite modification of an∗ . Obviously, L[~a] = L[~a∗]. Let M1 be
obtained from L[~a] by forcing with the po-set P(~a) and M2 from L[~a∗] (i.e. L[~a])
by forcing with P(~a∗).

Claim B: (Co(L
∗))M1 = (Co(L

∗))M2 .

Proof. We prove by induction on α that (L′α)M1 = (L′α)M2 and (L′α)M1 , (L′α)M2 ⊆
L[~a]. Suppose this holds for α. Suppose Z ∈ (L′α+1)M1 is in the sense of
M1 an L∗-definable (with parameters) subset of (L′α)M1 . We shall show that
Z is in (L′α+1)M2 . Since we proceed by induction, we have to show that if
X ⊆ (L′α)M1 , X ∈ L[~a] is a set of ordinals < ℵn+1 ≤ α of cofinality ℵn, then M2

can detect whether X is stationary in M1 or not, and M1 can detect whether X is
stationary in M2 or not. By the equivalence of (∗) and (∗∗) above, this boils down
to detecting whether there is m ∈ an and Y ⊆ X , Y ∈ L, such that Y ∩ Sm,n is
stationary in L, and respectively in M2, switching ~a to ~a∗. The question is non-
trivial only if n = n∗, which we now assume. There is only a finite difference
between an and a∗n and the criterion “Y ∩ Sm,n is stationary in L” yields the same
answer in M1 and M2. Therefore M1 can detect whether X is stationary in M2, or
not and vice versa.

We are now ready to prove that AC fails in Co(L∗) in the model M1. Suppose
ϕ(x, y,~b) defines, with parameters ~b, a well-order ≺ of the reals of M1. Let n∗

be large enough to be greater than any m such that QST
m occurs in ϕ(x, y,~b) or in

the definitions of the parameters ~b, computed recursively. Let p ∈ Q force that
an∗ is the αth real in the well-order ≺. Let us modify an∗ to a∗n∗ so that they still
agree about integers in the domain of p. We obtain ~a∗ and M2, as above. Now
M1 |= ”an∗ is the αth real of Co(L∗)” and M2 |= ”a∗n∗ is the αth real of Co(L∗)”.
However, M1 and M2 agree about ≺, because of the way we have chosen n∗, a
contradiction.
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