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ON HANF-NUMBERS OF UNBOUNDED LOGICS

Jouko Vddndnen
(Helsinki)

Abstract An unbounded logic ts one which is capable of
characterizing the notion of well-ordering. Well-known
examples of such logics are Lw © and second order logic
LII. This paper survays some khown results concerning these
) logics and announces new results, including solutions to
Question 6.3 of Silver's thesis and to number 9 of Friedman's
102 Problems. An introduction to the subject is provided

by the first three chapters.

Chapter 1. Minima and maxima of spectra

Let us consider first order logic wa. For any ¢ € wa we

can define the spectrum of ¢

sp(¢) = {|A] | AE ¢},

T —

where lAl denotes the cardinality of the domain of the structure A.
ini interestin

The finite parts of spectra of sentences of me form an g

subclass of the class of computable sets of natural numbers. Fo?

example, the following open problem is widely known:

Finite spectrum probelm: If 8 is a spectrum, is there a spectrum 8’
such that w N S =w - 8" 2

Un the other hand, the infinite part of the spectrum of an wa -

sentence is trivial: either empty or contains every infinite number.
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If we consider spectra of Lw , sentences, a different situation
emerges: every set of natural num%ers is a spectrum. Also some spectra
have a non-trivial infinite part, like {x | x < 2%} which is the
spectrum of |

Wxy(Vz(zEBx < zEy) + x=y) A Vxy(xEy -+ N(x)) A M\ N(cn) A
Vx(N(x) > W x=c_). <
n<w O

However, it is still true that the infinite part of any spectrum
of an Lw ,~Sentence is either of the form {x | w < «x < A} for some
A'<:Li $r of the form {x | w <k},

Let us consider then second order logic LII. The spectra of LII

may be exfremely complicated. If ¢(x) is any Zl—. or ﬂi—formula of
set theory (for example, "x is weakly inaccessible"),

then the class
{x.] ¢(x)}

is a spectrum of a second order sentence. For a complete characterization
of spectra of LII see [23]. Even for LII we can still find a cardinal
k such that if S 1is any spectrum of LII, then either S 1is a proper
class or sup S < k. This «k 1is called the Hanf-number of LII.

After these preliminary examples we shall define two characteristic
numbers for any (abstract) logic L*. We are assuming that the class of

81l L*-sentences is a set. Let

1(L*) = sup{min S | 5 is an L*-spectrum}
= the Ldwenheim—number of L*,
A(L*) = sup{sup S | S is an L*-spectrum but not a proper class}.

]

the Hanf-number of L*,

To put it in other words, I(L*) is the least « such that if' any
¢ € L¥ has a model at all, then ¢ has a model of power S‘ vy and A(L*)
is the least « such that if any ¢ e L* has a model of power > « then

¢ has arbitrarily large models.



These numbers can be explicitly computed for some logics. The

following diagram gives some examples:

* . II
I Low Lwlm UQl UQO Lwlwl L
2(1*) w w wy w 2 ?
v
R(L™) w jwl 1, jwik ? ?
reference
[5] (191 41,011} (3]

When computing the Hanf- or Ldwenheim-number of a logic it is often
useful to know thaﬁ L* can be, one way or other, embedded intg another
logic L+. For example, the fact that the Hanf-number of w-logic is
] ck, follows easily from the fact that w-logic and LQ can be embedded
1n%o each other in a sufficiently regular way. This procedure can be made
precise by introducing the following notions:

Suppose L¥ is an abstract'logic. We allow the signatures to be
many-sorted. A class of models K is I(L*¥) if there is a sentence Y
of L* such that the class of reducts of models of Y to the signature
of K is the class of all models of XK. In symbols: Let L be the
signature of K. Then for any A of type L,

(*) AeK if and only if 3B(BE ¢ A BIL =A) ..

The family of a&ll X(L*) model classes can be regarded as a logic
 itself and we denote this logic by X(L*) (it is sometimes denoted by
RPC(L*) or ETTO(L*)).
It is easily seen that I preserves Ldwenheim-numbers, that is,
2(1¥) = 1(=(1*)). However, the same is not true of Hanf-numbers (see [271).
‘An operation which resembles X but respects Hanf-numbers, is obtained

if the following condition is added to (*):



(%) There is a cardinal « such that VBI(BE v A B‘L =A) > B <«k].

Let us denote this restricted operation by iB(L*). It is proved in
[22] that Z(L¥*) = Zg(L*) for most logics L*, and that zB preserves
Hanf-numbers.

The logics X(L*) and ZB(L*) are not closed under negation.

Their largest sublogics which are closed under negation are denoted b&
A(L*) and AB(L*) respectively. For an account of -A, see [13].

As a simple application, we may use the fact that AB(LQO) = L,»

A = the smallest admissible set containing w, to conclude that h(LA) =
h(LQO). Other examples will follow.

We end this chapter with a few remarks on other possible definitions
of Hanf-numbers.

If A is a many-sorted structure, we let card,(A) denote the least
of the cardinalities of the sorts of A. Paulos [15] considered the
following number: Let A (I*) be the least « such that if ¢ e L¥
and ¢ has a model of cardy >:x then ¢ has models of arbitraily large
card,. He proved that A preserves Y. In fact (see [22])

+
R(L*) = R(Z(L*)).
Also the following variant occurs in the literature: Let R (1*) be
the least « such that if ¢ € L* has a model of power K then ¢ has

arbitrarily large models. In [22] it is proved that

nL*) = B (ER L),

Chapter 2. Unbounded logics

Consider the quantifier

WxyA(x,y) if and only if A(-,) well-orders its field



and let LW denote the logic wa endowed with the quantifier W.
The model theory of LW corresponds to the model theory of wa with
well-ordered models. Therefore it is obvious that Z(LW) = w. Of the
very few other facts known about LW one should mention that its
decision problem (the set of valid sentences) is the complete ré—set
of integers (see [6] ).
The logic LW 1is an example of what we call an unbounded logic:
An abstract logic L* is wumbounded if the quantifier W is Z?(L*)-
definable. It is weakly unbounded if W is only Z(L*)-definable.
It is not known to the author whether these two notions are actﬁally one
~and the same. Probably not. Note that ~W 1is always ZE(L*), so that
it is really question of W ©bveing A(L*) or AP(L*).

Exsmples

A. The infinitary logic L.y 1s unbounded whenever «k > A > w. Indeed

W - - -
xyA(x,y) if and only if onxl...xn...gig mA(Xn+l?Xn)°

The usual definition of LK becomes vacuous if A > k. Therefore the

A

following redefinition may be considered: For A >k, L A is L
K KK

enriched with the weak second order quantifiers

3,%6(x)
that is,
(x| < a A ${x))

for all o < XA. With this definition, Ly (X > «) is always a sublogic

of LM » and already wal is unbounded:

WxyA(x,y) if and only if v XEyX(y) > Iy (X(y) A Va(x(z) » ~A(z,5)))).

' B,. I
Note that wa < A(L I) but wa 4 LII, because the monadic

fragment of LII is  compact. 1

We let LII denote the result of adding full second order quantification

T .. IT
to L . Thus L is Just L .
KK wu



B. The logic LI , that is, me with the Hértig-quantifier:

IxyA(x)B(y) if and only if |A()| = |B(*)]
is unbounded ( [9]1). The proof is based on the following observation:
<A,4> 1is well-founded if and only if there are sets X ,a € A, such that
for a,b ¢ At a <b <> lXal < ]Xbl. Clearly LI < A2t

C. The logic LS, where S is the similarity-quantifier:

SxyuvA(x,y)B(u,v) if and only if there is a bijection f such that
A(x,y) < B(f(x),f(y)) for all x and Y,

is unbounded. In fact, AB(LS) = AB(LII) (see [21]).
: i . ot % o AB(t : :
If we write L¥— L for L*¥ < A (L ), we obtain the following

diagram:

W (k > w)

The subdiagram consisting of wa , ITI and LII deserves some comments.

Fairly trivially, LI —/ Lo Howe%er, if V=1L, then L . LII — 1T,
In [20] a method is descrlbed which yields an wl—closed Booledn algebra
B such that V F (1L1) < 2 l. Thus, starting with V=L, we obtain a modcl

in which Ly ™ LI but L ~f+ II. Finally, if Z(LI) < 2% (see [20]),

then L —4% LL.

U31ng the preservation of L&wenheim~ and Hanf-numbers under A the
following two diagrams obtain: (We write, for any terms t and u of set

theary, t —> u, if ZFC}t < u, and t—»u, if ZFCH t < u.)



(W) = w R 1t
h(wa1) — s h(Lw1w1)
R (LW) Tt

. The diagram of Ldwenheim numbers presents no problems. Nate that
1(LI) and Z(LII) coincide if V = L, but differ drastically if L(LI) < oY,
This explains the absence of arrows between 2Y anda L(LI).

 The diagram of Hanf numbers is more subtle. Again, if V = L, then h(LI)
and h(LII) coincide, but they can also differ (see later). Whether the other
two improper inequalities are really improper, i's not known the author. The

only non-trivial arrow follows from:

Lemma 1  A(L ) < h(LII).
“1%

Proof. Let ¢ ©De an LII~sentence saying "I am an R,w+ and A= h(Lw ",

Suppose this sentence has a model M of power >‘ij+, where Kk = h\Lw © ).
’ 11

We may assume that M = R, @+, where A > k. Now k < h(Lw N ) in M, whence
11
there is a ¢ e L such that "¢ has a model A of power >k Dbut. none of
11
pover A% yolds in M. Clearly, A= ¥. Therefore there is a BE ¢y such

that |Bl = lw,~a contradiction. Thus ¢ has a model of power :]Kw+, but none

larger. o

We shall return to these diagrams later. Let us have a glance forward,

however, with the following curious lemma:



Lenma 2 (i) Al ) < 2(nh).
e a wml

(ii) IfV =1L, then A(IW) = A(L ) = 2ttty
1
Proof. (i): Suppose ¢ € L, 8nd & =sup Sp(¢). Let X = («N)Y.

It is true in RA+ that ¢ hés no models of power A. On the other

. + . . .
hand, 1f u = (v )w and 1t 1s true 1in Ru+ that ¢ has no models of

power U, then u > k. Indeed, if such a p were < Kk, we could use

the downward Ldwenheim-Skolem theorem of wa to find a model A e Ru+

of ¢ of power u. Thus the LII—sentence b

I am an Ru+ such that
noo= (v+fb and ¢ has no models of power u" has a model but no
models of power <k. Therefore « < l(LII). ‘

(ii): Suppose ¢ € LII and «k = min Sp(¢). Let ¢ ¢ LW say "I am

a well-founded model of a certain finite part of ZF + V=L and ¢ has

no models what so ever'". The sentence ¥ 1is consistent because LK % P
Suppose then La is a model of ¢ of power > «¥. Then o > «*  whence
K+ £ La and P(LK) c La' Therefore ¢ has a medel in La’ a contra-

diction. Hence « < A(LW). D

The mein motivation for singling out the family of unbounded logics
here is that unboundedness seems to be just the crucial factor which
makes h(Lw " ) and h(LII) so awkward. As a mild indication of the
effect of unboundedness, consider the following simple and well-known

fact:

Lemma 3 Suppose that L* 1is an unbounded abstract logic. If there are

jnaccessible cardinals, then #(L*) exceeds the first inaccessible.

Proof. Suppose «k 1is the first inaccessible and ¢ the ZB(L*)—sentencc
which says that "I am a well-founded model of ZFC without inaccessible
cardinals". Now R, E ¢. Suppose then M E ¢ and |M| > «. We may

assume that M is a transitive e-model of ZFC and « € M. As the predicate

. " . . . .
"y is regular is ﬂl, we have ME "k is inaccessible", a contra-

diction. Thus ¢ has no models of power > k. O



" The only fact we needed to know of inaccessibility in the above
proof was that it is inherited by transitive submodels (with the same
ordinals). Thus the same proof yields the result: If there is a subtle
cardinal, then #A(L*) exceeds the first subtle (and therefore the first
totally indescribable). The lemma is also true if "inaccessible" be

replaced by "hyperinaccessible" , "Mahlo" ar by "hyper-Mahlo".

Chapter 3. Measuring h(L*): TLarge cardinals

7

The purpose of this chapter is to give a short réview of the various
large cardinal notions needed in the subsequent chapters.

Let us note at first, however, that h(L*) (for unbounded L*) can be
characterized in terms of definable ordinals of set theory: Suppose D is
a class of formulae of set theory. We say that an ordinal o is D-definable

if o= {B l #(8)} for some ¢(x) e D. Examples of characterizations of this

kind are
A(IW) = suplo | @ is Xl—definable}
IT . .
(L") = supfa | @ is ﬂz—deflnable}
II . .
A(L™) = supfla | @ is X _-definablel.

2

For the proofs of thesé, and related results, we refer the reader to [7] and
[23]- .

As Lemma 3 indicated, #(L*) (for unbounded L*) exceeds the smallest
large cardinals. This observation manifests the possibility of measuring
A(L*) by trying to locate it in the scale of all, small and large, large
cardinals.

The following presentation of some large cardinals is slightly non-
standard, but being in a sense‘purely model-theoretic, fits well into the

spirit of this paper.
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" Consider the following two important properties of a regular

cardinal « and an abstract logic L*:

LST(k): If A is a model for a language of power < &, X & |A| has
power < k and ¢ e L*, then there is a B < A such that,
X< |B] , card(|B|) <« anda BE ¢.

CMP(k): If T is a set of L*-sentences and every subset of T

of power < k has a model, then T has a model.

First order logic Lo has the properties LST(m1) and CMP(w).
Indeed, these two properties characterize L = (see [10]). Already long
ago the question was raised, whether there are > w such that LKK

has CMP(k) or LST(k). We have the following facts:
(1) k 1is inaccessible iff L. has LST(k).
(2) k is strongly compact iff L has CMP(k). .

Fact (1) is easily proved and (2) is often taken as a definition of
strong compactness.
Among various weaker forms of CMP(x) the following two seem

particularly pertaining:

MCMP (k) : If T €¢...€T ..., a <k, is a sequence of sets of
o o

I*-sentences such that each Ta has a model, then U Ta

. a<
has & model. ("Medium compactness") «

WCMP (k) : The cardinal & 1is strongly inaccessible,and if T 1is a set of
L*-sentences, IT[ = ¢ and every subset of T of power < k has

a model, then T has a model. ("Weak compactness')

We have the following facts:
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(3) K is measurable iff L. has MCMP( ).
(L) Kk 1is weakly compact iff L, has WCMP(k ).

Fact (3) is from [2] page 198, and fact (4) is often taken as
the definition of weak compactness.

So we may consider the sequence <inaccessible, weakly compact,
measurable, strongly compact, as arising from certain properties of
increasing strength of wa, generalized to LK . What if these pro-
perties are imposed on some other logic, like LKK for example ?

Magidor[11]) proved that

(5) k is extendible iff Lii has CMP(k).

. 11
(6) The first supercompact is the first « such that LKK has LST(x)

Examination of the proof. of (5) reveals that also

I

(7) k is extendible iff L

i has MCMP(«k).
The cardinals «x for which Lii satisfies WCMP(k) 1lie somewhere

between the first subtle (seel18]) and the first totally indescribable.

Finally, we shall need some Erdds-cardinals, which unfortunately
still lack model-theoretic definitions. The notation « - (X)<w means:
if f:A > A, where A 1is the set of finite subsets of Kk, then there is
a subset H of « of ordertype A such that for any two subsets x and

y of H of the same finite power, f(x) = f(y). The least « such that



K > (A)<w is denoted by «k(A). /

To sum up, we have the following diagram:

On
. .IX
extendible covveneniniivieneaeneee. Lo has CMP(k)
1st supercompact..eeeeeedececsnasans Lii has LST(x)
‘'strongly compact «......deveevese... L has CMP (k)
measurable «.eeeceeneeridiesaaaaaen. L o has MCMP( k)
9
K(w1) Ceeesesseestsesenedecrenesnnes T
K(w) I R R N N SR o J S RE L B B ?
' 2 i e iieeeterennceectadnenananaann LII has WCMP(«k)
KK
Weakly COMPACt «rvveeereduoceceenens L. has WCMP( k)
inaccessible ....vvevvnediieiiaee.. L has LST(k)
-0

Chapter 4. Basic results

In his thesis[16] J. Silver made an important contribution to the
theory of Hanf-numbers of unbounded logics by establishing the following

results:

Theorem 4 (Silver [16])
(1) 1If «(w) exists, then «x(w) < h(IW).
(2) 1If «k(a) exists for every a < W s then supik(a) | a < m1} < h(LW).

(3) 1If K(m1) exists, then h(LW) < K(m1).
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Claims (1) and (2) are proved as Lemma 3, using the fact that the
definition of «k(a) is sufficiently absolute downwards. To prove (3),
suppose AE ¢, ¢ € LW and |A] = K(w1). Using the partition property
of K(m1), we can find an uncountable set H of order indiscernibles for
A relative to formulae of ILW. There is a standard procedure for generating
arbitrarily large elementary extensions for models with indiscernibles
(see e.g. the Streching Theorem in [2]). These extensions will be elementary
also with respect to the logic IW, because well-foundedness depends on
countable information only, and that is all contained in H.

The above theorem essentially solves the problem of the size of A(LW)
in the presence of large cardinals. Silver asks in his thesis (Question
6.3) - whether it is possible for A(LW) to be, in the absence of K(w1),
below the first weakly compact. In the next chapter we shall answer this

question in the affirmative.

Let us now consider the logics wa and Lw 0. K.Kunen proved the
following result for L but his progf actuall§ &ses L only.
W, ww
Theorem 5 (Kunen [8]) If V =1", then h(wa ) exceeds the measurable
. 1
cardinal.
3

The proof is based on the following idea. Suppose V = L, where u

is the normal measure on k. Let T be a suitable finite part of ZF +

V = LY. There are, we can assume, transitive models M of T such that

“M c M. But suppose such an M has a normal measure on J > iom(K). Then

a large enough iterated ultrapower of the universe contains M. But the set
a= {ion(K) | n < w} is in M, whence a already occurs after w iterations,

a contradiction, because then i, (k) would be a measurable cardinal of

Ow
cofinality w (in the ultrapower ).

H Birr) = a

If V=1L, then A B II)

L (see [24] ) whence h(LI) and
1(LI) exceed the measurable cardinal.
Concerning upper bounds for h(Lw " ) we have the trivial:
11
Remark 5 If there are strongly compact cardinals, then h(L@ ) is

w
below the first of themn. T
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M.Magidor proved that the first strongly compact can be the first

measurable, establishing:

‘Theorem 7T (Magidor [12]) 1If Con(ZFC + there is a strongly compact
cardinal), then Con(ZFC + h(Lw1w1) < the first measurable).

The method used in the next chapter allows the words "strongly
compact cardinal" above be replaced by "proper class of measurable
cardinals".

Let us now consider LII. Here we have the following important

result implicit in Magidor's work:

Theorem 8 (Magidor [11])

(1) If there is a supercompact cardinal, then
1st measurable < Z(LII) < 1st supercompact.

(2) If there is an extendible cardinal, then

II)

1st supercompact < A(L < 1st extendible.

Note at first that measurability of «k 1s second order definable
over RK, whence there are lots and lots of measurables below Z(LII)
(if they exist at all). That Z(LII) is below the first super-
compact follows from the much stronger fact ([11]) that Lii has

LST(k). .Similarly, h(LII) < 1st extendible follows from the fact
that Lii has CMP(k). Finally, k is the first supercompact iff

for every o > x  there is a B8 < o such that RB is elementarily

embeddsble into Ra . From this it follows that such a «x 1is below
n(Lt).
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Chapter 5. New results

Our first result provides a solution to Question 6.3 of [16]:

Theorem 9 Let L*¥ be any of the logics LW, L , L LI.

ww w,w,’
If Con(ZFC + there is a proper class of weakly compact1c;rdinals),

then Con(ZFC + h(I*) < 1st weakly compact).

As an indication of the rather long proof of Theorem 9, consider

the following assumption: There is a ¢ e LW such that

ZFC F If « 1is the first weakly compact, then sup Sp(¢) exists
and exceeds K.
.
We shall derive a contradiction from this hypothesis on the assumption
that there is é proper class Kyo® € On, of weakly compact cardinals
and V = L. For simplicity, we also assume o < Ky for all a e On.
Using certain forecing techniques we can construct a sequence Ma,a e On,

of Boolean extensions such that

(1) MOI.CMBCMO if O<a < B .

(ii) M, = k, 1is the least weakly compact cardinal , o > 0.

It follows from our hypothesis, that for some « Z‘KO, MO F sup Sp(¢4) = «.
Pick a > 0 such that « <« . Then M E sup sp(¢) > K,» Whence
there is an A ¢ M, such that My E (JA] >« & AF ¢), a contradiction
with the choice of k.

To obtain the full Theorem 9, an iteration of the above argument
is used. Theorem 9 permits, in fact, a more general formulation:
the logic L* can be any logic, the syntax and semantics of which is
absolute with respect to w1~closed Boolean extensions which preserve
cofinalities.

The Theorem remains true if "weakly compact” be replaced by

"Ramsey" or by "measurable". Thus we have a solution to number 9 of

H.Friedman's 102 Problems in Mathematical Logic (L],
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Theorem 10 If L* extends LI and Con(ZFC + there is a supercompact

cardinal), then Con(ZFC + A(L*¥) > the first supercompact).

The desired property of L¥ takes place in a model with the

following properties:

(i) There is a supercompact cardinal k.
(ii) There is an unbounded set of singular cardinals A
below «k such that 2X = A+++.

(iii) Every singular cardinal > « is strong limit.

If ¢ e L 1is a sentence having a model of power A iff )X is singular
and 2A>> A+++, then ¢ has arbitrarily large models of power < k (by
(ii)), Dbut none of power > « (by (iii) and Solovay's result [17] :
GCH holds at every singular strong limit above a strongly cémpact).

In our third result we touch upon the propblem of measuring
the Léwenheim number of a logic between LI and LII. We have remarked
slready that Z(LI) can be below 2” even with MA, but on the other
hand, if V = Lu, then 7(LI) exceeds the measurable cardinal. The
following result demonstrates more strikingly the independence of 7(LI)
from the points of our scale:

Theorem 11 Suppose L* is a sublogic of LII but extends LI.

Furthermore, suppose that the syntax and semantics of L* are absolute
with respect to Boolean extensions which preserve cardinals (e.g. L* = LI).
Assuming the consistency of sufficiently large cardinals, ZFC is con-

sistent with any of the following conditions:

(1) 1(1*) < 1st real-valued measurable < 2",

(2) 1st real-valued measurable < L(L*) < 2",

(3) 1(L*) < 1st inaccessible. -

(&) 1st inaccessible < I(L*) < 1st Mahlo.

(5) 1st weakly inaccessible < L(L*) < 1st weakly Mahlo.
(6) 1st Mahlo < I(L*) < 1st weakly compact.

(1) 1st weakly compact < I(L*) < 1st Ramsey.

(8) 1st Ramsey < Z(L*) < ' 1st measurable.

(9) 1st measurable < I(L*¥) < 1st supercompact.
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The proofs of these independence results use various forms of
iterated forcing. To indicate the general idea, we skctch the proof
of the consistency of (7).

Suppose (k) is a proper class of Ramsey cardinals in

ascending order, awz ;agnassume the GCH and that o < k for a € On.
Our first Boolean extension M0 destroys the GCH at k  where « 1is
the first weakly compact cardinal. Now in Mys ® < L(L*). The next
task is to kill all Ramsey cardinals below L(L*). The simplest way
of doing this 1is to add, for every Ramsey A below Z(L*), A\ new
subsets to «k'. In this procedure I(L*) may go up giving rise to a
feeling of a never—ending iteration. However, if we let u denote the
number of all sentences of L*, and we iterate- u+ times the procedure
of killing all Ramseys below L(L*), there will be a stage in which
2(L*) does not go up, yielding the desired Boolean extension.

We have put a rather heavy absoluteness assumption on L¥* in
Theorem 11. In many of the cases (1) - (9) much less is needed.

A major open problem in connection with LI 1is the following:

Problem Can I(LI) be below the first weakly inaccessible cardinal 2

v

We have only been able to prove that one cannot obtain an affirmative
ansver by (set)forcing over L, L[O#ﬁ, or LY. This makes it look like
& difficult problem.

Chapter 6. Conclusion

Let us now return to the diagrams of Ldwenheim- and Hanf~

numbers. A combined diagram looks like this:
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(1)

(3)

(L)

L(LwW)= | A(LI)

Explanations:
(1) The consistency of L(LI) <2” is proved in [20].
(2) The consistency of A(LI) < L(LI) is proved in [2L].

(3) If V=1 and 3x(w), then A(LW) < x(w) < Z(LI).
(4) If V=1L, then 2(uh) <Ml = n(z).
(5) If V=1L, then 2(L11) = L ) <AL, )

(6) 1If h(Lw " ) < 1st weakly com;act, then 1h(Lw ) < Z(LII).

11 1%1

In the inner model L we have the following collapsed diagram:

("ldiﬁﬂ== h(wa1) =1ty = Z(LI{J oo,

7 (1) (LY = n(L)

Consideration of these diagrams raises, among others, the following

questions:



) A

...19-.

Problems Decide the consistency of the following statements:

h(LI).

(2) A(LI) g_h(wa1).
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