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ON SCOTT AND KARP TREES OF UNCOUNTABLE MODELS

TAPANT HYTTINEN AND JOUKO VAANANEN

Abstract. Let % and B be twa countable relational madels of the same first arder language.
If the madels are nanisomarphie, there is 2 unique countable ordinal & with the property that

U =2 B but not A =" B,

ie. Wand B are L -equivalent up to quantifier-rank « but not up to & + L. In this paper we
consider madels W and B of cardinality e, and construct trees which have a simitar relation to
A and B as « above. For this purpase we introduce a new ordering T « T of trees, which may
have some independent interest of its own. It turns out that the above ordinal « has two
qualities which coincide in ecountable models but will differ in uncountable models.
Respectively, two kinds of trees emerge from o« We call them Scott trees and Karp trees,
respectively. The definition and existence of these trees is based an an examination of the
Ehrenfeucht game of length e, between M and B. We construct two models of power @, with
2% mutually noneomparable Scott trees.

§1. Introduction. It is well known that w,-like dense linear orderings without
endpoints are L, -equivalent but not necessarily isomorphic. We provide a
framework for measuring to what extent such nonisomorphic structures of
cardinality @, are “similar”.

In the range of countable structures we can measure “similarity” with countable
ordinals by looking for the largest ordinal « for which the models are in the relation
=4 .- We show in this paper that when we move on to uncountable models, the
notion =%, splits in a natural way into two different notions: Scott trees and Karp
trees. Moreover we show that while we can order trees like Scott and Karp treesina
way which remotely resembles the ordering of ordinal numbers, the situation is still
fundamentally different: for example, the “nonsimilarity” of some uncountable
models can be measured with two noncomparable Scott trees.

The structure of this paper is as follows. §1 contains some necessary prerequisites
about Ehrenfeucht games. §2 presents basic properties of a game-theoretically
oriented ordering of trees. This paves the way to the definition and existence of Karp
and Scott trees presented in §3. §4 is devoted to a detailed study of some game-
theoretic properties of stationary sets. §35 contains calculations of Scott trees of
certain dense w,-like linear orderings.
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898 TAPANI HYTTINEN AND JOUKQ VAANANEN

Throughout the paper W and B denote structures of cardinality o, for a fixed
finite finitary relational vocabulary L. We assume A n B = { for simplicity. We use
G(A, B) to denote the Ehrenfeucht game of length w, associated with W and B. This
game is defined as follows. There are two players ¥ and 3, and both make o, moves.
Player V always moves first. The players pick elements of the models U and B. We
use x, to denote the element chosen by ¥ and y, to denote the element chosen by J at
move &. The anly rules of the game are:

x, A=y, eB and x,eB=y, €A

Suppose a sequence (X,, ¥,), <, i played in G(U, B). Player 3 wins if for all atomic
L-formulas ¢{x,,...,x,) and all a,. .., &, < ¢, we have -

(*) gIP: (p(aaoa""laan}ﬁ%r: (p(bao‘!“'Jbrx“)‘.‘
where '
i A if B,
= X, ¥fxﬂe and b, = X, l X, €
v, ifx,eB V. i x,e A

Otherwise player ¥ wins.

A strategy of player 3 in G(U, B) 1s a sequence S = { f(Xg...., X ))p<0, Of func-
tions on A u B such that the moves y, = f,(xq,...,x,) are legal moves of 3 in
the game. This strategy is a winning strategy if for all sequences (x,), ,,, from 4 u B,
for all atomic L-formulas o(x,,...,x,) and all a4, ..., &, < @, (*) holds.

A strategy of player ¥ in G(U,B) is a sequence S = (f,(¥o,. s ¥gs - Jg<adu<w, Of
functions on A u B. This is a winning strategy if for all sequences (¥,), <., of legal
answers of 3 to the moves x, = f,(Vg,.... Vg, Jg<a Oof ¥ there are aq,..., 0, < @
and an atomic ¢ such that (x) above fails.

LemMa 1.1 ([Kar]). The following conditions are equivalent:

(1) A =B. :

(2) Player 3 has a winning strategy in G(U, B),

(3) Player ¥ does not have a winning strategy in G(U, B).

Proor. If (1) holds, the winning strategy of 3 in G(2,B) 1s based on obeying the
isomorphism. That is, if =: A = B, then 3 lets

n(x,) if x,e A,
nlx,) ifx,eB

ﬂ,(xo,,..,xa)z{

If (1) does not hold, then the winning strategy of ¥ in G(U,B) is based on
enumerating both universes during the game. Thatis,if 4 U B = {z,|« < ,}, then
Vlets f(¥os. s Yoy Jg<a = 2,- Player 3 cannot win such a game, for otherwise we
would have ([} true. QED.

RemaRK. Hintikka and Rantala [Hin] define a so-called constituent Cy for a
model A of power a,. (In fact their approach is more general) The constituent Cy
is an infinitary sentence whose syntax tree looks like the syntax tree of an L_ -
sentence, except that the tree has height o,. The semantics of Cy is defined via the
usual semantical game. In fact, Cy is the natural game-sentence which renders
condition (2) of Lemma 1.1 equivalent to B = Cy. There is a dual form Dy of Cy
with (3) of Lemma 1.1 equivalent to not ‘B = Dy,
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By a tree we mean any partial ordering in which every element has a unique well-
ordered set of predecessors. Let T be a tree. We use G(U, B, T) to denote the
maodified Ehrenfeucht game in which player ¥ has to go up the tree T mave by move.
Thus during the game G(2U, B, T) player ¥ moves pairs z, = (x,,(,), Where x, €
A v Bandrt, e T, and player 3 responds with elements y,. The rules of G(U,B, T)
are the rules of G(U, B). Player 3 wins in G(U, B, T)if he has not lost the associated
G(U, B) before the sequence (t,), ., fails to be an ascending chain in T.

Thus a strategy of 3 in G(U, B, T) is a sequence S = (f{2g,+ .1 Zu))g<m, OF
functions with the property that if z, = (x,,t,), where x, € A w Band ¢, € T, then
(fo(Zos-- - 24)a<a, 18 a legal sequence of moves of 3 in G(2, B). This strategy is a
winning strategy if for all sequences (x,), <4, f§ < @, from A u B, for all atomic
©(Xq,. - ., %), all ascending sequences (£,), <, from T and all a,,...,a, < f we have

U= @(dygs- -5 8,) > BE @b, ., b)),
where
L if x,e A,
. f:x((x(]s tO)a R 3(xm£a:)) lf xﬂ € B:
and
% if x, e B,
" Uallxoto) 1 (X,0t,) i X, € A.
A strategy of ¥ in G(U, B, T) is a sequence

S= ((tm(ym‘“:yﬂa--‘]ﬂcm f;(ym--<sy_aa<<‘);:i<a])a<«:1

of pairs such that t,(yg,..., Vg, Jg<a € T Whenever (¥q,...,¥y,...) 18 a legal se-
quence of maves of 3. This is a winning strategy if for any sequence (V,), <., of legal
answers of 3 to the moves x, = f,(Vo,.... Vs, .. Ja<e Of V there are ag,... 0, < @y
and an atomic ¢ such that () above fails and the sequence (t,(Vq,-- -, ¥p,-- Jg<alasys
y = max{ag,...,a,}, is an ascending chain in T

Note that G(, B), as well as any G{U, B, T) where T has an uncountable branch,
are by Lemma 1.1 always determined.

If we On, let B, be the tree of descending sequences of elements of o. Then by
classical results (see, for example, [Bar]), G(2, B, B,) is determined and 3 has a
winning strategy iff % =% B. Let B, be the tree with just one branch, which has
order-type . Then G(U, B, B,) is determined and 3 has a winning strategy iff
A =_,B. However, if T contains longer (countable) branches, the game need not
be determined, as the remark after Proposition 5.1 shows.

We are indebted to Taneli Huuskonen for pointing out a mistake in an earlier
version of this paper and for suggesting many improvements.

§2. A game-theoretic ordering of trees. We define a relation T « T* between
trees. This relation enables us to think of trees as generalized ordinals. The whole
idea of this paper is to try to use trees with no uncountable branches as invariants of
uncountable models in the same way as trees with no infinite branches (i.e. ordinals)
are used as invariants of countable models.
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Let T and T* be two trees. We say that T is order-embeddable in T*, T < T*,if
there is an order-preserving f: T — T* For example, B, < B, if and only if & < §.
Wewrite T< T T<T*but T*£L TLand T=T*I{ T<T*and T* < T.

Let ¢T denote the tree of all initial segments of branches of 7. Kurepa has
proved that T' < 6T (see 2.2, below). Note that aB, = B, ;.

Let G,(T, T*) denote the game in which ¥ picks elements of an ascending chain
Uy < -+ <1, <+ in T* and 3 has to respond with elements £, < -« <1, <--- of
T. If a player cannot move, the other player is declared the winner. Clearly, T* < T
if and only if 3 has a winning strategy f, = f,{uq,.-.,1,) in this game. To define
our game-theoretic ordering of trees, we write T « T* if ¥ has a winning strategy
ity = Goltasseatp .- Jp<q i0 G (T, T*). Note that the length of the game is only
limited by the heights of T and T*. In Proposition 4.6 we shall have an example
of a nondetermined game G| (T, T*).

LeMMa 2.1 If T T* then T < T*,

Proor. Let t € T be given. We can play the elements ¢’ < ¢ against the winning
strategy of ¥. This yields a last move f(¢) of ¥ in. T*. Clearly f is order-preserving
T-T*Hence T< T* QED.

The next lemma shows that ¢ operates like a successor function relative to the
ordering <«:

LEmma 2.2. (1) T« 6T

(2) There is no T* with T « T* « ¢T.

Prook. Clearly, T« oT, for we can let u,(ty,...,t,... )5, D& the branch
{teT|t<t, for some f < a}. Suppose then V has a winning strategy «, =
Uy(tos. oalpy - Jpeq 0 Gi(T, T*) and a winning strategy ¢, = 6,(@q,...,4g,..-Jg<a
in G(T* aT). We can define a branch (b,),.q, in T as follows. For a start let
g = tgl ), ¢o = vl ) and ¢, = v,(q,). We let by be the element of ¢, which has
lowest rank. Suppose then that by < -+ < bg < -+« (§ < o) have been defined. Let

dy = ua(bm“':bﬁ:‘“)ﬂ4¢: Cavr1 = Ua+l(a0=---saa)-

If o = (o, let also ¢, = v,(dq, ..., a4, Jp<a- NOW ¢4y q > ¢,, whence we can pick
b, € ¢, 4 1 extending each by, ff < &, and of minimal rank. There is no limit to this
branch, which is a contradiction. QED.

LeMma 23. (1) T« T*iff 6T < T™*

2)T=<T*iff TwoaT*.

Proor. If T « T*, then 3 can play the elements of any branch in T, ie. any ele-
ment of T, against the winning strategy of V. The next move of ¥ determines the
required mapping aT — T*. Conversely, if such a mapping exists, ¥ can apply it
to the sequence of previous moves of 3 to get his next move. This ends the proof
of (1}. For (2), suppose there is an order-preserving mapping T — T*. Now ¥ can
play G,(T,6T*) by letting the sequence of images of the previous moves of 3
be his next move. Finally, let us assume T « ¢T* We get an order-preserving
mapping { from T into T* as follows. Let t € T be such that f(t') is defined for
t' < t. We play all ' <t against V in G(T,0T%*). After these moves ¥V makes
another move § € 7% We let f(z) be the minimal element in § which extends all
fi') e <t QED.
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LEMMA 2.4. There is no sequence (T,), ., such that T, ., « T, for all n < .

Proor. By playing all the infinitely many games simultaneously one easily derives
a contradiction. Indeed, let u, = ti(ty,...,tp,.. )5, be @ winning strategy of ¥ in
G(T,., T,). We can define branches b < - < b} < ---(x € On) in T, as follows:

AU Y AL I '

QED.

Todoréevi¢ [Tod] defines a product T & T* by restricting the direct product of
T and T* to the set of all pairs (¢, t¥)from T x T* wheret has thesame rank in T as
t* has in T*. The more general product (X),., T; is defined analogously.

LemMa 2.5. If T, i€ L, is a family of trees, then (X);.; T, is the infimum of T,,i € I,
relative to <. '

Proor. If (t,),.; is an element of (>3ief T;, let fi((t;);cs) = t;. Then f; is an order-
preserving mapping ®,-E,, T;—» T,. On the other hand, if f: T> T; is order-
preserving for all i € {, then the mapping

) = fiOleiers @ =min{rank(f(0)|ie I},

is order-preserving. QED.
Note that there is also a natural supremum sup{T;|ie I} of a family T;, i € I, of
trees: the disjoint union of the trees.

§3. Scott and Karp trees. If W and B are not L, -equivalent, we can easily con-
struct a countable ordinal « such that 3 has a winning strategy in G(2, B, B,) but
. 'Y hasa winning strategy in G(¥, B, B, , ;). Bearing in mind that ¢B, = B, ,, and that
G(U, B, T) may be nondetermined, we define:

DEeFINITION. (1) T is a Scott tree of the pair (U, B) if ¥ has a winning strategy in
G(U,B,sT) but not in G(A,B, T).

(2) Tis a Karp tree of the pair (2, B) if 3 has a winning strategy in G(U, B, T) but
not in G(YH, B, aT).

(3} T is a determined Scott tree of the pair (2, B) if it is a Scott and a Karp tree
of (U, B).

Note that B, is a Scott tree of (2, B) iff it is a Karp tree of (U, B} iff [U =%, B
and not W =22 ! B]. Note also that T is a determined Scott tree of (U, B) iff [V has
a winning strategy in G(,B,6T) and I has a winning strategy in G, B, T)].

The results of §5 show that a Karp tree may fail to be a Scott tree, and conversely.

Note that Scott trees (of some pair (%, B)) are minimal in the following sense.
Suppose T is a Scott tree and T* « T. Then 6 T* < T, whence T* cannot be a Scott
tree. Scott trees are also maximal in the following sense: If T is a Scott tree and
T « T*, then aT < T* whence T* cannot be a Scott tree. In the same sense Karp
trees are minimal and maximal. A Scott tree Ty is a smallest Scott tree if T, < T
holds for all Scott trees T. Neither Scott nor Karp trees can contain an uncountable
branch; in particular, both have to have height < @, . If T is a Scott tree, there is a
subtree T' of T which is also a Scott tree and which has cardinality < 2°, because
there are only 2% possible sequences of moves of 3.

PrOPOSITION 3.1. Suppose T* is a Scott tree of (U, B) and T is a Karp tree of
(U, B). Then T < T*.
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PrOOF. Let §= (f.:(yOs' . ayﬂ:“<)ﬂ<m h’a(ym' ‘ -syﬁa- . -]ﬂ<a]a<m1 be a wirming
strategy of ¥ in G, B,¢T*) and $* = (r,(z¢,.--,2,))u<, & Winning strategy of 3
ih (I B, T). We describe a winning strategy (g,(f,---,1p,.. Jp<aluce, Oof ¥ In
G,(T,cT*). Suppose V has moved u, <<--- <y <--- (f <a) in 6T* and 3 has
moved tq <o <ty <--- (f <a) in T. Suppose (x;, ¥p)s<, has been produced
simultaneously in such a way that(x,,u,),., s a sequence of moves of ¥ and (yg)p ...
a sequence of moves of 3 in G, B,oT*) when V plays S. Assume also that
(xg,25)5<4 I8 2 sequence of moves of ¥ and (y,);., a sequence of moves of 3 in
G(U, B, T) when 7 plays S*. Now let ¥ play one more mave, (x,,t,), of G(U,B,¢T*)
according to S. The element u, is the next move of ¥V in G,(T,aT*). Thus
Galtas- st Jpea = RlVgs- s ¥ps- - Jpear Where yg = #4l(xo, Lo), . ..o (X5, 25)) < 0,
and x5 = f3(¥g,---, ¥yr-- )y <p, B < o If ¥ cannot move, it is because ¥ cannot move
in G(M, B, s T*) or because 3 cannot move in G, B, T). Both cases are impossible
because $* and S are winning strategies. QED.

Note that in the above proposition it suffices to assume that ¥ has a winning
strategy in G(U, B, o T*) and I has a winning strategy in G, B, T).

COROLLARY 3.2. All determined Scott trees of (U, B) are =-equivalent. A deter-
mined Scott tree is a smallest Scoit tree.

Proor. If T and T* are determined Scott trees, then both are also Karp trees,
and the claim follows from Proposition 3.1. QED.

We are ready to prove the main result of this paper about Scott and Karp trees:

THEOREM 3.3. Every pair (U, B) of nonisomorphic models of power o has a Scott
and a Karp tree. Moreover, if 3 has a winning strategy in G(W, B, T))and ¥ has a
winning strateqy in G(U, B, T;), then there are a Karp tree T and a Scott tree T’ such
that ) < T T« T,

Proof. Note first that player ¥ has a winning strategy in G(U, B, T) for some T,
since W ¢ B. Similarly, player 3 has a winning strategy in some G, B, T).
(We allow here the special case that T= ¢7.) So the first claim fallows from the
second claim.

Suppose ¥ has a winning strategy S in G(U, B, T;). Let T, consist of sequences
(x4, V4)p <« Of moves in G{U, B, T;) when ¥ plays S and I has made the move y, but
has not vet lost the game. Clearly S extends to a winning strategy of ¥ in
G, B, ¢T,)—V can simply start with ¢, = ¢ and then follow the moves of 3.
Clearly also, 6Ty < T,. Let T" be a «-minimal (recall that « is well-founded}) tree
such that T° = T, or T' « T,, and ¥ has a winning strategy in G(2, B, ¢ T'). We show
that ¥ has no winning strategy in G(U, B, T'). Suppose the contrary; that is, V indeed
has a winning strategy S in G(2, B, T"). Let T, be the tree of sequences (xg, ¥p)s<a
of moves in G(, B, T') when ¥ plays S and 3 has made the move y,, but has not
yet lost the game. As above, ¥ has a winning strategy in G(U,B,0T,),and ¢T, < T".
Thus T, « T, contrary to the minimality of T".

Player 3 does not have a winning strategy in G(,B). Let T consist of winning
strategies of 3 in games obtained from G(U, B) by limiting the number of moves
to some & + [ (<,). A strategy S of o0 + 1 moves precedes another strategy S* of
f + I movesin T if & < f# and § and $* coincide on the first « + [ moves. Clearly,
3 has a winning strategy in G(U, B, T), for 3 can use the strategies which ¥ picks
from T to carry on the game. On the other hand, 3 does not have a winning
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strategy in G{U, B, ¢T). Indeed, suppose S were such a strategy. S generates an
uncountable branch in T as follows. If (S,), ., are defined, let S, be obtained from
S by letting ¥ play ¢, = (Sg)s, for ¥ < o and limiting the number of moves to
o + 1. Then (8g); <, 18 an uncountable branch in T, contrary to U # B.

We can easily map T, into T using the winning strategy of 3 in G(%, B, T,). By
Proposition 3.1, T< T°. QED.

The tree of sequences of maoves used in the first part of the proof was first used in
[Kar] to prove an approximation theorem for a class of game-formulas containing
the duals of the constituents Cy. The tree of strategies used in the second part was
first used in [Hyt1] to prove an approximation theorem for a class of game-formulas
containing all constituents Cy,.

The families of Scott trees and Karp trees are trivially closed under suprema. We
know much less about infima. However, we have the following observations, which
we give without proof.

PrRoOPOSITION 3.4. If ¥ has a winning strategy in G(U, B, T)) for i € I, then I does not
have a winning strategy in G(U,'B, X, T))-

ProposITION 3.5. Suppose the pair (%, B) has a smallest Scott tree. Then the family
of Scott trees of (U, B) is closed under infima. .

PROBLEM. Are Scott or Karp trees closed under (x)?

REMARK. The family of all Scott trees of a pair (U, B) is closed under the infimum
(@) of a finite number of trees if the definition of the Ehrenfeucht game is modified
s0 as to let ¥ move a finite number of moves at a time.

§4. Games and stationary sets. We refer to [Jech] for the definition of stationary
and cub {closed unbounded) sets. We call a set 4 of countable ordinals bistationary
if it is stationary and its complement is stationary. The existence of bistationary
sets is a consequence of the axiom of choice (see [Jech]). The purpose of this sec-
tion is to prove some game-theoretic properties of stationary sets. The model-
theoretic-results of the next section rely heavily on these results.

Suppose 4 = @,. The game G{A) is a game of two players, I and 11, who pick
elements of e, . Each move has to be a bigger element than the previous moves, and
atlimit moves [ has to move the limit of the previous moves. Player [ starts the game.
Player II wins if all limit moves are in A; otherwise I wins. The game G{A, T) is
defined similarly except that I has the extra task of going up the tree T move by
move. The following lemma shows that G(4) is determined. However, we shall then
see that G(4, T) 1s not necessarily determined. The following lemma is essentially in
[Kuel:

LemMa 4.1. (1) I has a winning strategy in G(A) iff w, — A is stationary.

(2) 1T has a winning strategy in G(A) iff @, — A is nonstationary.

PRrOOF. (1) Suppose I has a winning strategy S. Let C be any cub set on e, . If II
plays against S by always choosing elements of C, he will lose at some limit ordinal
which is in C but not in A. Thus C n (w; — A) # . This shows that &, — A is
stationary. For the converse, suppose @, — A is stationary. The winning strategy
Of I iS fa+l(_v0r“:ya:} = ya + 1

(2) Suppose IT has a winning strategy § = ( f,{xq. ..., X,))s <, Let C be the cubset
of ordinals <, closed under the functions f,(xq,...,%,), k< w. Clearly, C < A,
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whence ¢y — A is nonstationary. Suppose then Cisacubsetand C < 4. ThenIT has
the winning strategy

Jlxar- ., x) =min{y e Clsupixg,...,x,} < y}.

QED.

Let G*(A) be the game G(A,0B,). In other words, G¥*(A) is a game with twao
players, I and II, and ¢« moves. Player I plays «g, then I plays ¢, > &, then I plays
oy > oy, then IT plays ay > a5, etc. Player II wins if sup, ., is in 4; otherwise
player I wins. It is proved in [Kue] that I has a winning strategy in G*(4) iff A
is nonstationary, and that II has a winning strategy in G*(A) iff @, — A4 is
nonstationary. This implies that G*(4) is nondetermined for all bistationary A.
More generally:

Lemma 4.2 ([Hytl]). Suppose A < ¢, is bistationary. Let T be a tree of height «,
where @ < o < @,. Then G(A, T) is nondetermined.

PROOF {A. Mekler). Suppose I has a winning strategy S in G(4, T). There is a
forcing notion P which adds a cub set inside A but adds no new reals (see [Bau}
for details). In this forcing extension, II has a winning strategy in G(4, T). However,
since na new reals are added, § is still a winning strategy of 1. This contradiction
ends the proof. QED.

ReMARK. A consequence of Lemma 4.2 is that, given a strategy S of I and a posi-
tion in the game G(4, T'), where A is bistationary and T arbitrary, H has, for any
countable &, a nonlosing counterstrategy against & for the next « moves. We shall
use this fact frequently in the sequel.

Let A < w,. A subset C of Ais closedif itis closed in the order topology. Let T(A)
be the tree of all closed sets of elements of A, ordered by C < C*iff C is an initial
segment of C*. If A is costationary, this tree has no uncountable branches, and if A
is stationary, it has height w,. Properties of T(A) are vital for our results. We are
indebted to S. Todoréevic for bringing these trees and their properties to our
attention (see, for example, [Tod]).

LemMa 4.3. Suppose 4 € o, is stationary. Then | has a winning strategy in
G(A,aT(A)).

Proor. The winning strategy of I in G{A,aT{A)) is the following: I starts with
oy = min{A) and 1, = . Henceforth I plays his moves from A and picks in aT(4)
the sequence of his previous moves in A. If all limit moves are in A4, we shall have
a cub setin 4. Hence I is bound to beat IT with this strategy. QED.

LEMMA 4.4. Suppose 4 < «w is stationary. If B € w, is costationary, then | does
not have a winning strategqy in G(A, T(B)). If, moreover, A — B is stationary, then |
does not even have a winning strategy in G(A, e T(B)).

Proor. Suppase | has a winning strategy S in G(A4, T(B)). We describe a win-
ning strategy S* of II in ¢*(B). This is contrary to costationarity of B. Suppose
fo < B, <--- < B, have been played in G*(B). The strategy S* is based on play-
ing also Gid, T(B)). Suppose the game G(A, T(B)) has proceeded to move (4,t)
of I, with sup{{ Jt) = B,, and II has not lost yet. Now S* asks II to play in G*(B)
some element f,,, > sup{( }t). Moreover, 11 continues the game G(A, T(B)) as
follows: we know that IT has a strategy by which he can continue G{A4, T(B)) at
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least f,., + 1 moves without losing. After these moves the resulting move (5%, %)
of I satisfies sup{| J¢*} > B,., and II has not lost yet. The strategy S* is now de-
fined, and it réemains to show that it is winning. After @ moves in this game a se-
quence B, < f; < ---- < f§, <---- is produced. Let § = sup,., B, Notice that
§ = sup, ., sup( Jz,}. Since I has not lost yet in G(A, T(B)), I has to be able to
make more moves. This is possible only if § € B. Thus I has won G*(B).

The second claim is proved similarly. This time 1 wins G*, — {4 — B)),
contrary to stationarity of 4 — B. (If the & produced is not in &, — (A — B), then
If can go on playing G(4, T(B)), but I has only one more node in 6T(B) to go
te.) QED.

The tree B, has the property that any T « B, also satisfies ¢ T « B,,. In fact any
tree of height y = [y with a branch of length y has the same property. This gives rise
to the following notion: A tree T is a fimit tree if T' « T implies 6 T' « T for all T".
. Notice that ¢ T is never a limit tree.

PROPOSITION 4.5. Suppose A S @, is unbounded. Then T{A) is a limit tree.

Proor. Easy. QED.

PROPOSITION 4.6, Let A and B be subsets of w, suchthat A = Band A, B — A and
®, — B are stationary. Then T(A) < T(B), but not T(A) « T(B).

ProoF. Trivially, T(A) < T(B). Suppose then that f is an order-preserving map-
ping T(B) - T(A). Let C be the cub set of countable ordinals « such thatif ¢ € T(B)
with sup(t) < o, then sup(f(f)) < «. Let a € C n (B — A). We may assume that the
heights of ¢ € T(B) with sup(t) < « are unbounded below a. Let (z,) be an ascending
sequence in T(B) with sup{{ Jt,{n < @} =« Then sup{{ }f(t,){n < o} = . We
get a contradiction, since w {t,|n < @} w {a} € T(B) whereas { }{ f(t,){n < @} has
no extension in T(A). _

To prove the failure of T(A) « T(B), let § be a winning strategy of I in
G(T(A), T(B)). We show that IT has a winning strategy in G*(B). Whenever I plays
o, in G*(B), 1L plays &, more moves against S in G(T(A4), T(B)), and then lets his
move in G*(B) be the last element of the last move of 1 in G(T(4), T(B)). After
moves are made in G*(B), the supremum & of the moves is equal to the supremum
of the moves of [in G({T(A4), T(B)). Since I is following § in G(T(A4), T(B)), he must

" be able to make at Jeast one more move in T(B), whence § € B. This ends the de-
scription of the winning strategy of I in G¥*(B). Since w, — B is stationary, we
have a contradiction. QED.

An inspection of the above proof reveals that if 4 <, Is bistationary and
every node of a tree T has extensions of all countable heights, then not T « T(A).
Note that such a tree T is easily constructed and even, so that it is special. Then
T < T(A), so here again G(T, T(A4)} is nondetermined.

We close this section with some observations on the sizes of trees T such that I has
a winning strategy in G(4, T). We know from 4.2 that such T are uncountable.

ProrosiTioN 4.7 (T. HUUSKONEN). ff A € o, is bistationary and 1 has a winning
strategy in G(A, T), where T has no uncountabie branches, then |T| = 2°,

ProoE. Suppose I has a winning strategy §in G{A, T'). Let B be the tree of all pos-
sible sequences of triples s, = {x,,f,,y,) of moves of I and I in G(A, T') when I
follows § and I has not lost yet. It easily follows from 4.2 that every node of B has
extensions (x,,4,, ¥,) with ¢, of arbitrary beight <®,. So above any node of B
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there 1s a node s, after which the ¢, branches. Thus we can build a full binary tree
inside B in such a way that it reflects a full binary tree in T. Any branch of this
binary tree has an extension because V¥ is following a winning strategy. Hence T
has at least 2¢ elements. QED.

ProposiTiON 4.8. If 4 € w, is bistationary and | has a winning strategy in G(A, T,
then T(A) « T.

ProoF. Suppose I has a winning strategy § in H = G{A4, T). Let us denote the
game G,(T(A4), T) by G. We describe a winning strategy of ¥ in G. While we play G
we let [ play H according to his winning strategy. Let the first move of I in H con-
sist of ag € @, and t, € T. The first move of ¥V in G is t,. Let the first move of 3
in G be so. Suppose then I has played «, € w, and t, € T in H, ¥ has played ¢, in
G and 3 has played s, in G. If , = max({(s,) > «,, we let [l move f, in H, after which
I answers with a,,, € @; and t,,, € T, and V has a chance of playing ¢,,, in G.
Otherwise we let II play o, + [ more moves in H without losing. This is possible in
view of the remark following Lemma 4.2. The corresponding moves of T give rise
to a chain G, in T During the next e, + 1 moves of G player ¥ follows the chain C,.
The point of deing this is that the maximum of the next move of 3 in G will ex-
ceed a,, which will be relevant when we come to a limit. Indeed, at limit points
of this strategy the supremum of the maxima of the moves of 3 in & coincides with
the supremum of the moves T has made in «, in the game H. So if 3 can go on
playing G after ¥ has made the canonical limit moves in G and H, player II has not
lost H yat, whence [has to be able to go on playing H in order to demonstrate his

victory. Therefore the ahove strategy enables ¥ to play G and win. QED.

" Itfollows from the above proposition and Theorem 3.4 of [Tod] thatif 4 < @,
is bistationary and I has a winning strategy in G(A4,6T), then T is nonspecial.

§5. Examples of Scott trees. In this section we apply the results of §4 to Scott and
Karp tree computations. Our models will be dense @ -like linear orderings, and we
will show that in the field of these uncountable models the notions of Karp trees and
Scott trees are very different from each ather.

Let A © @ be bistationary. Let # denote the order-type of the rationals. Let $(A4)
denote the dense o, -like ordering ¥, ., 1,, Where

_ft+n faeAdora=0,
b = # if xg 4and a > Q.

For x € §(A), let r(x) be the unique « for which x € r,. Models like ©(A4) have been
studied e.g. in [Nad] and [Hytl]. If T is a tree, we denote by T” the tree obtained
from T by adding one element to the end of each maximal branch of T.

PROPOSITION 5.1. Suppose A = o, is bistationary.

(1) Player ¥ has a winning strategy in G(P(A), Plw), T if and only if T has a
winning strategy in G(A, T).

(2) Player 3 has a winning strategy in G(P(A), D{cw,), T") if and only if 1T has a
winning strategy in G(A, T).

ProOF. (1) Suppose ¥ has a winning strategy S in G(P{A), #{w,), T'). Then I hag
the following winning strategy in G(A, T). First I plays (x,, ¢,) according to §. The
first move of ¥in G(A, T) is &y = r(x,). Then 3 plays some f§, > a,. Suppose then
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that I has played (a,,¢,), £ < v, and Il has played f;, & < y,1n G(A, T). Suppose we
have at the same time played (x,, t;), £ <y, and y,, { <y, in G(P(4), P(w,), T'). If
y is limit, then I maves (x,,1,) according to § and lets (a,,t,) be (sup{a, ) & <y}, 1,).
If «, ¢ A, I has won already. If y = { + 1 we define («,,1,) as follows. Let us look
at the game G(P(A), Plw,), T'}). Unless [ has won G(A, T) already, player 3 has
a trivial strategy in G(®${A), #{w,), T') which keeps him in the game until ¥ has
moved, following S, a pair (x,¢) with r(x} > f,. Now I lets &, = r(x) and ¢, = ¢ in
G(A, T). We have described a strategy of T in G{A4, T). This is a winning strategy
for the following reason. While I plays G(A, T) according to the above strategy,
the game G(P(A), D{e)), T') is played as well and ¥ wins it. The only way for ¥
to win 1s that there be some limit y with «, = r(x,) ¢ A. Then I has won G(4, T).

Suppose then that [ has a winning strategy S in G(A, T). We describe a winning
strategy of ¥ in G(P(A)}, B(w,), T'). Suppose § gives I the pair (¢4, t,) as the opening
move in G{A, T). Then ¥ moves some x, € $(w,) with r(xg) = 4. Now 3 plays y,
in P(4). Let II play the maximum of #(y,) and a4 + 1 in G(A, T). Suppese § gives
o, to L. We let ¥ move some x; € D(A) with r(x) = «,, etc. At limits ¥V plays the
same way he played x,. We know T wins G(4, T) at some Limit point which is not
in A. At this point ¥ easily settles the game G(9(4), B(w,), T") as well, making use
of the extra move he has in 7" aver T.

The proof of (2) is based on the same ideas as that of (1). QED.

REMaRK. If we combine Proposition 5.1 with Lemma 4.2, we get the result that
G(d{A), P(w,), T)is nondetermined whenever T is a tree of height o, 0 + | < < ;.
In particular, the pair (®(4), #(w,)) has B_, as Karp tree but no Karp trees of height
>w + 1. It also follows that ($(A), $(w,)) has no determined Scott trees.

PROPOSITION 5.2. Suppose A < w, is bistationary. Then T'(4) is a smallest Scott
tree of (D(A), (). If B2 A is costationary, then T'(B) is a Scott tree of
(P(A), P(w,))-

Proor. By Lemmas 4.3 and 4.4, [ has a winning strategy in G{4,¢T(B)) but
not in G(4, T(B)). Now the second claim follows from Proposition 5.1. The proof
of Proposition 4.8 can he modified to give T'(4) « T whenever ¥ has a winning
strategy in G(P(A), (ew,), T). This implies the first claim. QED.

THEOREM 5.3. There are nonisomorphic models W and B of cardinality w, such
that the pair (U, B) has 2°* Scott trees which are mutually noncomparable by <.

PrROOF. Let A € @, be bistationary and let A,, o < @, be mutually disjoint
stationary sets in the complement of A. Let {X, |« < 22} be a list of all nonempty
subsets of wy, and let B, = | J{4,| 8 € X,} v A. The trees T(B,) and hence the trees
T'(B,} are noncomparable. This is proved similarly to the proof that T(A4) < T(B)
in Proposition 4.6, By Lemma 5.2, T'(B,) is a Scott tree of (@A), P, }) for each
w < 29, QED.

Remark. L. Hella and T. Huuskonen have in their recent work constructed
models with large Karp trees.
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