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Abstract

We introduce a generalization dbfidependence Friendly (IFpgic in which Eloise (thél player)
is restricted to a finite amount of information about Abelard’s} moves. This logt is shavn to be
equivalent to a sublogigV of first-order logic, to have the finite model property, and to be decidable.
Moreover, it gives an exponential compression relativévtéogic.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We start by introducing Partial Information logic (PI) which is a generalization of
both first-order logic and Hintikka—Sandb] [IF-logic. We motvatethis logic by means
of an example. Suppose we have a modélon some domairD and some formula
A = (VX)(VY)(32)R(X, ¥, 2) whereR is atomic. Then to this formula corresponds a game
between two players Abelard and Eloise. Abelard chooses two elemdnticom D. Then
Eloise chooses a third elemeantrom D. If the formula R(a, b, ¢) holds in./M then Eloise
has won, else Abelard has. Now it can be shown that the foriigadrue in M iff Eloise
has a winning strategy.
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The game that we have just described tells us blassical first-order logic works. To
look at IF-logic we consider a slight variant. LBtbe the variant oA obtained by writing
B = (VX)(Vy)(3z/xX)R(X, Y, Z). Now the game proceeds as befarith Abelard choosing
a, b and Eloise choosing, butnow the choice o€ has to béndependenbf a because the
guantifier3z has now been marked by &, indicating independence &f or, aswe might
say,ignoranceof x.

But, instead of talking about ignorance, we could speak about knowledge, and we could
just as easily say that Eloise’s knowledge is restricted to the valyeicd. tob. Ingead
of concentrating o what Eldase doesnot know we concentrate on what sdeesknow.
Similar restrictions might ofourse apply to Abelard in the case where he too has a move
which follows the move of Eloise. (Howevernsie we shall define the semantics in terms of
the winning strategy of Eloise, it will turn out that the restrictions on Abelard do not enter
into the semantics. To be sure of winning, Eloise must allow the possibility that Abelard
makes a good move by luck.)

Now we introduce an innovation which will turn out to be interesting. IF-logic allows
Eloise to know the value o, or of y or of both or neither. Could we consider other
possibilities? Forxample, suppose, y are integers. We might restrict Eloise to knowing
the valueof their sum butnot x, y themselves. Or for another, real life example, suppose
you meet on the airplane an attractive woman who tells you only her first name (until she
knows you better). Now ik is the name variable whose value is Eloise Dzhugashvili and
sheonly tells you “Eloise”, then you do not knowbut neither are you completely ignorant
of it. You know itin part.

This opens up the possibility of directly expressing more general kinds of knowledge
of the values of variables than are allowed by the syntax of IF-logic and we will see that it
leads to interesting possibilities.

2. Partial Information logic, PI

As usual we have variables, predicate symbols, and certain special function symbols.
Atomic formulas are defined as usual. Literate atomic formulas or their negations. For
simplicity we will apply negation only to atoms.

Definition_)l. 1. Literals are formulas of PI.
2a. If (X, y) is a formula of Pl andf is one of the special function symbols, then

(5|y//f(;(>))g0(7(), y) is a formula of PI.

2b. If go(7, y) is a formula of Pl andf is one of the special function symbols,

then(Vy//f(Y)yp(Y, y) is a formula of PI.

3a. [fp(X), 8(X) are formulas of Pl thep(X) v//f(y)é)(;()) is a formula of PI.

3b. If (X), 8(X) are formulas of Pl thep(X) /\//f(y)e&) is a formula of PI.

Intuitively, the3y in (3y/ )go(7, y) is Eloise’s move but because of the restriction

£(X)

/f(Y) she only knows f(?) when she makes her move. We may, more generally,
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allow her also to know the values of two or more functidng of X so that in the extreme

case she could know all the projection functions and hence Ia)quecisely. That case
corresponds to our usual first-order logic. In an intermediate case, she couldsknwev

of the projection functions oKX, i.e. some bt not all of the variables irX. Thatcase
corresponds to IF-logic.

In (‘v’y//f (?))(p(;(), y) the move is Abelard’s and he too is restricted in a similar way.

(However, this restriction will not affect the semantics which depends only on the winning
strategie®f Eloise.)

Let us considerp&)) v//f (Y)G(Y). Since we hava digunction here, it is for Eloise to
choose which of the two formulas 6 to play. But when she chooses, she only knows the

value f(?) or perhaps more than one such value, but her knowledg?e wight not be
complete.

On the other hand, im(?) /\//f (7)9(75) the move is Abelard’s Hithe restictions are

similar to thosen 3a alove. Intuitively, aclosed formulap is true in a structure just in the
case where Eloise has a winning strategy which uses only what she knows.

Commpositional semantics can be defined for Pl in just the same way as they have
been defined for IF-logic by Hodges§,7], Vaananen 12], etc. The details will appear
elsewhere. Moreover Pl-logic can be interpreted into second-order logic in the same way.
Refs. B,11,1,9] give a game theot& interpretation of various logics, including classical
and intuitionistic (but not IF-logic).

Now we come to a speci&ind of Pl-logic where the special functiorfsallow only a
finite amount of information about the arguments. Thus ib are integers and Eloise has
to male a choicébased on them, she might be allowed only to know whesher b or
whethera + b is odd, or whatever. Knowing the precise valueagh or even ofa + b is
out of the question.

Why consider such a restrictease? We have two reasons. One is that this special case
of Pl-logic which we shall call Fl-logic, diinite information logic, has veryelegant logical
properties. The other is that since quantifiers correspond to moves in games, the games
which Fl-logic represents arise all the time in social algorithms and are deeply related to
how social human interactions work.

For example, gassport official at an airport only wants to know whether you have a
valid visa or not. If you do, she lets you in; if not, she sends you back on the next flight.
Or perhaps she clasigisyou among four classes, those who are citizens, those who come
from friendly countriesvhose citizens do not require a visa, those who have a visa, and
the remainder who are the ones sent back. In any case she only wants a finite amount of
information about the variable, namely you.

Or ayoung man looking for a date might want to know if the prospective date is blonde
or brunette. If she is blonde, he is not interested, he wants to date brunettes only. If she
does have dark hair, he wants to know whether she is tall. If not, he is again not interested.
Sohe seeks a finite amount of information about the prospective date. Naturally she may
have similar questions about him. But eadl seek only a finite amount of information.

We repeat the definitions which we had above for formulas of Pl-logic, indicating where
the difference ases between Pl-logic in generaldiits special case, Fl. Since only a finite
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amount of information is available at each step, it could easily be represented by one or
more Booleans, i.e. by formulas. Thus our special functibrdsop out. Our main result

is Theorem 1lwhich says that everyonsistent FI-sentence has a finite model. We use a
strong form of this result to show that Fl is exactly the existential-universal fragment of
first-order logic, if considered as a classical logic. However, Fl is actually a non-classical
logic with a rich, many-valued semantics (this aspect will not be pursued in this paper).
The reduction to first-order logic is non-trivian the sense that there is a trade-off:zav
expression can be exponentially longer than its Fl representation.

3. Basic definitions

Before we formally define thé&inite Information logicFl in Definitions 3and4 and
discuss its semantics it makes sense to pay attention to the kénithaf we allow injy, as
the following informal result demonstrates:

Lemma 2. The following onditions are equivalent in any mod@l with at least two
elements, whatever sentences:

(1) 2 = (V)@Y fix=cva) (Y # X).
(2) A =—0.

Proof. Let 2{ have two éementsc, d (and perhaps others). Suppose thas true. Then
the information that(x = c v 0) is true tells3 nothing abouk. Also theinformation that
(x = c Vv 0) is false tells3 nothing because this informatiosiimpossible, i.e. never given
in this case. Thus in this cagehas to be chosen completely independently afnd 3
cannot possibly have a winning strategy for choosing x.

On the aher hand, suppose thétis false (and8 knows it). Then she can make the
following inference: If | am told thatx = c v 0) is true, | know that it is true because
X = ¢, and then know whatx is. So | can choosg/ = d. If | am told that(x = c v 0)
is false, | know it is because # c, and | can choosg = c. Thus3 can use the strategy:
choosey = d if 6 is true andy = c otherwise. O

In the proof we used the assumption that although the informatiorithas & limited
as to the values of the variablésgcan act as if she knows “generally known” things. For
exampe, it follows that if3 has a winning strategy, she knows what itis. Also, if it is known
that—6 (in a given model), thed knows it too. But this is only metaphorical. Clearly if
there is a strategy which works besawgertain sentences are true, thinan play it and
does not need to “know” that these sentences are true. In other words, the semantics only
requires that Eloisbave a winning strategy (but using only the information that she has)
and does not require her to know why it is a winning strategy.

Lemma 2shows that if we allowd in /p, we endup having a formula equivalent to
the negation ob in our language. However, games of imperfect information may very
well be non-determined. Therefore we should be cautious with operations that bring in
negation. Moreover, we cannot allow Eloise to use as her “information source” more
complex formulas than we want to have in the logic itself. A priori we couldlén
ax Jp be any first-order formula, blitemma 2tells us that then we auld get a logic which
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is at least as powerful as firerder logic and we would lose the finite model property and
decidability.
In social software (] it seems that the information we use in decisions is often atomic

(“man”, “woman”) or existential (“has a ticket”, “has a visa, which is valid”) or Boolean
combinations of such (“is retired or has a serious defect in vision”). Accordingly we start
by allowingé in /, to be any Boolean combination of existential formulas.

Definition 3. The set of formulas of Fl is defined as follows:

(1) Atomic and negated atomic formulas are Fl-formulas. (We do not allow function
symbols.)

(2) If p(X) andy(X) are FI-formulas and (X) is a Boolean combination of existential
formulas, then

P(X) Ao ¥ (X)
and
P(X) Vipy ¥ (X)

are Fl-formulas.
(3) If p(X, y) is an Fl-formula and (X) is a Boolean combination of existential formulas,
then

Yoz (X, Y)
and

AYJo)eX, y)
are Fl-formulas.

We have alkeady given an intuitive explanation of the semantics of FI. We now define a
more formal semantics for Fl. Let us ugeto denote the set of all variables. Supp@sis
a model with domainA, andX is a set ofunctionss suchthat

(1) dom(s) c V is a finite set of variables,
(2) s, € X = dom(s) = dom(s’),
(3) ran(s) C A

Intuitively X is a set of plays, i.e., aggiments of valueto variables. To incorporate
partial information we have to consider sets of plays rather than mere individual plays. A
patition X = XU X is 8(X)-homogeneous, whered (X) is first order, if for alls, s’ € X

A s (X)) = Ay (X)) = (s€ Xg < 9 € Xo).
Let

X[a:y] = {(s\{{y,b) : be A)) U{(y,a)} : s e X}
X[A:yl={sU{{y,a)} :se X,ae A}.

We defire the oncept
AE=x ¢
for ¢ € FI as follows:
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Definition 4. (S1) 2 E=x ¢ iff A =5 ¢ forall s € X, if ¢ is atomicor negated atomic.

(S2) A =x ¢(X) Aoy ¥ (X) iff A =x o(X) andA =x ¥ (X). (6(X) plays no role)

(S3) A =x ¢(X) Vo) ¥ (X) iff there is a8 (X)-homogeneouspartition X = XoU X1, such
that =x, ¢(X) and2 E=x, ¥ (X).

(S4) A =x Ay /oy eX, y) iff there is ad (X)-homogeneouspartition X = Xo U X1, and
ag, a1 suchthat( %xo[ap;y] @(X,y) and2l Ex;a:y1 (X, Y).

(SB) A E=x (YY/ax)eX, y) iff

A Exiay ¢(X, Y)
(6(X) plays no role).

There is an asymmetry betweerfyx) andV /o) on one hand and betwe€ny /5 x))
and(3y/sx)) on the other hand. This is because iistpaper we consider truth from the
point of view of3 only, i.e. “classically”. Thus we are concerned about the knowledge that
3 has. Asd has to be prepared to plagainst al strateges of v, 3 has to consider also
the case that plays “accidentally” with perfect infomation. If we considered FI “non-
classically” the symmeyrwould be preserved.

Lemmab. Supposel = ¢. Then3d has a winning strategy in the obvious semantic
game, namely, whilg plays, she keepd =x ¢ and “the play ise X” remains true.

Proof. (G1) Suppose we are at an atomic or negated atomic forpugince?l E=x ¢
and the play is inX, 3 winsby (S1).

(G2) We are a®l =x ¢(X) A fJox) ¥ (X). NowV plays choosing, say(X). We use (S2) to
conclude tha®l =x ¢(X).

(G3) We are all E=x ¢(X) V/ox) ¥ (X). We can by (S3) divideX = Xo U X1 in ad(X)-
homogeneous way such tHit=x, ¢(X) and2 Ex, ¥ (X). Theplayis in X so
it is in one of Xg and X1, but3 does not know in which. We let make the choice
on the bais of the following inference. I(X) is true and somé& ’ in Xg satisfies
0(X ), then she choose%y. In thiscase homogeneity gives that the play isdi;@and
we also havel =x, ¢(X). If 6(X) is true and somé& " in X; satisfie®) (X '), then
she cdhoosesXi. Againhomogeneity gives that the play iséX; and we also have
2A Ex, ¢(X). Similarly, if 6(X) is false and somg ’ in X, satisfies) (X /), then she
choosesX, otherwiseXg.

(G4) We are all =x (VY /fox)e(X, Y). Tknows2 E=xiay ¢(X, y) and the play so far is
in X. Whatevew plays, the fay is in X[A : y].

(G5) We are a®l E=x 3y/sx)¢X.y). There is ad(X)-homogeneous partition X =
Xo U X1, andag, a; suchthat2l E=xgay:y; ¢(X, y) and2 E=x,a:y) (X, Y). As in
the case of disjnction, played choosesy or a; according to whether sonie’ in
X satisfie® (X ') or not. O

Examples6. 1° (Vx/)@3Y/px))(X = y) says that bothP and its complement have at
most one element.
2° (VX)) @Y /[px) (X # y) says that bothP and its complement are non-empty.

For instance, in 2, if both P and its complement are non-empty, then knowing the
truth value of P(x), 3 can choose & suchthat P(y) has the opposite truth value. But this
strategy(or any other) will not be available to her if eithBror its complement is empty.
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Lemma7. If A =x ¢ and Xg € X, then2( E=x, ¢.

Proof. Immediate from the definition by inductiongn O

4. Thefinite model property

Lemma 8. Every Fl-sentence is equivalent to a first-order sentence (i.e. holds in the same
models).

Proof. Supposep € Fl. Letn be the length of. It suffices to show that iM = ¢ and
player Il has a winning strategy in tmemove Ehrenfeucht—Fraissé gan2ed] on M and
M’, thenM’ = ¢. SupposeX is a set of interpretations of a sétof variables inM and

II = {ns : s € X} is a set of partisisomomphismsM — M’ suchthatran(s) = don(zs)
fors e X. Thenll o X = {ns0S: s € X} is a set of interpretations ikl’ of the varables

in V. We write X’ = IT o X. Let usassume that player Il has a winning strategy in the
Ehrenfeucht—Fraissé game dhand M’ of n rounds. The different plays of this game,
player Il following her winning strategy, form in a natural way a tieelf t is a node of
heighti of the treeT, that is, a play of rounds, we denote bg the intepretation this
play gives inM to the variablexy, ..., ;. § is the corresponding interpretation given in
M’ to the variablexq, .. ., x;. Since payer Il is playing a winning strategy, the mapping
s(Xj) = s(xj) is a partial isomorphistM — M’. If T’ is a subtree ofT, let X; (T’) be
asetofall s fort in T’ of heighti. Let X{(T’) be the corresponding set g

Claim. For all subtrees T of T: M [Ex,1) ¢(X1,...,X) < M’ |=x((T/)
¢(X1, ..., %) forp(xq, ..., X)) of quantifier rank< n —1i.

The proof of the claim goes by induction @n The cases of atomic formulas and
conjunctions are trivial. For disjunction and existential quantifier it suffices to notice
that if Xj(T") = Xj(To) U Xi(T1) is a 6(X)-homogeneous partition, then X{(T) =
X{(To) U X3(Ty) is again ad(X)-homogeneous patition. For this6(X) need not be a
Boolean combination of existential formglas bng as it is first order. For universal
quantifier we let player | try all possible elements and apply the induction hypothesis to
the resulting new subtree @f. [

Note that when we &sthe &pressionFl without any parameters, we intend that the
information formulag® are Boolean combinations of existential formulas. However, we
will also considefFl (L) whereL is same other language, and in that caswill be shown
explicitly.

Let FI(FO) denote the extension & where any first-ordef is allowed to occur iryjp.
Lemma 2implies thatFI (FO) contains all of first-order logic.

Corollary 9. FI(FO) = FO.

A first-order formula is existential—univers$ if it is of the form

(@) ... @) (VYD) - .. (YYm)e
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whereg is quantifier-free. A formula id; if it is equivalent to ardv-formula and its
negation is too. An example of A, formula is

(A1) @x2) (X1 # X2) A (VX1)(VX2) (VX3) (X1 = X2 V X1 = X3 V X2 = X3).

which says that there are exactly two elements. Boolean combinations of existential
formulas (and ofA, formulas) are, of coursels.

Lemma 10. The following onditions are equivalent for any first-order senteigce

(1) ¢ is equivalent to ardv-formula.

(2) If 2 = ¢ and®l is theunion of a chai, (¢« < B) of models, then there is an< 8
suchthatl, = ¢.

(3) If 2 = ¢, then here is afinite C C A such hat far all © with C € D € A wehave
D E=o.

Proof. Clearly (1) — (3) — (2). We pove(2) — (1). By (2) the class of models of the
senence—g is closed under unions of chains of models. By th&+8uszko lemmay is
universal—existential, whengeis equivalent to ad@v formula. O

The following theorem also has an alternative proof which we give &fteorem 16
Theorem 11. Every consistent FI-sentence has the finite model property.

Proof. We prove condition (3) ofLemma 10 We useinduction ong to prove (recall that
V is the set of all variables):

(%) If A =x ¢, whereX C VA, then here isa finite Ag = Ag(2, X, @), s.t.forall; C A
with Ag € A; € Awe havell, '=xr1vA1 Q.

(S1) ¢ is atomic or negated atomic. We can cho@geo be any nhon-empty subset 8f

(S2) Conjunction: We can letg (2, X, ¢ A ) = Ag(RL, X, ¢) U Apg(2L, X, ¥) and this
clearly works.

(S3) Disjunction: Suppose that =x ¢(X) V) ¥ (X). Let X = Xo U X3 be such that
A E=x, ¢(X), A E=x, ¥(X) and the partition i® (X)-homogeneous. Remember that
6(X) is Az. Let ] be finite, such thafo(2, X, ¢) U Ao, X, ¢) € A; € A and
A7 € A C Aimplies for alls € X

A2 Es O(X) = A E=s0(X).

For suchl, we havedls =x nva, ¢ andAz E=x, va, ¥. Moreover, the partition of
X N VA to Xo N VA2 and Xy N VA, is clearlyd (X)-homogeneous.

(S4) Universal quantification: Suppo8e =x (VY)¢(X, y). Thus2A Exiay ¢, y).
ChooseAg = Ao, X[A : y], (X, ). If A1 € A with Ag € A1 C A, then
X[A:ylnVIOD AL = (X N VYAD[AL : Y], whence2ls =x (YY)p(X, ).

(S5) Exigential quantification? E=x 3y/ox)e(X,y). Let X = Xo U X1 be 6(X)-
homogeneous anap, a; suchthat2 Exga,y; ¢(X,y) and2d Ex,a:y ¢, y).
Remenber thatd (X) is Az. Let 2] be finite, such thaBo(A, X[ao: yI. p(X,y) U
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Ao, X[ag; Y1, ¢(X, y)) U {ag, a1} € A} € Aand2j c A < A implies for all
seX

A2 s 0(X) = A= 6(X).

For suchlz we havellz =y va, (Y /o)X, y). Why? BecausX N YAz = (XoN
VA2) U (X1 N YAp) is a6 (X)-homogeneouspartition in Az and2A2 = (x, ~vay)agy
(X, ¥), A2 E(x,nVayrapy) X ). O

The above theorem has an alternativegirusing the concept of a D-structure
(see B,11,1,9], which are related taog]).

Example 12. The sentence

(YXN@EY fx=x)(X =Y)

(adjoined to the universal axioms for linear order) says that the linear erdexs a last
element. It has no negation in FI as the negation does not have a finite model.

The finite submodel property &1 would remain even if we allowed arng» formulaé
to occur infp. However dlowing 3v-formulaso leads us to newavenues: LetFl (3V) be
this generalization.

Theorem 13. FI(3V) does not have the finite model property.
Proof. Let ¢ be the setence

(YXD @AYy x) (Y # X)
wherey (x) is thedv-formula
X =0V @Eu)Vv)(v < u).

The vocabulary consists 6f and the constant 0. Let' be the conjunction of and the
universal (hence FI) axioms of linear order.

Claim 1. (w, <,0) = ¢’. The task of3 is to choose y#£ x knowing only whethet/ (x) is
true or not. She argues as follows: if | am tofe(x) is true, Iknow it is because x 0, so
| choose y= 1. If, on the other hand, | am told that(x) is not true, | know x# 0, so |
choose y= 0.

Claim 2. ¢’ has no finite models. Suppoge= (A, <, 0) were one. Nowys(x) is true
independently of x. Sdhas no way of choosing ¥ x on thebasis of whethet/(x) is
true or not. More formally, suppo$k =x ¢’, where X= {#}. Then2l =x;ax1 BY/yx)
(y # X). Let XA : x] = XoU X3 be ay(x)- honogeneous partition and@a; € A such
thatd =xgiagyr Y # X and =x1a:y1 Y # X. Shcey (X) is always true, ¥ = ¥ or
X1 =0.Say X = 0. Thus(x, ag) € Xg, whencel |=x,a,:y] ¥ = X, @ ontradiction. [

Let FI(IF) denote the extension & where any from IF-logic is dlowed to occur
in /p. We know that non-well-foundedness can be expressed in the IF-lbgioma 2
implies thatFI (IF) can express also well-foundedness. TRUGF) is not incuded in IF-
logic.
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5. Reduction to first-order logic
TheFl as we have defined it turns out to be translatable into first-order logic:

Theorem 14. Every Fl-sentence is equivalent to aN-sentence and, vice versa, every
Jdv-sentence is equivalent to an Fl-sentence.

Proof. One direction (Fl~> 3V) follows fromTheorem 1Xnd condition (3) okemma 10
For the conerse implication it suffices to notice that the following are equivalent:

A= 3x) ... @)Y ... (YYm)e
A= @) ... FEaHOYL) ... (YYm)e',

where ¢’ is obtained fromg by replacing each disjunctio(X) v ¥ (X) by 8(X) v
Joy.w ¥ (X). Note hat¢ is quantifier-free, sits subbrmulas can occur in connection
with /. O

Theorem 15. FI has an exponential compression relative to first-or@éidogic.

Proof. Consider the structur@ whose domain consists of all binary numerals. The
predicateC(x, y) means thay = x + 1 mod 2. Of course 0< y < 2". Thepredicate

P (x) fori < n means that thé-th digit of x from the right is 1. Consider the formula
0 = (YX)AY/Pi(x)....PaoC (X, ¥)). The famula says thall can choosey knowing only
the truth values oP, (x) : i < n. 0 is true inl, and remainsrte if we only take integers
<2". But it is not true in any (non-empty) substructure of siz2". Such asubstructure
will always contain arx suchthatthe ysuchthatC(x, y) is missing.Thus anyaVv formula
which was equivalent t8 would have to hve at ast 2 quantifiers. O

However, no¢ that if we use fli first-order logic to expres® we do not need
exponential growth. This is because the formgla= (VX)@AY)(V2)([\j<n P(X) <
P (2] — C(z v)) is equivalent tod. Intuitively, if V is allowed tochange his move
(from x to z) after 3 has played hers, but satisfying the same Booleans, then she is in effect
restricted to what she could have done had she kramviythe values oftie Booleans.

We now show that every model of a Fl-formula has a finite submodel of at most
exponential size.

Theorem 16. Let2l = ¢ where the Igical complexity ofp is n. Therl has a submodel
B of ¢ of size at most &".

Proof. Assume thaty is written so that all negations apply only to atoms, so thas
constructed from literals using, v, v, A only. For simglicity we assume that the in

/o is a combination of Booleans, although a more complex argument would remove this
assumption. Eloise has a winning strategy for the game correspondin§do each move

dy of Eloise, consider the move& /p(x, in whose scopg lies. There are at most of

such pedicatesP (x) and the value of is determined by the truth values of theBéx).

(y may be determined also by previous moyésf Eloise, but these are also determined
by these BooleanB and therefore bgll Booleans, whethey is in their sope or not.) So
consider the sét of all Boolean vectors governirany moveof Eloise. The cardinality of

Y is at most 2. For each movay; of Eloise, her strategy gives a functidnfromV into A,



R.Parikh, J. Vaananen / Annals of Pure and Applied Logic 134 (2005) 83-93 93

thedomain of2l. Since Eloiséhas at mosh moves, there are at mastfunctions, and the

range of all these functions gives us a subsek of size at mosh2". Let this subset beB.
Consider the modified game where Abelard is allowed to movd ibut Eldse is

restricted to moving irB. Clearly Eloise is free to use her former winning strategy and

wins. Consider now a further restriction where Abelard is also restrictd?l Bertanly

this does not harm Eloise and she still wins. But that means thHatig the sibmodel

corresponding td, its size is at mosh2" andB = 9. O

This result does not necessarily imply an exponential translation of Fl-logicnto
logic. For consider an arbitrary formutaof first-order logic. If the formulap = 6 v
@x)(Yy)(x = y) is true in some model, then there is a one-element submodel satisfying
¢. But we would not therefore expect a translation gfinto an3v formula. However,
intuitively such a translation of Fl-logic does seem highly likely.

Further work While we have carried out a certain amount of investigation of Fl-logic and
its semantics, the question of proof theory remains. As we already mentioned, we could
also consider non-classical semantics, imposing restrictions on both Eloise’s knowledge
and Abelard’s knowledge.
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