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Abstract

We describe the work and underlying ideas of the Helsinki Logic
Group in infinitary logic. The central idea is to use trees and Ehren-
feucht-Fräıssé games to measure differences between uncountable mod-
els. These differences can be expressed by sentences of so-called in-
finitely deep languages. This study has ramified to purely set-theo-
retical problems related to properties of trees, descriptive set theory
in ω1ω1, detailed study of transfinite Ehrenfeucht-Fräıssé games, new
constructions of uncountable models, non-well-founded induction, in-
finitely deep languages, non-structure theorems, and stability theory.
The aim of this paper is to give an overview of the underlying ideas
of this reasearch together with a survey of the main results.

1 Introduction

The so called finite quantifier languages Lκω and their fragments have given
rise to a rich and interesting definability theory. This theory works partic-
ularly nicely on countable structures and in the case κ = ω1. The obvious

∗Appeared in: Quantifiers (eds. M. Krynicki, M. Mostowski and L. Szczerba), Kluwer
Acad. Publ., 1995, 105-138. In 2009 the author has corrected typos and indicated that
Proposition 11 is false and Proposition 14 makes too strong a claim.
†Preparation of this article was supported by Academy of Finland grant 1011040.
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generalisation, the infinite quantifier languages Lκλ, have given rise to almost
no interesting mathematics at all. In particular, the generalisation Lω2ω1 of
Lω1ω has led to no general theory of models of cardinality ω1.

Hintikka and Rantala 1976 introduced a different approach to generalizing
Lκω. They considered so called constituents of mathematical structures and
were led to the following idea: Rather than allowing transfinite sequences of
strings of existential quantifiers and transfinite sequences of universal quan-
tifiers, one should allow transfinite sequences of quantifier and connective
alternations. This leads to powerful logics which extend not only the infini-
tary languages Lκλ but also extensions of Lκλ by the usual game-quantifier.

Karttunen realized that while it is essential that the new infinitary ex-
pressions of Hintikka and Rantala 1976 have infinite descending sequences of
subformulas, an important distinction is made, if no uncountable descending
sequences of subformulas are allowed (Karttunen 1984). This distinction is
of the same nature as the distinction between a game-quantified sentence of
Lω1G and its approximations in L∞ω.

Most of the work on the new infinitary languages has centered around the
problem of distinguishing models with infinitary sentences. This problem
can be formulated in terms of a transfinite Ehrenfeucht-Fräıssé game. In
Section 2 of this paper we describe the relevant notions related to this game.
A central concept in this approach to infinitary logic is the concept of a
tree with no uncountable branches. These trees are used as measures of
similarity of two structures. We find strong parallels between the role of
such trees in the study of uncountable models and the role of ordinals in
the study of countable models. Section 3 is devoted to a survey of the
structure of such trees. Section 4 builds on the contention that the most
fundamental mathematical properties of classes of models of cardinality ω1

are really topological properties of ω1ω1 viewed as a generalized Baire space.
We survey the basics of descriptive set theory in the space ω1ω1. Section 5
gives an account of the analysis of isomorphism-types of uncountable models
using trees. Finally, in Section 6 we introduce the infinitely deep languages
and survey their basic properties.

We use standard set-theoretic notation. In particular, ZFC denotes the
Zermelo-Fraenkel axiom system with the Axiom of Choice, MA denotes Mar-
tin’s Axiom and CH denotes the Continuum Hypothesis. We refer to Jech
1978 for any unexplained set-theoretic notation.

We are indebted to the editors of this volume as well as to H. Heikkilä,
L. Hella, T. Hyttinen, J. Oikkonen and H. Tuuri for suggesting improvements
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to the preliminary version of this paper.

2 The Ehrenfeucht-Fräıssé-game

To see how the new powerful infinitary logics behave and help us study un-
countable models, it is not necessary to introduce the languages themselves
at all. We can go a long way by studying Ehrenfeucht-Fräıssé-games only.
This is also in line with the approach of Hintikka and Rantala 1976, since
consituents are descriptions of positions in Ehrenfeucht-Fräıssé-games. The
new feature, analogous to allowing transfinite sequences of quantifier alter-
nations, is that we study Ehrenfeucht-Fräıssé-games of length > ω. We use

EFα(A,B)

to denote the Ehrenfeucht-Fräıssé-game of length α between A and B, which
we now define. There are two players, called ∃ and ∀. During a round of
the game ∀ first picks an element of one of the models and then ∃ picks an
element of the other model. Let ai be the element of A and bi the element of
B picked during round i of the game. There are altogether α rounds. Finally,
∃ wins the game if the resulting mapping ai 7→ bi is a partial isomorphism
and otherwise ∀ wins. We say that a player wins EFα(A,B) if he has a
winning strategy in it.

A trivial but fundamental observation is:

Lemma 1 If A and B have cardinality ≤ κ, then

1. ∃ wins EFκ(A,B) if and only if A ∼= B.

2. ∀ wins EFκ(A,B) if and only if A 6∼= B.

Proof. If f : A ∼= B, then ∃ wins easily by using f to copy the moves of ∀
between the models. If, on the other hand A 6∼= B, then ∀ lists in his moves
systematically all elements of the models. If ∃ wins a round of a game like
this, an isomorphism has been created between A and B. Since we assume
no such exists, ∀ is bound to win. �

One consequence of the above Lemma is that EFκ(A,B) is determined
whenever A and B have cardinality ≤ κ. For models of cardinality > κ the
game EFκ(A,B) need not be determined, as the following result shows:
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Theorem 2 (Mekler, Shelah and Väänänen 1993 ) There are models A and
B of cardinality ω3 so that the game EFω1(A,B) is non-determined. It is con-
sistent relative to the consistency of a measurable cardinal, that EFω1(A,B)
is determined for all models of cardinality ≤ ω2. It is consistent relative to
the consistency of ZFC, that EFω1(A,B) is non-determined for some models
of cardinality ≤ ω2.

The question of determinacy of EFω1(A,B) has been further studied in
Huuskonen 1991 and Hyttinen 1992.

In the case κ = ω we have the notion of a ranked game. To see what this
means, suppose τ is a winning strategy of ∀ in EFω(A,B). Every round of
the game, ∀ playing τ , ends after a finite number of moves at the victory
of ∀. So we can put an ordinal rank on the moves of ∀ and demand that
the rank goes down on each move. In this way we get a rank on the triple
(A,B, τ). The Scott rank of A is the smallest α such that if B 6∼= A then for
some winning strategy τ of ∀ in EFω(A,B), the rank of (A,B, τ) is at most
α.

We shall now introduce a similar concept for EFκ(A,B). Of course we
cannot use ordinals to rank the moves of ∀ since the rank may have to
decrease transfinitely many times in succession. Instead we take an arbitrary
winning strategy τ of ∀ and form the tree

SA,B,τ

of all possible sequences of successor length of moves of ∃ against τ so that ∃
has not yet lost the game. We get a tree with no branches of length κ and we
use this tree itself as a rank for (A,B, τ). The smaller these trees are, when
τ varies, the faster ∀ can locate a difference between A and B and beat ∃,
and the more A and B are dissimilar. The larger these trees are, the bigger
partial isomorphism ∃ can build, however fiercely ∀ tries block it, and the
more A and B are similar. We arrive at the following idea:

• The trees SA,B,τ for various τ provide a measure of the degree of simi-
larity of A and B.

Rather than taking first a winning strategy of ∀ and then the tree of all
plays of ∃, we may also directly consider winning strategies of ∃ in short
games (Hyttinen 1987). Let

KA,B
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be the set of winning strategies of ∃ in the games EFα(A,B), where α < κ
is a successor ordinal. We order the strategies as follows. Suppose σ is a
winning strategy of ∃ in EFα(A,B) and τ is a winning strategy of ∃ in
EFβ(A,B). Then σ ≤ τ if α ≤ β and τ agrees with σ for the first α moves
of EFβ(A,B). This ordering makes KA,B a tree. If this tree has a branch of
length κ, then ∃ can follow the strategies on the branch and win EFκ(A,B).
So the larger the tree KA,B is, the longer ∃ can play EFκ(A,B) and the more
A and B look alike. On the other hand, the smaller the tree KA,B is, the
sooner ∃ runs out of possible winning strategies, and the more A and B look
different. In analogy with the trees SA,B,τ , we arrive at the following idea:

• The tree KA,B provides a measure of the degree of similarity of A and
B.

Starting from the concept of Scott rank, we have introduced two differ-
ent measures of similarity of structures. Before we can compare these two
measures to each other and to other trees, we have to develop tools for com-
paring trees. The big difference in using (non-well-founded) trees to estimate
structural differences, rather than ordinals is that the structure of ordinals
is well-understood but the structure of trees is not. This explains why we
have to investigate structural properties of the class of all trees before we can
proceed in our study of the transfinite Ehrenfeucht-Fräıssé-game.

3 Structure of trees

A tree is a partially ordered set with a smallest element (root) in which the
set of predecessors of every element is well-ordered by the partial ordering.

We can think of ordinals as well-founded trees, i.e., trees with no infinite
branches. For example, we may identify an ordinal α with the tree Bα of
sequences (α, α1, α2, ..., αn), where αn < ... < α1 < α and the sequences are
ordered by end-extension. It is easy to see that if we assign ordinals to nodes
of Bα in such a way that extensions of nodes get smaller ordinals, then α is
the smallest ordinal that can be assigned in this process to the root of Bα. In
this way we can assign an ordinal o(T ) to any well-founded tree T . So there
is a nice correspondence between ordinals and well-founded trees. On the
other hand, we can think of an ordinal α as a one-branch (non-wellfounded,
if α ≥ ω) tree. We use α itself to denote this linear tree.
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When we move to the non-well-founded case, especially to trees with no
uncountable branches, several immediate observations can be made:

• Well-founded trees obey König’s lemma: Every well-founded infinite
tree has an infinite level. In the non-well-founded case we have Aron-
szajn trees, i.e., uncountable trees with countable levels but no un-
countable branches.

• Trees of height ω obey Cantor’s lemma: If a tree of height ω has finite
levels and uncountably many infinite branches, it has continuum many
infinite branches. Trees of height ω1 may not obey such a law: there
may be Kurepa trees, i.e., trees of height ω1, with countable levels, but
with exactly ω2 uncountable branches, while 2ω1 > ω2.

• Induction is possible along a well-founded tree. In the non-well-founded
case ordinary induction is out of question. In some cases this can be
overcome by assuming the existence of an ω2-complete normal ideal
with a σ-closed dense collection of positive measure sets (Shelah, Tuuri
and Väänänen 1993). The existence of such an ideal is equiconsistent
with the existence of a measurable cardinal. On the other hand, induc-
tive definability can be developed game-theoretically and this approach
makes sense also in the non-well-founded case (Oikkonen and Väänänen
1993).

• Any two well-founded trees are comparable by order-preserving em-
beddability. This is not so in the non-well-founded case: There are
non-comparable trees and the order-structure of the class of all trees
is quite involved (Hyttinen and Väänänen 1990, Mekler and Väänänen
1993.

• There is a family of ω1 countable well-founded trees (corresponding
to the second number class) so that any countable well-founded tree is
order-preservingly mappable to some member of the family. The analo-
gous question in the non-well-founded case is undecidable in ZFC+CH
(Mekler and Väänänen 1993).

These facts have a clear message: there will be manifest differences be-
tween the well-founded case (countable models) and the non-well-founded
case (uncountable models). The following questions arise:
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• Can we isolate some crucial assumptions about trees that decide the
particular tree-theoretic questions relevant from the point of view of
Ehrenfeucht-Fräıssé-games?

• In what specific and exact ways are properties of uncountable models
interwoven with properties of trees?

We order the family of all trees as follows: T ≤ T ′ if there is an order-
preserving f : T → T ′ (i.e. x < y implies f(x) < f(y)). Note that this f
need not be one-one. The strict ordering T < T ′ is defined to hold if T ≤ T ′

and T ′ 6≤ T . Finally, T ≡ T ′ if T ≤ T ′ and T ′ ≤ T . We use σT to denote the
tree of all ascending chains from T . Kurepa observed that T < σT . With
the σ-operation we define a stronger ordering of trees: T � T ′ iff σT ≤ T ′.
The following properties of these orderings are fairly easy to prove:

Lemma 3 (Hyttinen and Väänänen 1990) 1. σT 6≤ T , i.e., if T � T ′,
then T < T ′.

2. < and � are transitive relations.

3. T � σT but there is no T ′ with T � T ′ � σT

4. The relation � is well-founded.

5. For well-founded trees both T < T ′ and T � T ′ are equivalent to
o(T ) < o(T ′).

The reason for introducing the relation � is that it comes up very natu-
rally in applications. Also, proving T � T ′ is a handy direct way of achieving
T ′ 6≤ T .

The ordering of trees can be defined also in terms of a comparison game
G(T, T ′). There are two players ∃ and ∀. Player ∀ starts and moves an
element of T ′. Then player ∃ responds with an element of T . The game goes
on, ∀ playing elements of T ′ and ∃ playing elements of T , both in a strictly
ascending order. The first player unable to move loses.
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Lemma 4 (Hyttinen and Väänänen 1990) 1. T ′ ≤ T if and only if ∃
wins G(T, T ′).

2. T � T ′ if and only if ∀ wins G(T, T ′).

We need some operations on trees. Let T and T ′ be trees. The tree
T ⊕ T ′ consists a disjoint union of T and T ′ identified at the root. So T ⊕ T ′
is the supremum of T and T ′ relative to ≤. The tree T ⊗ T ′ consists of
pairs (t, t′), where t ∈ T , t′ ∈ T ′ and t has the same height in T as t′ has in
T ′. The elements of T ⊗ T ′ are ordered coordinatewise. Clearly, T ⊗ T ′ is
the infimum of T and T ′ relative to ≤. The operations

⊕
i∈I and

⊗
i∈I are

defined similarly. We can also define “arithmetic” operations on trees. The
tree T + T ′ is obtained from T by adding a copy of T ′ at the end of each
maximal branch of T . With this definition, Bα + Bβ ≡ Bβ+α. The product
T · T ′ consists of triples (g, t, t′), where t ∈ T , t′ ∈ T ′ and g is a mapping
which associates every predecessor of t′ with a maximal branch of T . We
set (g, t, t′) ≤ (g1, t1, t

′
1) if (t′ = t′1 and t ≤ t1) or (t′ < t′1, g coincides with

g1 on predecessors of t′ and t ∈ g′(t′)). Again, Bα · Bβ ≡ Bα·β. Intuitively,
T · T ′ is obtained from T ′ by replacing every element by a copy of T . Since
T is likely to have branching, there are different ways of progressing from a
node of T ′ to its successor through the copy of T . This is why the elements
of T · T ′ have the g-component. If we limit the way a branch of T · T ′ can
pass through T ′, we arrive at the following variant T · T ′. Let G be a set of
maximal branches of T . The tree T ·G T ′ consists of triples (g, t, t′) ∈ T · T ′
such that, if t′′ < t′, then g(t′′) ∈ G. The ordering is defined as in T · T ′.

A phenomenon that is possible in non-well-founded trees, but impossible
in well-founded trees, is reflexivity. A tree T is reflexive if T ≤ {s ∈ T :
t ≤T s} for every t ∈ T . Every tree T can be extended to a reflexive tree in
the following way (Huuskonen 1991, Hyttinen and Tuuri 1991): Let R(T ) be
the set of finite sequences (t0, ..., tn) of elements of T . We can think of this
sequence as a linear ordering which starts with {t ∈ T : t ≤ t0}, continues
with {t ∈ T : t ≤ t1}, then with {t ∈ T : t ≤ t2}, etc. until tn comes in the
end. In this way R(T ) gets a natural tree-ordering: if s and s′ are elements
of R(T ), then we define s ≤ s′ to mean that as linear orderings, s is equal
to s′ or is an initial segment of s′. It is easy to see that T ≤ R(T ) and that
R(T ) is reflexive. It is also interesting to note that if T has no branches of
length κ > ω, then neither has R(T ). We can split R(T ) into parts that are
called phases in Hyttinen and Tuuri 1991. Namely, if s = (t0, ..., tn) ∈ R(T ),
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we call the number n the phase of s and denote it by p(n). Elements of phase
0 form an isomorphic copy of T . Each element (t0, ..., tn) of phase n extends
to an isomorphic copy {(t0, ..., tn+1) : tn+1 ∈ T} of T .

We can picture the mutual ordering of the two types of trees that arise
from ordinals as follows:

B0 < B1 < ... < Bω < ... < Bω1 < ... < ω < ω + 1 < ... < ω1 < ...

Note that ω has a proper class {Bα : α ∈ On} of predecessors. The pre-
decessors of ω1 are all the various trees without uncountable branches. An
interesting example is the tree Tp = (

⊕
α<ω1

α) ·ω, introduced in Huuskonen
1991. This tree has the remarkable property that

Tp ≤ T or T � Tp

for any tree T of height ω1 (Huuskonen 1991). So Tp has a very special
place among predecessors of ω1. The whole picture of the ordering of all
trees is quite complicated. We shall now show that some trees are mutually
≤-incomparable.

Let A ⊆ ω1. Recall that A is closed unbounded if it is uncountable and
contains the supremum of each of its proper initial segments. We say that A is
stationary, if it meets every closed unbounded subset of ω1. The complement
of a stationary set is co-stationary. Finally, a stationary and co-stationary set
is called bistationary. It is a not-too-hard consequence of the Axiom of Choice
that there are bistationary subsets of ω1 (see e.g. Jech 1978). In fact, there
are ω1 disjoint stationary subsets of ω1 and hence 2ω1 bistationary subsets
Aα of ω1 such that Aα \Aβ is bistationary whenever α 6= β. Bistationary sets
can be used to construct interesting trees without uncountable branches. If
A is a bistationary subset of ω1, let T (A) be the tree of sequences of elements
of A that are ascending, continuous and have a last element.

Lemma 5 (Hyttinen and Väänänen 1990, Todorčević 1981, 1984)

1. If A is bistationary, then T (A) is a tree of height ω1 with no uncountable
branches.

2. If A, B and B \A are bistationary, then T (B) 6≤ T (A). If also A ⊂ B,
then T (A) < T (B).

3. If A and B are bistationary, then T (A) 6� T (B).
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4. If T is an Aronszajn tree and A is bistationary, then T 6≤ T (A).

Proof. Every stationary set has closed subsets of all order-types < ω1. This
implies that T (A) has height ω1. An uncountable branch in T (A) would give
rise to a closed unbounded subset of A contrary to the co-stationarity of A.
The first claim is proved. For the second claim, suppose f : T (B) → T (A)
is order-preserving. For countable α, let Fα be a function on T (B) so that
Fα(s) is some s′ > s with max(s′) > α. For any countable limit ordinal α,
let Sα be a countable subset of T (B) containing ∅ and closed under every
Fβ, where β < α. Let C be the closed unbounded set of countable α such
that if s ∈ Sα , then max(s) < α and max(f(s)) < α. Let α ∈ C ∩ (B \ A).
Let (sn) be an ascending sequence in Sα with α = supn max(tn). Then
supn max(f(tn)) = α. Since α ∈ B \A, we have a contradiction. The second
claim is proved. The third and fourth claims are proved similarly. �

By combining the above lemma and the fact that there are 2ω1 bistation-
ary subsets Aα of ω1 such that Aα \ Aβ is bistationary whenever α < β, we
get the following result:

Proposition 6 (Hyttinen and Väänänen 1990) There is a set of trees {Tα :
α < 2ω1} such that for all α < β:

(1) Tα has height ω1 and cardinality 2ω.

(2) Tα has no uncountable branches.

(3) Tα and Tβ are incomparable by ≤.

The claim remains true if condition (3) above is replaced by one of the fol-
lowing:

(3’) Tα < Tβ.

(3”) Tα > Tβ.

So there is an explosion in the hierarchy of trees between the trees of
countable height and the one-branch tree ω1. This is in sharp contrast with
the situation between trees of finite height and the one-branch tree ω, where
we have all the well-founded trees in nice linear order one after another.

Stationarity has also a game-theoretic characterization, which is most
helpful for us in the sequel. This characterization is from Kueker 1977. If A
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is an unbounded subset of ω1, let GA be the following game: There are two
players ∀ and ∃. Player ∀ starts by playing some countable ordinal α0. Then ∃
plays some bigger countable ordinal α1. The game goes on players choosing
bigger and bigger countable ordinals until an infinite ascending sequence
α0, α1, ..., αn, ... is created. Now ∃ is declared winner if supn<ω αn ∈ A.
Kueker showed that A contains a closed unbounded set if and only if ∃ has a
winning strategy in this game. Respectively, ∀ has a winning strategy in GA

if and only if the complement of A contains a closed unbounded set. Hence
A is bistationary if and only if GA is non-determined.

If ∃ has a winning strategy in GA, he actually wins the seemingly more
difficult game where the players construct an ascending sequence of length
ω1, and ∃ wins if all limit points of this sequence are in A. This observation
leads to the following ranked game: Let T be a tree. The game GA(T ) has at
most ω1 moves. During the game the players ∀ and ∃ construct an ascending
sequence s of length ≤ ω1 of elements of ω1 as in the game GA. Whenever
∀ moves, he first has to choose an element of T . Moreover, his moves in T
have to form an ascending chain. If ∀ is not able to make his move in T , the
game ends. Player ∃ wins if all countable limits of the sequence s are in A.

Lemma 7 (Hyttinen and Väänänen 1990) Suppose A is bistationary.

1. ∀ wins GA(T ) if and only if T (A)� T .

2. ∃ wins GA(T ) if and only if T ≤ T (A).

Proof. If ∀ wins G(T (A), T ), he can win GA(T ) by simply translating the
sequence of moves of ∃ in GA(T ) to a move of ∃ in G(T (A), T ). For the
converse, we assume ∀ has a winning strategy τ in GA(T ) and demonstrate
how he wins G(T (A), T ). At every point of GA(T ) and for all α < ω1, player
∃ has a counter strategy of length ζ in GA(T ) which helps him evade defeat
during the next ζ moves, provided that ∀ plays τ . Let us assume that we
are in the middle of G(T (A), T ) and the players have so far contributed an
ascending chain a0 < a1 < ... < aξ < ... in T (A) and an ascending chain
t0 < t1 < ... < tξ < ... in T . As an inductive hypothesis we assume that the
players have played simultaneously the game GA(T ) and in this game ∀ has
consistently used τ . So the players have contributed in GA(T ) an ascending
sequence α0 < α1 < ... < αζ < .... Simultaneously ∀ has played the above
chain t0 < t1 < ... < tξ < ... in T . Let δ = supξ max(sξ). If δ 6∈ A, player
∃ faces a one-move defeat, since τ gives ∀ still one move. So let us assume
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δ ∈ A. Le ζ be the smallest ζ such that δ + ζ > supξ(αξ). If ζ = 0, we
let ∃ play δ in GA(T ). Otherwise we let ∃ use his counter strategy of length
ζ in GA(T ) for the next ζ moves. The emerging T -moves of ∀ let ∀ play
G(T (A), T ) for the next ζ moves. The point of this is that when we come
to a limit stage, we have supξ max(sξ) = supξ(αξ). This means that ∃ faces
a one-move defeat in GA(T ) only if he has the same problem in G(T (A), T ).
So ∀ can go on using τ to guide his playing in G(T (A), T ) until ∃ is defeated.
�

We have observed that the class of trees with no uncountable branches
has ascending chains, descending chains and antichains of cardinality 2ω1 .
All these chains arise from the trees T (A), A bistationary. Several questions
suggest themselves. Maybe these trees are essentially all there is in this
family. Or maybe there is some relatively small number of “representatives”
of these trees into which everything else can be reduced. As to the first
question, H. Tuuri has pointed out, that if T is the tree of one-one sequences
of rationals such that the sequence has a last element, then T 6≤ T (A) (proved
like Lemma 5 (3)) and T (A) 6≤ T for bistationary A (as T (A) is non-special
by Todorčević 1984). So this T is an example of a tree substantially different
from the trees T (A).

We approach the question of “representatives” with the notion of a uni-
versal family of trees. A family U of trees is universal for a class V of trees
if U ⊆ V and

∀T ∈ V∃S ∈ U(T ≤ S).

If we want to find a universal family for the class of all trees with no un-
countable branches, there is an obstacle: If the universal family is a set, as
it is reasonable to assume, we can apply the σ-operation to its supremum,
and obtain a tree which contradicts the universality of the family. So we can
only hope to find universal families for restricted classes of trees.

Let Tω1 be the class of trees of cardinality ω1 and with no uncountable
branches. If CH holds, then there cannot be a universal family of size ≤ ω1

for Tω1 , because of the function σ. On the other hand, Hella observed that if
2ω = 2ω1 , then an upper bound for Tω1 is obtained from the full binary tree
of height ω by simply extending all its branches by different elements of Tω1 .
The resulting tree has cardinality 2ω.

Theorem 8 (Mekler and Väänänen 1993) The statement “There is a uni-
versal family of cardinality ω2 for Tω1” is independent of ZFC+CH+2ω1 ≥ ω3.
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We may also ask whether the trees T (A) can be majorized by one single
tree. In Mekler and Shelah 1993 a tree T is called a Canary tree if it has
cardinality 2ω, has no uncountable branches, and in any extension of the
universe in which no new reals are added and in which some stationary
subset of ω1 is destroyed, T has an uncountable branch. This is equivalent to
saying that T has cardinality 2ω, has no uncountable branches, and satisfies
T (A) ≤ T for each bistationary A (Mekler and Väänänen 1993).

Theorem 9 (Mekler and Shelah 1993) The statement “There is a Canary
tree” is independent from ZFC +GCH.

The structure of trees with no uncountable branches is far from being
understood even in the light of the above results. More investigation is
needed. It is now quite clear that ZFC alone is not sufficient for deciding
questions about these trees. The Continuum Hypothesis, for example, makes
a big difference. It would be interesting to find new axioms which would fix
the structure of trees more or less completely.

4 Topology of the space N1

There are properties of countable models and infinitary formulas which are
so basic that they can be formulated in purely topological terms. To arrive
at these one identifies countable models with elements of the Baire space
N = ωω, whereby classes of countable models are identified with subsets
of N . D. Scott established the basic relation between the space N and
Lω1ω: An invariant subset of N is Borel iff it is (in this identification) the
class of countable models of a sentence of Lω1ω (Scott 1965). R. Vaught
developed further the connection between model theoretic properties of Lω1ω

and topological properties of the Baire space (Vaught 1971).
A characteristic example of this connection is the undefinability of well-

order in Lω1ω, proved in Lopez–Escobar 1966, which can be seen as a con-
sequence of the relatively simple topological property of N , that the codes
of well-orderings is a non-analytic set. Similarly the interpolation theorem
of Lω1ω may be thought of as a logical version of the topological fact that
disjoint Σ1

1 sets can be separated by a Borel set. Finally, the basic topological
property of the Baire space, that every closed set is the disjoint union of a
countable set and a perfect set, and its elaboration that the cardinality of
an analytic set is either ≤ ω1 or 2ω, appear behind many results of model
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theory. We have in mind examples such as the result in Kueker 1968 that the
number of automorphisms of a countable structure is ω or 2ω, and the result
in Morley 1970 that the number of non-isomorphic countable models of a
sentence of Lω1ω is either ≤ ω1 or 2ω. In such cases as the above we feel that
the underlying topological fact reveals the actual mathematical construction
behind the logical result.

We may analogously identify models of cardinality ω1 with elements of a
generalized Baire space N1 = ω1ω1 and raise the question:

• Do topological properties of N1 help us prove and understand infinitary
properties of models of cardinality ω1 in the spirit of the above results
of Scott, Vaught, Lopez-Escobar, Kueker and Morley?

The reduction to topology seems even more important in the case of
uncountable models. This is so because we tend to run into statements that
are hard to decide on the basis of the standard axioms of set theory, and it
is therefore of vital importance to isolate the real mathematical core of each
problem. On the other hand the topological space N1 is much less known
than N . In particular descriptive set theory of N1 has been studied only
recently (Mekler and Väänänen 1993, Väänänen 1991).

A basic neighborhood of an element f ∈ N1 is a set of the form

N(f, α) = {g ∈ N1 : g(β) = f(β) for β < α},

where α < ω1. Note that the intersection of a countable family of basic
neighborhoods is still a basic neighborhood, and that there is a dense set
of the cardinality of the continuum, namely the set of eventually constant
functions. The space N1 is what Sikorski calls ω1-metrizable space (Sikorski
1949).

In this context we are mostly interested in properties of analytic and co-
analytic sets of this space. These concepts are defined in the standard way,
which we now recall: A set A ⊆ N1 is analytic or Σ1

1, if there is a closed set
B ⊆ N1 ×N1 such that for all f : f ∈ A if and only if ∃g((f, g) ∈ B). A set
is co-analytic or Π1

1 if its complement is Σ1
1, and ∆1

1 if it is both Π1
1 and Σ1

1.
The standard example of a co-analytic non-analytic subset of N is the

set of codes of well-orderings of ω. This may be rephrased as the statement
that the set of codes of countable trees with no infinite branches is a co-
analytic non-analytic subset of N . Analogously, the set of “codes” of trees
of cardinality ω1 with no uncountable branches is a prime candidate for a
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co-analytic non-analytic subset of N1. To arrive at this set, we introduce
some notation. Let π be a bijection from ω1 × ω1 onto ω1. If f ∈ N1, let
≤f= {(α, β) : f(π(α, β)) = 0}. We may think that f “codes” the binary
relation ≤f . Clearly, every binary relation on ω1 is coded by some f ∈ N1 in
this way. Let Tf = (ω1,≤f ) and

TO = {f ∈ N1 : Tf is a tree with no uncountable branches}.

Lemma 10 (Mekler and Väänänen 1993)

1. The set TO is co-analytic.

2. If A ⊆ TO is analytic, then there is a tree W of cardinality ≤ 2ω with
no uncountable branches such that Tg ≤ W holds for all g ∈ A.

3. If CH holds, TO is non-analytic.

Proof. The first claim is trivial, so we move to the second claim. If f ∈ N1

and α < ω1, let f(α) be the sequence (f(β))β<α. Let R be a closed set such
that f ∈ A holds if and only if ∃g(f, g) ∈ R. Let U(f) be the set of sequences
g(α) = (g(ξ))ξ<α such that N((f, g), α) ∩ R 6= ∅. Now U(f) is a tree and it
is easy to see, that

f ∈ A ⇐⇒ U(f) has an uncountable branch.

Let W be the tree of triples (f(α), t, h(α)), where f ∈ N1 so that Tf is a
tree, t is an element of Tf of height α and h(α) ∈ U(f). Any uncountable
branch of W would give rise to an element f of A \ TO. Hence W cannot
have uncountable branches. Suppose now f ∈ A is arbitrary. Let (h(α))α<ω1

be uncountable branch in U(f). If t ∈ Tf has height α, let φ(t) be the
triple (f(α), t, h(α)). The mapping φ shows that Tf ≤ W . This ends the
proof of the second claim. For the third claim, we assume that TO were
analytic, and derive a contradiction. We consider the second claim with the
choice A = TO. Since we assume CH, we can find f ∈ TO so that σ(W ) is
isomorphic to Tf . We get the contradiction σ(W ) ≤ Tf ≤ W � σ(W ). �

A subset C ⊆ N1 is Π1
1-complete if C is co-analytic and for every co-

analytic set A there is a continuous mapping φ on N1 such that for all f :
f ∈ A if and only if φ(f) ∈ C. Assuming CH, the set TO is Π1

1-complete.
Without CH the set TO need not be Π1

1-complete:
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Proposition 11 (Mekler and Väänänen 1993) If MA+¬CH holds then TO
is ∆1

1.1

The proof of Lemma 10 can be elaborated to give a more general result.
Let A be a co-analytic set. If we assume CH, we can use Π1

1-completeness
of TO to construct a continuous mapping φ so that f ∈ A if and only if
φ(f) ∈ TO. Let

Aφ,g = {f ∈ N1 : φ(f) ≤ Tg}.

The proof of the following result is essentially contained in the proof of
Lemma 10.

Proposition 12 (Mekler and Väänänen 1993) Assume CH. Suppose A is
co-analytic and φ is as above. Then:

1. Aφ,g is analytic for each g ∈ TO.

2. If B ⊆ A is analytic, then there is a g ∈ TO such that B ⊆ Aφ,g
(Covering Property).

3. A is ∆1
1 if and only if there is a g ∈ TO such that Tφ(f) ≤ Tg for all

f ∈ A.

An interesting analytic subset of N1 is the set CUB of characteristic func-
tions of subsets of ω1 which contain a closed unbounded set. Respectively,
we have the co-analytic set STAT of characteristic functions of stationary
subsets of ω1. The continuous mapping φ associated with this co-analytic
set, assuming CH, can be chosen to be the following very natural mapping:
If f ∈ N1 and A = {α : f(α) 6= 0}, let φ(f) be a canonical code of the tree
T (A). Now f ∈ STAT if and only if φ(f) ∈ TO. Hence, assuming CH,
the set STAT is ∆1

1 if and only if there is an f ∈ TO such that T (A) ≤ Tf
for all co-stationary A. In Section 3 we called such a tree a Canary tree and
we noted (Theorem 9) that the existence of a Canary tree is independent of
ZFC + CH. The following Proposition follows from Proposition 12:

1Added 2009: The published proof has an error and the status of the claim
is open.
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Proposition 13 The following conditions are equivalent:

1. CUB is ∆1
1.

2. STAT is Σ1
1.

3. There is a Canary tree.

So we cannot decide in ZFC + CH the question whether CUB is ∆1
1 or

not. The best that is known at the moment is that CUB is not Σ0
3 or Π0

3

(Mekler and Väänänen 1993).

Proposition 14 (Mekler and Väänänen 1993) Assume CH. Let A and B
be disjoint analytic sets. There is a ∆1

1-set C such that A ⊆ C and C∩B = ∅.
(Separation Property)2

Proof. Suppose φ is continuous so that f 6∈ B if and only if φ(f) ∈ TO. By
the Covering Property there is a g ∈ TO so that A ⊆ C, where C = (−B)φ,g.
Clearly C ∩B = ∅. �

The Separation Property becomes more interesting if we can generate the
∆1

1-sets via a Borel type hierarchy analogously with the Borel hierarchy of
the classical Baire space N . In fact, such a generalized Borel hierarchy, called
Borel∗ hierarchy, can be defined for N1 (Mekler and Väänänen 1993). Then
∆1

1-subsets of N1 will be exactly the so called determined Borel∗-sets (Tuuri
1992, Mekler and Väänänen 1993).

The Cantor-Bendixson Theorem says that any closed subset of N can be
divided into a perfect part and a scattered part. The perfect part is empty
or of the cardinality of the continuum. The scattered part is countable. The
corresponding result for analytic sets says that any analytic subset of N
contains a non-empty perfect subset or else has cardinality ≤ ω1. We shall
now address the question whether similar results hold for N1.

It is easy to see that every closed subset ofN1 can be represented as the set
of all uncountable branches of a subtree of N1. So the possible cardinalities
of closed subsets of N1 are limited to the possible numbers of uncountable
branches of trees of height ω1. There are trivial examples of trees where the
number of uncountable branches is any number ≤ ω1, 2ω or 2ω1 . Nothing

2Added 2009: I do not see now why I claim C is ∆1
1-set. Mekler and Väänänen

1993 makes no such claim.
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more can be said on the basis of ZFC or even ZFC + CH, alone. An
analysis of the Cantor-Bendixson Theorem for N1 is contained in Väänänen
1991. The implication to the question of cardinality of closed subsets of N1

is:

Proposition 15 (Väänänen 1991) The statement “Every closed subset of
N1 has cardinality ≤ ω1 or = 2ω1” is independent of ZFC + CH+ there is
an inaccessible cardinal.

A similar result holds for analytic sets (Mekler and Väänänen 1993).

5 Measuring similarity of models

In this Section we return to the idea introduced in Section 2 of using trees
to measure similarity of models of cardinality ω1. For this purpose we intro-
duced the trees SA,B,τ and KA,B. We are now ready to compare these trees
to each other. Let κ be the common cardinality of A and B and

SA,B =
⊗
{SA,B,τ : τ is a winning strategy of ∀ in EFκ(A,B)}.

We let SA,B consist of just one branch of length κ in the special case that
A ∼= B.

Proposition 16 Let A and B be two structures of cardinality κ and of the
same vocabulary. Then KA,B ≤ SA,B. If KA,B is well-founded, then KA,B ≡
SA,B.

Proof. Suppose σ ∈ KA,B. If A ∼= B, then SA,B has a κ-branch and
KA,B ≤ SA,B holds trivially. Suppose then τ is a winning strategy of ∀ in
EFκ(A,B). Let f(σ) be the sequence of moves in EFκ(A,B) when ∀ plays
τ and ∃ plays σ. Clearly, f(σ) ∈ SA,B,τ and f is order-preserving. Suppose
then KA,B is well-founded but there is no winning strategy τ of ∀ such that
SA,B,τ ≤ KA,B. Note that A 6∼= B, for otherwise KA,B has a branch of length
κ. Let SA,B,τ (a0, b0, . . . , an−1, bn−1) be the tree of all possible sequences of
successor length of moves of ∃ against τ so that ∃ has not yet lost the game,
and the first n moves of the game have been (a0, b0), . . . , (an−1, bn−1). Let
I(a0, b0, . . . , an−1, bn−1), n ≥ 0, be the set of such winning strategies τ of ∀
in EFκ(A,B) that the sequence of first n moves (a0, b0), . . . , (an−1, bn−1) in
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EFκ(A,B) is consistent with τ . To derive a contradiction, we describe a
winning strategy of ∃ in EFω(A,B). Suppose ∀ starts this game with a0. If
there is no b0 such that for all τ ∈ I(a0, b0) we have SA,B,τ (a0, b0) 6≤ KA,B,
then there is τ ∈ I() such that SA,B,τ ≤ KA,B, contrary to our assumption.
Hence ∃ must have a move b0 with the property that for all τ ∈ I(a0, b0)
we have SA,B,τ (a0, b0) 6≤ KA,B. Next ∀ plays (e.g.) b1. As above, we may
infer that there has to be a move a1 for ∃ so that for all τ ∈ I(a0, b0, a1, b1)
we have SA,B,τ (a0, b0, a1, b1) 6≤ KA,B. Going on in this manner yields the
required winning strategy of ∃ in EFω(A,B). �

So if the difference between A and B is so easy to detect that KA,B is
even well-founded, which is the case if A 6≡L∞ω B, then KA,B ≡ SA,B. We
shall see below (Proposition 22) that for non-isomorphic models A and B

with A ≡L∞ω B, there may be a huge gap between KA,B and SA,B.
A basic concept in our closer analysis of similarity of models is the fol-

lowing approximated Ehrenfeucht-Fräıssé-game: Let T be a tree. The game
EFα(A,B, T ) is like EFα(A,B) except that ∀ has to go up the tree T move
by move. Thus there are two players, ∃ and ∀. During a round of the game
∀ first picks an element of one of the models and an element of T , and then
∃ picks an element of the other model. Let ai be the element of A, bi the ele-
ment of B and ti the element of T picked during round i of the game. There
are altogether α rounds. Finally, ∃ wins the game if the resulting mapping
ai 7→ bi is a partial isomorphism or the sequence of elements ti does not form
an ascending chain in T . Otherwise ∀ wins.

Proposition 17 1. ∃ wins EFκ(A,B, T ) if and only if T ≤ KA,B.

2. ∀ wins EFκ(A,B, T ) with strategy τ if and only if SA,B,τ � T .

Proof. The point here is that while ∀ goes up the treeKA,B, he reveals longer
and longer strategies for ∃. Player ∃ can simply use these strategies against
∀. At limits we envoke the fact that strategies in KA,B are of successor length.
The strategy of ∀ in EFκ(A,B, σSA,B,τ ) is to play in σSA,B,τ the sequence of
previous moves of ∃, and otherwise follow τ . �

We call a tree T of height α an equivalence-tree of (A,B) if ∃ wins the
game EFα(A,B, T ), and a non-equivalence tree of (A,B) if ∀ wins the game
EFα(A,B, T ). Proposition 17 above implies that KA,B is the largest equiva-
lence tree of (A,B). The tree KA,B is unsatisfactory in one respect, though:
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there is no reason to believe that it has cardinality ≤ ω1 even if CH is as-
sumed. A tree T ∈ Tω1 is a Karp tree of (A,B) if it is an equivalence tree of
(A,B) but σT is not. Respectively, a tree T ∈ Tω1 is a Scott tree of (A,B)
if σT is a non-equivalence tree of (A,B) but T is not.

Theorem 18 (Hyttinen and Väänänen 1990) Every pair of models (A,B)
has a Karp tree T1 and a Scott tree T2, and T1 ≤ T2

The structure of Karp trees and Scott trees of pairs of structures is not
fully understood yet. For rather trivial reasons, the families of Karp trees
and Scott trees of a given pair of structures are closed under supremums. The
following theorem contains some less obvious results that have been obtained
about the ordering of Scott or Karp trees of a pair of models.

Theorem 19 1. There are models A and B of cardinality ω1 such that
the pair (A,B) has 2ω1 Scott trees which are mutually non-comparable
by ≤. (Hyttinen and Väänänen 1990)

2. There are models A and B of cardinality ω1 such that the pair (A,B)
has two Scott trees the infimum of which is not a Scott tree. (Huuskonen
1991)

3. There are models A and B of cardinality ω1 such that the pair (A,B)
has two Karp trees the infimum of which is not a Karp tree. (Huusko-
nen 1991)

A tree T ∈ Tω1 is a universal equivalence tree of a model A of cardinality
ω1 if A ∼= B holds for every B of cardinality ω1 for which T is an equivalence
tree of (A,B). If

KA =
⊕
{KA,B : |B| ≤ ω1,B 6∼= A}

and T ≡ σKA with |T | ≤ ω1, then T is a universal equivalence tree of A. A
tree T ∈ Tω1 is a universal non-equivalence tree of a model A of cardinality
ω1 if A 6∼= B implies T is a non-equivalence tree of (A,B) for every B of
cardinality ω1. This is equivalent to the claim that for every B 6∼= A of
cardinality ω1 there is some winning strategy τ of ∀ in EFκ(A,B) so that
SA,B,τ � T .

Note that a universal non-equivalence tree is necessarily also a universal
equivalence tree. Thus having a universal non-equivalence tree is a stronger
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property than having a universal equivalence tree. Every countable model
has universal non-equivalence trees. This tree is the canonical tree arising
from the Scott rank of the model. The concepts of universal non-equivalence
tree and universal equivalence tree are attempts to find an analogue of Scott
rank for uncountable models.

It is clear that many models of cardinality ω1 do have universal non-
equivalence trees. Let us consider an example. Let T be an ω-stable first or-
der theory withNDOP (or countable superstable withNDOP andNOTOP ,
see Shelah and Buechler 1989). By Shelah 1990 Chapter XIII Section 1, any
two L∞ω1-equivalent models of T of cardinality ω1 are isomorphic. There is
a back-and-forth characterisation of L∞ω1-equivalence which, from the point
of view of ∀, is a special case of EFω·ω(A,B). Hence every model of T of
cardinality ω1 has a universal non-equivalence tree of height ≤ ω · ω.

Theorem 20 (Hyttinen and Tuuri 1991) Let κ = κ<κ > ω. There is a
model A of cardinality κ with the following property: For any tree T such
that |T | = κ and T has no branches of length κ there is a model B of cardi-
nality κ so that A 6∼= B but ∃ has a winning startegy in EFκ(A,B, T ). Thus
A has no universal equivalence tree.

Proof. Note that κ = κ<κ implies κ is regular. The models A and B are
constructed using the reflexivity operation R introduced in Section 3. Let
T0 be κ<κ as a tree of sequences of ordinals. We let A be the tree-ordered
structure (R(T0),≤). Let

T1 = ((
⊕
α<κ

α) · T ) + 1

and T2 = T1⊗T0. Let f be the canonical projection T2 → T1. We can extend
f to R(T2) by letting f((s0, ..., sn)) = f(sn). Let B be the tree-ordered
structure (R(T2),≤). Now A has branches of length κ but B has none, so
A 6∼= B. To finish the proof we have to describe the winning strategy of ∃ in
EFκ(A,B, T ). Because of the special relation between T and T1, it suffices to
show that ∃ wins the game EF ′κ(A,B, T1) which differs from EFκ(A,B, T )
by allowing ∀ to play only elements of A and B the predecessors of which
have been played already.

Recall that elements of R(T0) and R(T2) come in different phases. An
element (s0, . . . , sn) of phase n may have extensions (s0, . . . , s

′
n) inside phase

n but it also has extensions (s0, . . . , sn, . . . , sm) of higher phase. During the
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game elements aα of R(T0), elements bα of R(T2) and elements tα of T1 are
played. Here α refers to the round of the game. The strategy of ∃ is to play
in the obvious way but taking care that he never increases phase by more
that 1, and making sure that when p(bα) = p(aα) + 1, then f(bα) ≤ tα.

Suppose now ∀ plays aα of limit height. There is a chain of predecessors
aβ of aα converging to aα. The corresponding elements bβ will eventually be
inside one phase and because of the “+1” in the definition of T1, will converge
to some element bα. This is the response of ∃.

Suppose then ∀ plays aα of successor height and aβ is the immediate
predecessor of aα. If p(bβ) = p(aβ) + 1, then f(bβ) ≤ tβ < tα, so f(bβ) is
not maximal in T1. Then ∃ can let bα be a successor of bβ in R(T2) so that
p(bβ) = p(bα) if and only if p(aβ) = p(aα) and f(bβ) ≤ tα. If p(bβ) = p(aα),
then f(bβ) may be maximal in T1. In that case ∃ lets bα be a successor of
bβ in R(T2) of the next phase. Then f(bα) is the root of T1, so f(bα) ≤ tα.
Additionally, ∃ has to avoid the < κ elements played already during the
game, but this is not a problem because of the “⊗T0” part of the definition
of T2.

The case that ∀ plays bα rather than aα is similar, only easier. �

The models constructed in the above theorem are unstable. This is not
an accident, as the following result shows:

Theorem 21 (Hyttinen and Tuuri 1991) (CH) If T is a countable unstable
first order theory, then there is a model A of T of cardinality ω1 so that A

has no universal equivalence tree.

On the other hand, it is not just the unstable theories that have models
with no universal equivalence tree. The paper Hyttinen and Tuuri 1991 has
results about models without universal equivalence tree of certain stable the-
ories. Also, there is a p-group of cardinality ω1 without universal equivalence
tree (Mekler and Oikkonen 1993).

The situation is more complicated with universal non-equivalence trees.
We know already that models of ω-stable theories with NDOP do have
universal non-equivalence trees.

Theorem 22 (A. Mekler) (CH) Let F be the free abelian group of cardi-
nality ℵ1. Suppose A ⊆ ω1 is bistationary. There is an ℵ1-free group H so
that ∃ does not win EFω×3(F,H), and ∀ wins the game EFω1(F,H, σT (A) +
ω · 2) but not the game EFω1(F,H, T (A) + ω · 2).
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Proof. Let xα ∈ Zω1 so that xα(β) = 0, if β 6= α, and xα(α) = 1. For limit
δ < ω1 let {ηδ(n) : n < ω} be an ascending cofinal sequence converging to δ,
and

zδ =
∞∑
n=0

2nxηδ(n).

Let F be the free subgroup of Zω1 generated by the elements xα, α < ω1. Let
Fα be the free subgroup of Zω1 generated by the elements xβ, β < α. Let H
be the smallest pure subgroup of Zω1 which contains the elements xα, α < ω1

and the elements zδ, where δ 6∈ A is limit. Let H be the smallest pure
subgroup of Zω1 which contains the elements xα, α < ω1, and the elements
zδ, where δ 6∈ A ∩ α is limit.
Claim 1. ∃ does not win EFω·3(F,H).
Proof. Suppose ∃ has a winning strategy τ in EFω·3(F,H). Let C be the
closed unbounded set of α such that as long as all moves of ∀ are in Fα∪Hα,
also moves of ∃ given by τ are. Since A is co-stationary, there is δ ∈ C \ A.
Now we let ∀ play the first ω moves of EFω·3(F,H) so that an isomorphism
f is generated between Fδ and Hδ. During the next ω moves ∀ plays so that
f is extended to an isomorphism f ′ : I → Hδ+1, where I is a subgroup of F .
Now I/Fδ is free, but Hδ+1/Hδ is not, for the element zδ + Hδ is infinitely
divisible by 2 in Hδ+1/Hδ. Claim 1 is proved.
Claim 2. ∀ does not win EFω1(F,H, T (A) + ω · 2).
Proof. Suppose ∀ has a winning strategy τ in EFω1(F,H, T + ω · 2). If
we prove T (A) � T , the claim follows. In order to prove that T (A) � T ,
it is enough to describe a winning startegy of ∀ in the game GA(T ). If
x ∈ H, let r(x) be the least α for which x ∈ Hα. Define r(x) similarly for
x ∈ F . We call r(x) the rank of x. The strategy τ gives ∀ elements x of the
models as well as nodes of the tree T . The ranks of these elements x are the
moves of ∀ in GA(T ). Sometimes it may be necessary to wait a few moves
before τ gives an element of sufficiently high rank. The moves of ∃ in GA(T )
are transformed into isomorphisms between subalgebras of F and H. These
isomorphisms determine the moves of ∃ in EFω1(F,H, T ). Finally τ gives ∀
a winning move in EFω1(F,H, T ). At this point we remark that there must
be some reason for ∃ to lose. The only conceivable reason is that we have
reached a limit stage δ with δ 6∈ A, and the non-freeness of Hδ+1/Hδ prevents
∃ from continuing successfully. Here ∀ needs extra ω · 2 moves to verify the
non-freeness. Because of our arrangements, this limit δ is the limit of the
moves of ∀ and ∃ in GA(T ), and thus ∀ won GA(T ). Claim 2 is proved.
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Claim 3. ∀ wins EFω1(F,H, σT (A) + ω · 2).
Proof. If x ∈ H, let r′(x) be the least limit ordinal in A which is greater
than r(x). The strategy of ∀ is to play first in F forcing ∃ to play eventually
elements x with bigger and bigger r′(x). As long as these ordinals r′(x) are
in A, everything goes fine. Eventually ∃ is bound to converge to a limit
ordinal δ 6∈ A. At this point ∀ uses his remaining ω · 2 moves to demonstrate
non-freeness of Hδ+1/Hδ. Claim 3 is proved. �

Note that for F and H as above, the tree KF,H has height ≤ ω · 3, but
SF,H has height ω1.

Corollary 23 (Mekler and Shelah 1993) (CH) There is a universal non-
equivalence tree for the free abelian group of cardinality ℵ1 if and only if
there is a Canary tree.

Proof. Suppose there is a Canary tree T . We show that T1 = σT + ω · 2
is a universal non-equivalence tree for F . Suppose H is an abelian group
of cardinality ℵ1. We may safely assume H is ℵ1-free, for otherwise ∀ wins
easily. Hence we may as well assume H arises from a bistationary set A
as in the proof above. Now T (A) ≤ T . By the previous Theorem, ∀ wins
EFω1(F,H, T1). Suppose then T is a universal non-equivalence tree of F . To
show that T is a Canary tree, let A be bistationary. Let H arise from A as
above. Now ∀ has a winning strategy τ in EFω1(F,H, T ). Let us then work
in a generic extension of the universe, where A contains a cub set but no new
reals are introduced. In that extension F ∼= H, but τ still applies to any
sequence of moves of ∃, whence T contains an uncountable branch. So T is
a Canary tree. �

So the statement that the abelian group F does not have a universal non-
isomorphism tree is independent of ZFC + CH. This is not an accident, as
the following general result demonstrates:

Theorem 24 (Hyttinen and Tuuri 1991) If ZFC is consistent, then the fol-
lowing statement is consistent with CH: Every countable non-superstable
first order theory has a model of cardinality ω1 without a universal non-
equivalence tree.

If we give up CH, the situation changes again dramatically. In Hyttinen,
Shelah and Tuuri 1993 it is proved consistent relative to the consistency of
an inaccessible cardinal, that (¬CH and ) every linear ordering of cardinality
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Figure 1: A first order theory and its models of power ω1.

ω1 has a universal equivalence tree which is of the form T + 1, where T has
cardinality ω1.

The orbit orb(R) of a relation on κ is the set {S ⊆ κn : (κ,R) ∼= (κ, S)}.
D. Scott (Scott 1965) proved that the orbit of a relation on ω is a ∆1

1-
subset of N . For orbits of relations on ω1 the corresponding question is
tied up with the problem of the existence of universal equivalence and non-
equivalence trees. Implication (2)→(1) in the following Proposition together
with a model-theoretic argument for its proof were suggested by H. Tuuri.

Proposition 25 (Mekler and Väänänen 1993) The following two conditions
are equivalent (assuming CH):

(1) (ω1, R) has a universal non-equivalence tree.

(2) orb(R) is ∆1
1.

Proposition 25 shows that the question, whether a model of cardinality
ω1 can be assigned a tree-invariant via the Ehrenfeucht-Fräıssé game, which
is in close relation with stability-properties of the first order theory of the
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model, has also a topological formulation. Figure 1 displays some relation-
ships between stability theoretic properties of a complete first order theory
and infinitary as well as topological properties of its models of cardinality ω1

(The logic Mω2ω1 will be defined later).
We end this Section with a result which further emphasizes the relation-

ship between properties of trees and properties of models:

Theorem 26 (Shelah, Tuuri and Väänänen 1993) The following two condi-
tions are equivalent:

(1) There is a tree of cardinality and height ω1 with exactly λ uncountable
branches.

(2) There is a model of cardinality ω1 with exactly λ automorphisms.

Note that the set of uncountable branches of a tree of cardinality and
height ω1 is (up to some identification) a closed subset of N1. It is consistent
relative to the consistency of an inaccessible cardinal, that there are no closed
subsets C of N1 with ω1 < |C| < 2ω1 . On the other hand, a Kurepa tree
satisfies (1) with λ = ω2 and it is possible to have a Kurepa tree with ω2

uncountable branches while 2ω1 > ω2. So there is a lot of freedom for the
number of automorphisms of a model of cardinality ω1. For comparison,
recall that the number of automorphisms of a countable model is ≤ ω or
= 2ω.

6 Infinitely deep languages

Let A be a fixed structure. The property of another structure B that ∃ wins
EFκ(A,B, T ) can be expressed by an infinitary game sentence which imitates
the progress of the game EFκ(A,B, T ). These infinitary game sentences are
the origin of what we call infinitely deep languages. Mathematically speaking,
the game with all its problems remains the same whether we write it down
as an infinitary game sentence or as an informal description of a set of rules.
This is why we have up to now suppressed all syntactic notions. However,
the game expressions arising from Ehrenfeucht-Fräıssé games are just very
special examples and the underlying more general concept deserves to be
made explicit.

Let A be a structure of cardinality ω1. We assume the language of A to
be finitary and of cardinality ≤ ω1. The universe of A is denoted by A. We
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Figure 2: Formula FA, when A = {a, b}.

shall define an infinitary formula φTA,~a(~z) by describing its syntax-tree. We
think of syntax-trees of formulas as labelled trees. Figure 2 is an example
of a syntax-tree of a formula, where φa, ψa etc are atomic formulas. In more
conventional style this formula is

∀x[(φa ∧ ψa) ∨ (φb ∧ ψb)] ∧ [∃x(θa ∧ ηa) ∧ ∃x(θb ∧ ηb)].

Figure 3 shows a syntax-tree FA that we shall use to build up φTA,~a(~z). Note
that this formula FA splits at nodes

∨
a∈A and

∧
a∈A into as many subtrees

as there are elements in A. In more conventional style the formula FA would
be

∀x
∨
a∈A

(φa ∧ ψa) ∧
∧
a∈A

∃x(θa ∧ ηa).

The formula φTA,~a(~z) is obtained from FA by letting φTA,~a(~z) “repeat” the
structure of FA following the pattern of a given tree T . If T were a one-
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Figure 3: Formula FA.

branch tree of two elements, then φTA,~a(~z) would be

[∀x0

∨
a0∈A( φa0(x0) ∧

[∀x1

∨
a1∈A φa0a1(x0, x1)]∧

[
∧
a1∈A ∃x1 φa0a1(x0, x1)])]∧

[
∧
a0∈A ∃x0( φa0(x0) ∧

[∀x1

∨
a1∈A φa0a1(x0, x1)]∧

[
∧
a1∈A ∃x1 φa0a1(x0, x1)])],

where the formula φa0,a1(x0, x1) is the conjunction of all atomic and negated
atomic formulas ψ(x0, x1) so that A |= ψ(a0, a1). The formula φa0(x0) is

defined analogously. In this special case B |= φTA,~a(
~b) clearly means that ∃

wins EFω((A,~a), (B,~b)).

We shall now define φTA,~a(
~b) for more general T . For this end, let T be

a tree of height ω1 in which every node has at most ω1 successors, there is
no branching at limits, and there are no maximal branches of limit length.
Let us consider an arbitrary maximal branch C of FA. The branch C ends
in φa, ψa, θa or ηa for some a = a(C) ∈ A. Let G be the set of branches C
which end in ψa or ηa. Let us consider the tree FA ·G T . To make FA ·G T a
syntax-tree, we assign lables l(g, w, t) to nodes (g, w, t) of FA ·G T as follows.
Only nodes ∀x, ∃x, φa, ψa, θa and ηa of the various copies of FA are given a
label. For other nodes the label is as in the picture of FA. Suppose we are
at a node (g,∀x, t) of FA ·G T . Let (tξ)ξ≤α be the sequence of {s ∈ T : s ≤ t}
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in ascending order. We let l(g,∀x, t) = ∀xα. Staying in the same copy of FA
we let l(g,∃x, t) = ∃xα. If t is maximal in T , we let l(g, ψa, t) = l(g, ηa, t) =
∀x0(x0 = x0). If t is not maximal in T , we let l(g, ψa, t) = l(g, ηa, t) = ∧. Let
aξ = a(g(tξ)) for ξ ≤ α. We let l(g, φa, t) and l(g, θa, t) be the conjunction of
atomic and negated atomic formulas φ(xξ)ξ≤α such that A |= φ(aξ)ξ≤α. This
ends the definition of the labelling of nodes of FA ·G T . The labelled tree
(FA ·G T, l) is our φTA,~a(~z).

The formula φTA,~a(~z) can be given semantics by means of the obvious

semantic game. The dual formula ψTA,~a(~z) of φTA,~a(~z) is obtained by replacing

in the lables of φTA,~a(~z) everywhere ∧ by ∨, ∨ by ∧, ∀ by ∃, ∃ by ∀ and the
labels l(g, φa, t), l(g, ψa, t), l(g, θa, t) and l(g, ηa, t) by their negations.

The formulas φTA,~a(~z) and ψTA,~a(~z) are taylor-made so that player ∃ has

a winning strategy in the game EFω1((B,~b),(A,~a), T ), if and only if B |=
φTA,~a(

~b), and player ∀ has a winning strategy in EFω1((B,~b),(A,~a), T ) if and

only if B |= ψTA,~a(
~b). We shall now define a general concept of which formulas

φTA,~a(~z) and ψTA,~a(~z) are examples.
A quasiformula is a labelled tree (T, l), where T is a tree with no maximal

branches of limit length and no branching at limits, and l(t) is

1. a countable conjunction of atomic and negated atomic formulas, if t is
maximal in T .

2. ∧ or ∨, if t has more than one successor in T .

3. ∃u or ∀u, where u is a variable symbol, otherwise.

Definition 27 (Karttunen 1984) The infinitary language Mω2ω1 consists quasi-
formulas (T, l), where T is a tree of height ω1 in which every node has at most
ω1 successors, and there is no u and no branch b of T such that l(t) alternates
infinitely many times between the values ∀u and ∃u on b.

The semantics of Mω2ω1 is defined via a semantic game, exactly as for any
game formulas. A formula is determined if this semantic game is always de-
termined. The formulas φTA,~a(~z) and ψTA,~a(~z) are clearly examples of formulas
of Mω2ω1 . These formulas need not be determined, but they are determined
in models of cardinality ≤ ω1.

The quantifier-rank of a formula (T, l) of Mω2ω1 is the subtree T ′ of T
which consists of nodes t with l(t) = ∀u or l(t) = ∃u, where u is a variable
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symbol. The tree T ′ may not have a unique root, but relations like T ′ ≤ T
still make sense.

The Ehrenfeucht-Fräıssé games EFκ(A,B, T ) have dominated our dis-
cussion all the way from the beginning. The special connection between
EFκ(A,B, T ) and Mω2ω1 is revealed by the following easy fact:

Proposition 28 (Karttunen 1984) Let A and B be two models of the same
similarity type and T a tree of height ω1 in which every node has at most ω1

successors, there is no branching at limits, and there are no maximal branches
of limit length. Then the following two conditions are equivalent:

(1) A and B satisfy the same sentences of Mω2ω1 of quantifier-rank ≤ T .

(2) Player ∃ has a winning strategy in the game EFω1(A,B, T ).

Note that Mω2ω1 is, up to logical equivalence, closed under conjunctions
and disjunctions of length ≤ 2ω and universal and existential quantification
over countable sequences of variables. Although Mω2ω1 is closed under dual in
the obvious sense, there is no trivial reason for it to be closed under negation,
because the relevant semantic games need not be determined, as the example
below shows. In fact, Tuuri showed that a sentence of Mω2ω1 has a negation
in Mω2ω1 if and only if it is definable by a sentence whose semantic game is
determined (Tuuri 1992).

Example 29 Let A ⊆ ω1 be bistationary. Let φA be the following sentence
of Mω2ω1: ∧

α0<ω1

∨
α1>α0

. . .
∧

α2n+2>α2n+1

∨
α2n+3>α2n+2

. . . φ(α0...αn...)

where

φ(α0...αn...) =

{
∃x(x = x) if supn<ω αn ∈ A
∃x¬(x = x) if supn<ω αn 6∈ A

Neither φA nor the dual of φA is true in any model. In this case the semantic
game is non-determined. We still have a negation for φA in the semantic
sense, for example ∃x(x = x).

A PC(Mω2ω1)-sentence consists of a sequence of ≤ ω1 existential second-
order quantifiers followed by an Mω2ω1-sentence. The existentially quantified
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predicates are allowed to have any countable ordinal as their arity. The
PC(Lω2ω1)-sentences are defined analogously. It is easy to see that every
PC(Mω2ω1)-sentence can be defined by a PC(Lω2ω1)-sentence. This observa-
tion combined with a standard Skolemization argument gives:

Proposition 30 (Karttunen 1984) Suppose Φ is a PC(Mω2ω1)-sentence and
A is a model of Φ. Then there is a submodel B of A so that |B| ≤ 2ω and
B |= Φ.

Proposition 31 If CH holds and there is a Kurepa tree, then some sentence
of Mω2ω1 does not have a negation. 3

Proof. Let us consider the following game G of length ω + 1 introduced in
Heikkilä and Väänänen 1991: Player ∃ plays nodes of a Kurepa tree T in
ascending order and ∀ plays uncountable branches of T which are elements
of a set Z. The task of ∃ is to play always a node which is not on any of the
branches mentioned so far by ∀. We can write a sentence ψ of Mω2ω1 which
describes models consisting of a tree T and a set Z and which says that ∃
wins G. Let A be a model which consists of a Kurepa tree T and the set
Z of its uncountable branches. Now A |= ¬ψ, because a winning strategy
of ∃ would create an uncountable level to T . If ¬ψ ∈ Mω2ω1 , then there is
a submodel B of A so that B |= ¬φ and |B| ≤ ω1. But ψ is true in any
submodel of A of cardinality < ω2, because ∃ can play elements of one of the
ω2 branches which are not in B. �

So, what can we express in the language Mω2ω1? We have already pointed
out that the formulas φTA,~a(~z) and ψTA,~a(~z) are in Mω2ω1 . This immediately
gives the following nice characterisation of rigidity. Recall that a countable
model is rigid if and only if all its elements are definable in Lω1ω, and a
relation on a countable model is invariant if and only if it is definable by a
formula of Lω1ω.

Proposition 32 Suppose A is a model of cardinality ω1. The following con-
ditions are equivalent:

1. A is rigid.

2. Every element of A is definable by a determined Mω2ω1-formula.

3Recently T. Huuskonen proved this without assuming CH or a Kurepa tree.
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Proof. Suppose A is rigid. If b ∈ A, we can find a tree Tb with no uncount-
able branches so that a 6= b if and only if A |= ψTbA,b(a). Now

A |= ∀x(x = a↔
∧
b 6=a

ψTbA,b(x)).

�

Proposition 33 (Hyttinen 1990) The following conditions are equivalent for
any relation R on A:

(1) R is invariant (i.e., fixed by all automorphisms of A).

(2) R is definable on A by a determined Mω2ω1- formula.

Proof. Suppose R is invariant. If b ∈ R and a 6∈ R, we can find a tree Tb,a
with no uncountable branches such that A |= ψ

Tb,a
A,a (b). Now

A |= ∀x(x ∈ R↔
∨
b∈R

∧
a6∈R

ψ
Tb,a
A,a (x)).

�

If A is a model of cardinality ω1, let I(A) denote the class {B : B ∼=
A}. That is, I(A) is the isomorphism type of A. We say that I(A) is
(determinedly) Mω2ω1-definable if there is a sentence φ in Mω2ω1 so that I(A)
is the class of models of φ of cardinality ≤ ω1 (and φ is determined in models
of power ≤ ω1).

Proposition 34 Let A be a model of cardinality ω1.

(1) A has a universal equivalence tree if and only if I(A) is Mω2ω1-definable.

(2) A has a universal non-equivalence tree if and only if I(A) is determinedly
Mω2ω1-definable.

Proof. (1) If T is a universal equivalence tree of A, then φTA defines I(A)
among models of cardinality ≤ ω1. Conversely, assume φ = (T, l) defines
I(A) among models of cardinality ≤ ω1. To prove that T is a universal
equivalence tree of A, suppose ∃ wins EFω1(A,B, T ). Since A |= φ, we have
by Proposition 28 that B |= φ. Hence A ∼= B.
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(2) If T is a universal non-equivalence tree of A, then first of all, φTA
defines I(A) among models of cardinality ≤ ω1. Moreover, φTA is determined
in models of cardinality ≤ ω1, for if B 6|= φTA, then ∀ wins EFω1(A,B, T ),
and hence B |= ψTA,B. Conversely, assume a determined φ = (T, l) defines
I(A) among models of cardinality ≤ ω1. To prove that T is a universal non-
equivalence tree of A, suppose B 6∼= A. So B satisfies the dual of φ. Now ∀
wins EFω1(A,B, T ) by following φ in A and the dual of φ in B.�

So whenever we can find a universal equivalence tree for a model A of
cardinality ω1, we can find an Mω2ω1-sentence which is an invariant of A, i.e.,
identifies the isomorphism type of A. What is the advantage of an Mω2ω1-
sentence over a brute force invariant? By a brute force invariant we mean
listing all elements and relationships of elements of the model and taking as
an invariant the listing which is smallest in the lexicographic ordering of all
listings. Both invariants are uncountable objects. But checking the truth of
an Mω2ω1-sentence in a given model involves playing a semantic game which
can last for countably many rounds only. So there is an important countable
vs. uncountable distinction between an Mω2ω1-sentence and the brute force
invariant. This may be quite relevant if we, for example, extend the universe
with forcing that does not add new reals. The truth of Mω2ω1-sentences is
preserved while new listings of a model of cardinality ω1 may have come
up. This is exemplified by the lack of a ZFC-provable Mω2ω1-definition of
the isomorphism type of the free abelian group of cardinality ω1: such a
definition would contradict the fact that an almost free group can be made
free without adding reals. This explains why having an Mω2ω1-sentence as an
invariant of a model means we have understood the model better than after
merely enumerating the elements and relationships of elements of the model.

Let us now turn to the question, what cannot be expressed in Mω2ω1 . The
most interesting concept undefinable in Lω1ω is the notion of well-ordering.
The analogous result for Mω2ω1 is that the class of trees with no uncountable
branches is undefinable in Mω2ω1 . This fact alone is as central in the study
of Mω2ω1 as undefinability of well-order is in the study of Lω1ω. The proof we
present for this fact is topological. For this it is useful to observe that if Φ is
a PC(Mω2ω1)-sentence, then the set {R ⊆ ω1 : (ω1, R) |= Φ} is a Σ1

1-subset
of N1.

Proposition 35 (Hyttinen 1987, Oikkonen 1988) (CH) The class of trees
(T,<) of cardinality ω1 with no uncountable branches is not PC(Mω2ω1)-
definable.
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Proof. Suppose Φ is a PC(Mω2ω1)-sentence whose models are exactly the
trees (T,≤) which have no uncountable branches. Let A = {f ∈ N1 :
(ω1,≤f ) |= Φ}. Since Φ is PC(Mω2ω1), A is a Σ1

1-subset of TO. By Proposi-
tion 12 there is a tree W of cardinality ω1 with no uncountable branches so
that Tf ≤ W for all f ∈ A, contradiction. �

Proposition 36 (Hyttinen 1987) (CH) For any PC(Mω2ω1)-sentence Φ there
is a mapping T 7→ ΦT from Tω1 to Mω2ω1 so that

(1) |= Φ→
∧
{ΦT : T ∈ Tω1}.

(2) A |=
∧
{ΦT : T ∈ Tω1} → Φ if A has cardinality ≤ ω1.

Proof. The analog of the classical game-representation of PC(Lω1ω)-sentences
or Σ1

1-sets, deriving from Svenonius and Moschovakis, is a game G of length
ω1 of the following kind. If A |= Φ, then ∃ wins G. If A 6|= Φ and A has
cardinality ≤ ω1, then ∀ wins G. Let GT be obtained from G by demanding ∀
to go move by move up the tree T . If T ∈ Tω1 , then the property that ∃ wins
GT can be expressed by an Mω2ω1-sentence ΦT . If A 6|= Φ, A has cardinality
≤ ω1, and τ is a winning strategy of ∀ in G, then τ gives a winning strategy
for ∀ even in the game GT , where T is the tree of all possible sequences (of
successor length) of moves of ∃ against τ such that ∃ has not lost yet. �

Proposition 37 (Hyttinen 1990) (CH) Suppose Φ and Ψ are PC(Mω2ω1)–
sentences so that Φ ∧ Ψ has no models. Then there is an Mω2ω1-sentence θ
so that Φ |= θ and Ψ ∧ θ has no models. (Craig Interpolation Theorem for
Mω2ω1)

Proof. Let T 7→ ΦT be the mapping given by Proposition 36. If ΦT ∧ Ψ
has no models for some T ∈ Tω1 , we are done. So let us assume ΦT ∧ Ψ
has a model for all each T ∈ Tω1 . By Proposition 30, we may assume these
models have cardinality ≤ ω1. But this means that the class of trees (T,<)
of cardinality ω1 with no uncountable branches is PC(Mω2ω1)-definable as
the class of trees (T ′, <′) of cardinality ω1 for which there is a tree (T,<), an
order-preserving mapping T ′ → T , and a model of ΦT ∧Ψ. This contradicts
Proposition 35. �
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A logic L satisifes the Souslin-Kleene Interpolation Theorem if every
PC(L)-expression, the negation of which is also definable by a PC(L)-
expression, is actually explicitly definable in L. It is well-known that Lω1ω

satisfies the Souslin-Kleene Interpolation Theorem but Lω2ω1 does not.

Theorem 38 (Hyttinen 1990) (CH) The smallest extension of Lω2ω1 to a
logic which satisfies the Souslin-Kleene interpolation theorem is the largest
fragment of Mω2ω1 which is closed under negation.

One interpretation of Theorem 38 is that Lω2ω1 has implicit expressive
power which the syntax of the logic is not able to express explicitly. This
emphasizes the naturalness of Mω2ω1 as an extension of Lω2ω1 . Various ex-
tensions of Craig interpolation theorem for Mω2ω1 have been proved in Tuuri
1992 and Oikkonen 19??.
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