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Abstract

Weintroduce a generalization ofIndependence Friendly (IF)logic in which Eloise (the∃ player)
is restricted to a finite amount of information about Abelard’s (∀’s) moves. This logic is shown to be
equivalent to a sublogic∃∀ of first-order logic, to have the finite model property, and to be decidable.
Moreover, it gives an exponential compression relative to∃∀ logic.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We start by introducing Partial Information logic (PI) which is a generalization of
both first-order logic and Hintikka–Sandu [5] IF-logic. We motivatethis logic by means
of an example. Suppose we have a modelM on some domainD and some formula
A = (∀x)(∀y)(∃z)R(x, y, z) whereR is atomic. Then to this formula corresponds a game
between two players Abelard and Eloise. Abelard chooses two elementsa,b from D. Then
Eloise chooses a third elementc from D. If the formulaR(a,b, c) holds inM then Eloise
has won, else Abelard has. Now it can be shown that the formulaA is true in M iff Eloise
has a winning strategy.
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The game that we have just described tells us howclassical first-order logic works. To
look at IF-logic we consider a slight variant. LetB be the variant ofA obtained by writing
B = (∀x)(∀y)(∃z/x)R(x, y, z). Now the game proceeds as before with Abelard choosing
a,b and Eloise choosingc, butnow the choice ofc has to beindependentof a because the
quantifier∃z has now been marked by a/x, indicating independence ofx, or, aswe might
say,ignoranceof x.

But, instead of talking about ignorance, we could speak about knowledge, and we could
just as easily say that Eloise’s knowledge is restricted to the value ofy, i.e. tob. Instead
of concentrating on what Eloise doesnot know we concentrate on what shedoesknow.
Similar restrictions might ofcourse apply to Abelard in the case where he too has a move
which follows the move of Eloise. (However, since we shall define the semantics in terms of
the winning strategy of Eloise, it will turn out that the restrictions on Abelard do not enter
into the semantics. To be sure of winning, Eloise must allow the possibility that Abelard
makes a good move by luck.)

Now we introduce an innovation which will turn out to be interesting. IF-logic allows
Eloise to know the value ofx, or of y or of both or neither. Could we consider other
possibilities? For example, supposex, y are integers. We might restrict Eloise to knowing
the valueof their sum, butnot x, y themselves. Or for another, real life example, suppose
you meet on the airplane an attractive woman who tells you only her first name (until she
knows you better). Now ifx is the name variable whose value is Eloise Dzhugashvili and
sheonly tells you “Eloise”, then you do not knowx but neither are you completely ignorant
of it. You know it in part.

This opens up the possibility of directly expressing more general kinds of knowledge
of the values of variables than are allowed by the syntax of IF-logic and we will see that it
leads to interesting possibilities.

2. Partial Information logic, PI

As usual we have variables, predicate symbols, and certain special function symbols.
Atomic formulas are defined as usual. Literalsare atomic formulas or their negations. For
simplicity we will apply negation only to atoms.

Definition 1. 1. Literals are formulas of PI.
2a. If ϕ(

→
x , y) is a formula of PI andf is one of the special function symbols, then

(∃y//
f (

→
x )
)ϕ(

→
x , y) is a formula of PI.

2b. If ϕ(
→
x , y) is a formula of PI andf is one of the special function symbols,

then(∀y//
f (

→
x )
)ϕ(

→
x , y) is a formula of PI.

3a. Ifϕ(
→
x ), θ(

→
x ) are formulas of PI thenϕ(

→
x ) ∨//

f (
→
x )
θ(

→
x ) is a formula of PI.

3b. If ϕ(
→
x ), θ(

→
x ) are formulas of PI thenϕ(

→
x ) ∧//

f (
→
x )
θ(

→
x ) is a formula of PI.

Intuitively, the∃y in (∃y//
f (

→
x )
)ϕ(

→
x , y) is Eloise’s move but because of the restriction

//
f (

→
x )

she only knows f (
→
x ) when she makes her move. We may, more generally,
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allow her also to know the values of two or more functionsf, g of
→
x so that in the extreme

case she could know all the projection functions and hence know
→
x precisely. That case

corresponds to our usual first-order logic. In an intermediate case, she could knowsome

of the projection functions on
→
x , i.e. some but not all of the variables in

→
x . That case

corresponds to IF-logic.

In (∀y//
f (

→
x )
)ϕ(

→
x , y) the move is Abelard’s and he too is restricted in a similar way.

(However, this restriction will not affect the semantics which depends only on the winning
strategiesof Eloise.)

Let us considerϕ(
→
x ) ∨//

f (
→
x )
θ(

→
x ). Since we havea disjunction here, it is for Eloise to

choose which of the two formulasϕ, θ to play. But when she chooses, she only knows the

value f (
→
x ) or perhaps more than one such value, but her knowledge of

→
x might not be

complete.

On the other hand, inϕ(
→
x ) ∧//

f (
→
x )
θ(

→
x ) the move is Abelard’s but the restrictions are

similar to those in 3a above. Intuitively, aclosed formulaφ is true in a structure just in the
case where Eloise has a winning strategy which uses only what she knows.

Compositional semantics can be defined for PI in just the same way as they have
been defined for IF-logic by Hodges [6,7], Väänänen [12], etc. The details will appear
elsewhere. Moreover PI-logic can be interpreted into second-order logic in the same way.
Refs. [8,11,1,9] give a game theoretic interpretation of various logics, including classical
and intuitionistic (but not IF-logic).

Now we come to a specialkind of PI-logic where the special functionsf allow only a
finite amount of information about the arguments. Thus ifa,b are integers and Eloise has
to make a choicebased on them, she might be allowed only to know whethera < b or
whethera + b is odd, or whatever. Knowing the precise value ofa,b or even ofa + b is
out of the question.

Why consider such a restricted case? We have two reasons. One is that this special case
of PI-logic which we shall call FI-logic, orfinite information logic, has veryelegant logical
properties. The other is that since quantifiers correspond to moves in games, the games
which FI-logic represents arise all the time in social algorithms and are deeply related to
how social human interactions work.

For example, apassport official at an airport only wants to know whether you have a
valid visa or not. If you do, she lets you in; if not, she sends you back on the next flight.
Or perhaps she classifiesyou among four classes, those who are citizens, those who come
from friendly countrieswhose citizens do not require a visa, those who have a visa, and
the remainder who are the ones sent back. In any case she only wants a finite amount of
information about the variable, namely you.

Or ayoung man looking for a date might want to know if the prospective date is blonde
or brunette. If she is blonde, he is not interested, he wants to date brunettes only. If she
does have dark hair, he wants to know whether she is tall. If not, he is again not interested.
Sohe seeks a finite amount of information about the prospective date. Naturally she may
have similar questions about him. But eachwill seek only a finite amount of information.

We repeat the definitions which we had above for formulas of PI-logic, indicating where
the difference arises between PI-logic in general and its special case, FI. Since only a finite
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amount of information is available at each step, it could easily be represented by one or
more Booleans, i.e. by formulas. Thus our special functionsf drop out. Our main result
is Theorem 11which says that every consistent FI-sentence has a finite model. We use a
strong form of this result to show that FI is exactly the existential–universal fragment of
first-order logic, if considered as a classical logic. However, FI is actually a non-classical
logic with a rich, many-valued semantics (this aspect will not be pursued in this paper).
The reduction to first-order logic is non-trivial in the sense that there is a trade-off: an∃ ∀
expression can be exponentially longer than its FI representation.

3. Basic definitions

Before we formally define theFinite Information logicFI in Definitions 3and4 and
discuss its semantics it makes sense to pay attention to the kind ofθ that we allow in//θ , as
the following informal result demonstrates:

Lemma 2. The following conditions are equivalent in any modelA with at least two
elements, whatever sentenceθ is:

(1) A |= (∀x)(∃y//(x=c∨θ))(y �= x).
(2) A |= ¬θ .

Proof. Let A have two elementsc,d (and perhaps others). Suppose thatθ is true. Then
the information that(x = c ∨ θ) is true tells∃ nothing aboutx. Also theinformation that
(x = c ∨ θ) is false tells∃ nothing because this information is impossible, i.e. never given
in this case. Thus in this casey has to be chosen completely independently ofx and∃
cannot possibly have a winning strategy for choosingy �= x.

On the other hand, suppose thatθ is false (and∃ knows it). Then she can make the
following inference: If I am told that(x = c ∨ θ) is true, I know that it is true because
x = c, and then Iknow whatx is. So I can choosey = d. If I am told that (x = c ∨ θ)

is false, I know it is becausex �= c, and I can choosey = c. Thus∃ can use the strategy:
choosey = d if θ is true andy = c otherwise. �

In the proof we used the assumption that although the information that∃ has is limited
as to the values of the variables,∃ can act as if she knows “generally known” things. For
example, it follows that if∃ has a winning strategy, she knows what it is. Also, if it is known
that¬θ (in a given model), then∃ knows it too. But this is only metaphorical. Clearly if
there is a strategy which works becausecertain sentences are true, then∃ can play it and
does not need to “know” that these sentences are true. In other words, the semantics only
requires that Eloisehave a winning strategy (but using only the information that she has)
and does not require her to know why it is a winning strategy.

Lemma 2shows that if we allowθ in //θ , we endup having a formula equivalent to
the negation ofθ in our language. However, games of imperfect information may very
well be non-determined. Therefore we should be cautious with operations that bring in
negation. Moreover, we cannot allow Eloise to use as her “information source” more
complex formulas than we want to have in the logic itself. A priori we could letθ in
∃x//θ be any first-order formula, butLemma 2tells us that then we would get a logic which
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is at least as powerful as first-order logic and we would lose the finite model property and
decidability.

In social software [10] it seems that the information we use in decisions is often atomic
(“man”, “woman”) or existential (“has a ticket”, “has a visa, which is valid”) or Boolean
combinations of such (“is retired or has a serious defect in vision”). Accordingly we start
by allowingθ in //θ to be any Boolean combination of existential formulas.

Definition 3. The set of formulas of FI is defined as follows:

(1) Atomic and negated atomic formulas are FI-formulas. (We do not allow function
symbols.)

(2) If ϕ(�x) andψ(�x) are FI-formulas andθ(�x) is a Boolean combination of existential
formulas, then

ϕ(�x) ∧//θ(�x)ψ(�x)
and

ϕ(�x) ∨//θ(�x)ψ(�x)
are FI-formulas.

(3) If ϕ(�x, y) is an FI-formula andθ(�x) is a Boolean combination of existential formulas,
then

(∀y//θ(�x))ϕ(�x, y)

and

(∃y//θ(�x))ϕ(�x, y)

are FI-formulas.

We have already given an intuitive explanation of the semantics of FI. We now define a
more formal semantics for FI. Let us useV to denote the set of all variables. SupposeA is
a model with domainA, andX is a set offunctionss suchthat

(1) dom(s) ⊂ V is a finite set of variables,
(2) s, s′ ∈ X =⇒ dom(s) = dom(s′),
(3) ran(s) ⊆ A.

Intuitively X is a set of plays, i.e., assignments of valuesto variables. To incorporate
partial information we have to consider sets of plays rather than mere individual plays. A
partition X = X0 ∪ X1 is θ(�x)-homogeneous, whereθ(�x) is first order, if for alls, s′ ∈ X

(A |=s θ(�x) ⇐⇒ A |=s′ θ(�x)) =⇒ (s ∈ X0 ⇐⇒ s′ ∈ X0).

Let

X[a : y] = {(s\{〈y,b〉 : b ∈ A}) ∪ {〈y,a〉} : s ∈ X}
X[A : y] = {s ∪ {〈y,a〉} : s ∈ X,a ∈ A}.

We define the concept

A |=X ϕ

for ϕ ∈ FI as follows:
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Definition 4. (S1) A |=X ϕ iff A |=s ϕ for all s ∈ X, if ϕ is atomicor negated atomic.
(S2) A |=X ϕ(�x) ∧//θ(�x)ψ(�x) iff A |=X ϕ(�x) andA |=X ψ(�x). (θ(�x) plays no role)
(S3) A |=X ϕ(�x)∨//θ(�x)ψ(�x) iff there is aθ(�x)-homogeneouspartition X = X0∪ X1, such

thatA |=X0 ϕ(�x) andA |=X1 ψ(�x).
(S4) A |=X (∃y//θ(�x))ϕ(�x, y) iff there is aθ(�x)-homogeneouspartition X = X0 ∪ X1, and

a0,a1 suchthatA |=X0[a0:y] ϕ(�x, y) andA |=X1[a1:y] ϕ(�x, y).
(S5) A |=X (∀y//θ(�x))ϕ(�x, y) iff

A |=X[A:y] ϕ(�x, y)

(θ(�x) plays no role).

There is an asymmetry between∧//θ(�x) and∨//θ(�x) on one hand and between(∀y//θ(�x))
and(∃y//θ(�x)) on the other hand. This is because in this paper we consider truth from the
point of view of∃ only, i.e. “classically”. Thus we are concerned about the knowledge that
∃ has. As∃ has to be prepared to play against all strategies of ∀, ∃ has to consider also
the case that∀ plays “accidentally” with perfect information. If we considered FI “non-
classically” the symmetry would be preserved.

Lemma 5. SupposeA |={∅} ϕ. Then∃ has a winning strategy in the obvious semantic
game, namely, while∃ plays, she keepsA |=X ϕ and “the play is∈ X” remains true.

Proof. (G1) Suppose we are at an atomic or negated atomic formulaϕ. SinceA |=X ϕ

and the play is inX, ∃ winsby (S1).
(G2) We are atA |=X ϕ(�x) ∧//θ(�x)ψ(�x). Now ∀ plays choosing, say,ϕ(�x). We use (S2) to

conclude thatA |=X ϕ(�x).
(G3) We are atA |=X ϕ(�x) ∨//θ(�x)ψ(�x). We can by (S3) divideX = X0 ∪ X1 in a θ(�x)-

homogeneous way such thatA |=X0 ϕ(�x) andA |=X1 ψ(�x). Theplay is in X so
it is in one of X0 andX1, but∃ does not know in which. We let∃ make the choice
on the basis of the following inference. Ifθ(�x) is true and some�x ′ in X0 satisfies
θ(�x ′), then she choosesX0. In thiscase homogeneity gives that the play is inX0 and
we also haveA |=X0 ϕ(�x). If θ(�x) is true and some�x ′ in X1 satisfiesθ(�x ′), then
she choosesX1. Againhomogeneity gives that the play is in∈ X1 and we also have
A |=X1 ϕ(�x). Similarly, if θ(�x) is false and some�x ′ in X0 satisfiesθ(�x ′), then she
choosesX1, otherwiseX0.

(G4) We are atA |=X (∀y//θ(�x))ϕ(�x, y). ∃ knowsA |=X[A:y] ϕ(�x, y) and the play so far is
in X. Whatever∀ plays, the play is in X[A : y].

(G5) We are atA |=X (∃y//θ(�x))ϕ(�x, y). There is aθ(�x)-homogeneouspartition X =
X0 ∪ X1, anda0,a1 suchthatA |=X0[a0:y] ϕ(�x, y) andA |=X1[a1:y] ϕ(�x, y). As in
the case of disjunction, player∃ choosesa0 or a1 according to whether some�x ′ in
X0 satisfiesθ(�x ′) or not. �

Examples 6. 1◦ (∀x//)(∃y//P(x))(x = y) says that both P and its complement have at
most one element.

2◦ (∀x//)(∃y//P(x))(x �= y) says that bothP and its complement are non-empty.

For instance, in 2◦, if both P and its complement are non-empty, then knowing the
truth value ofP(x), ∃ can choose ay suchthat P(y) has the opposite truth value. But this
strategy(or any other) will not be available to her if eitherP or its complement is empty.
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Lemma 7. If A |=X ϕ and X0 ⊆ X, thenA |=X0 ϕ.

Proof. Immediate from the definition by induction onϕ. �

4. The finite model property

Lemma 8. Every FI-sentence is equivalent to a first-order sentence (i.e. holds in the same
models).

Proof. Supposeφ ∈ FI . Let n be the length ofφ. It suffices to show that ifM |= φ and
player II has a winning strategy in then-move Ehrenfeucht–Fraïssé game [2,4] on M and
M ′, thenM ′ |= φ. SupposeX is a set of interpretations of a setV of variables inM and
Π = {πs : s ∈ X} is a set of partial isomorphismsM → M ′ suchthatran(s) = dom(πs)

for s ∈ X. ThenΠ ◦ X = {πs ◦ s : s ∈ X} is a set of interpretations inM ′ of the variables
in V . We write X′ = Π ◦ X. Let usassume that player II has a winning strategy in the
Ehrenfeucht–Fraïssé game onM and M ′ of n rounds. The different plays of this game,
player II following her winning strategy, form in a natural way a treeT . If t is a node of
heighti of the treeT , that is, a play ofi rounds, we denote byst the interpretation this
play gives inM to the variablesx1, . . . , xi . s′

t is the corresponding interpretation given in
M ′ to the variablesx1, . . . , xi . Since player II is playing a winning strategy, the mapping
st (x j ) �→ s′

t (x j ) is a partial isomorphismM → M ′. If T ′ is a subtree ofT , let Xi (T ′) be
a set ofall st for t in T ′ of heighti . Let X′

i (T
′) be the corresponding set ofs′

t .

Claim. For all subtrees T′ of T : M |=Xi (T ′) φ(x1, . . . , xi ) ⇐⇒ M ′ |=X′
i (T

′)
φ(x1, . . . , xi ) for φ(x1, . . . , xi ) of quantifier rank≤ n − i .

The proof of the claim goes by induction onφ. The cases of atomic formulas and
conjunctions are trivial. For disjunction and existential quantifier it suffices to notice
that if Xi (T ′) = Xi (T0) ∪ Xi (T1) is a θ(�x)-homogeneous partition, then X′

i (T
′) =

X′
i (T0) ∪ X′

1(T1) is again aθ(�x)-homogeneous partition. For this θ(�x) need not be a
Boolean combination of existential formulas as long as it is first order. For universal
quantifier we let player I try all possible elements and apply the induction hypothesis to
the resulting new subtree ofT . �

Note that when we use the expressionFI without any parameters, we intend that the
information formulasθ are Boolean combinations of existential formulas. However, we
will also considerFI(L) whereL is some other language, and in that caseL will be shown
explicitly.

Let FI(FO) denote the extension ofFI where any first-orderθ is allowed to occur in//θ .
Lemma 2implies thatFI(FO) contains all of first-order logic.

Corollary 9. FI(FO) = FO.

A first-order formula is existential–universal∃∀ if it is of the form

(∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ
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whereϕ is quantifier-free. A formula is∆2 if it is equivalent to an∃∀-formula and its
negation is too. An example of a∆2 formula is

(∃x1)(∃x2)(x1 �= x2) ∧ (∀x1)(∀x2)(∀x3)(x1 = x2 ∨ x1 = x3 ∨ x2 = x3).

which says that there are exactly two elements. Boolean combinations of existential
formulas (and of∆2 formulas) are, of course,∆2.

Lemma 10. The following conditions are equivalent for any first-order sentenceϕ:

(1) ϕ is equivalent to an∃∀-formula.
(2) If A |= ϕ andA is theunion of a chainAα (α < β) of models, then there is anα < β

suchthatAα |= ϕ.
(3) If A |= ϕ, then there is afinite C ⊆ A such that for all D with C ⊆ D ⊆ A wehave

D |= ϕ.

Proof. Clearly(1) → (3) → (2). We prove(2) → (1). By (2) the class of models of the
sentence¬ϕ is closed under unions of chains of models. By the Łoś–Suszko lemma,¬ϕ is
universal–existential, whenceϕ is equivalent to an∃∀ formula. �

The following theorem also has an alternative proof which we give afterTheorem 16.

Theorem 11. Every consistent FI-sentence has the finite model property.

Proof. We provecondition (3) ofLemma 10. We useinduction onϕ to prove (recall that
V is the set of all variables):

(�) If A |=X ϕ, whereX ⊆ VA, then there isa finite A0 = A0(A, X, ϕ), s.t. for allA1 ⊆ A
with A0 ⊆ A1 ⊆ A we haveA1 |=X∩VA1

ϕ.

(S1) ϕ is atomic or negated atomic. We can chooseA0 to be any non-empty subset ofA.
(S2) Conjunction: We can letA0(A, X, ϕ ∧ ψ) = A0(A, X, ϕ) ∪ A0(A, X, ψ) and this

clearly works.
(S3) Disjunction: Suppose thatA |=X ϕ(�x) ∨//θ(�x) ψ(�x). Let X = X0 ∪ X1 be such that

A |=X0 ϕ(�x), A |=X1 ψ(�x) and the partition isθ(�x)-homogeneous. Remember that
θ(�x) is ∆2. Let A∗

1 be finite, such thatA0(A, X, ϕ) ∪ A0(A, X, ψ) ⊆ A∗
1 ⊆ A and

A∗
1 ⊆ A2 ⊆ A implies for alls ∈ X

A2 |=s θ(�x) ⇐⇒ A |=s θ(�x).
For suchA2 we haveA2 |=X0 ∩ VA2

ϕ andA2 |=X1 ∩ VA2
ψ. Moreover, the partition of

X ∩ VA2 to X0 ∩ VA2 andX1 ∩ VA2 is clearlyθ(�x)-homogeneous.
(S4) Universal quantification: SupposeA |=X (∀y)ϕ(�x, y). Thus A |=X[A:y] ϕ(�x, y).

ChooseA0 = A0(A, X[A : y], ϕ((�x, y)). If A1 ⊆ A with A0 ⊆ A1 ⊆ A, then
X[A : y] ∩ (V∪{y})A1 = (X ∩ VA1)[A1 : y], whenceA1 |=X (∀y)ϕ(�x, y).

(S5) Existential quantification:A |=X (∃y//θ(�x))ϕ(�x, y). Let X = X0 ∪ X1 be θ(�x)-
homogeneous anda0,a1 suchthat A |=X0[a0:y] ϕ(�x, y) andA |=X1[a1:y] ϕ(�x, y).
Remember thatθ(�x) is ∆2. Let A∗

1 be finite, such thatA0(A, X[a0; y], ϕ(�x, y)) ∪
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A0(A, X[a1; y], ϕ(�x, y)) ∪ {a0,a1} ⊆ A∗
1 ⊆ A andA∗

1 ⊆ A2 ⊆ A implies for all
s ∈ X

A2 |=s θ(�x) ⇐⇒ A |=s θ(�x).
For suchA2 we haveA2 |=X ∩ VA2

(∃y//θ(�x))ϕ(�x, y). Why? BecauseX ∩ VA2 = (X0 ∩
VA2) ∪ (X1 ∩ VA2) is aθ(�x)-homogeneouspartition in A2 andA2 |=(X0 ∩ VA2)[a0:y]
ϕ(�x, y), A2 |=(X1 ∩ VA2)[a1:y] ϕ(�x, y). �

The above theorem has an alternative proof using the concept of a D-structure
(see [8,11,1,9], which are related to [3]).

Example 12. The sentence

(∀x//)(∃y//x=x)(x ≤ y)

(adjoined to the universal axioms for linear order) says that the linear order≤ has a last
element. It has no negation in FI as the negation does not have a finite model.

The finite submodel property ofFI would remain even if we allowed any∆2 formulaθ
to occur in//θ . However, allowing ∃∀-formulasθ leads us to newavenues: LetFI(∃∀) be
this generalization.

Theorem 13. FI(∃∀) does not have the finite model property.

Proof. Let ϕ be the sentence

(∀x//)(∃y//ψ(x))(y �= x)

whereψ(x) is the∃∀-formula

x = 0 ∨ (∃u)(∀v)(v ≤ u).

The vocabulary consists of≤ and the constant 0. Letϕ′ be the conjunction ofϕ and the
universal (hence FI) axioms of linear order.

Claim 1. 〈ω,≤,0〉 |= ϕ′. The task of∃ is to choose y�= x knowing only whetherψ(x) is
trueor not. She argues as follows: if I am toldψ(x) is true, Iknow it is because x= 0, so
I choose y= 1. If, on the other hand, I am told thatψ(x) is not true, I know x �= 0, so I
choose y= 0.

Claim 2. ϕ′ has no finite models. SupposeA = 〈A,≤,0〉 were one. Nowψ(x) is true
independently of x. So∃ has no way of choosing y�= x on thebasis of whetherψ(x) is
true or not. More formally, supposeA |=X ϕ

′, where X= {∅}. ThenA |=X[A:x] (∃y//ψ(x))
(y �= x). Let X[A : x] = X0 ∪ X1 be aψ(x)- homogeneous partition and a0,a1 ∈ A such
that A |=X0[a0:y] y �= x andA |=X1[a1:y] y �= x. Sinceψ(x) is always true, X0 = ∅ or
X1 = ∅. Say X1 = ∅. Thus〈x,a0〉 ∈ X0, whenceA |=X0[a0:y] y = x, a contradiction. �

Let FI(IF) denote the extension ofFI where anyθ from IF-logic is allowed to occur
in //θ . We know that non-well-foundedness can be expressed in the IF-logic.Lemma 2
implies thatFI(IF) can express also well-foundedness. ThusFI(IF) is not included in IF-
logic.
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5. Reduction to first-order logic

TheFI as we have defined it turns out to be translatable into first-order logic:

Theorem 14. Every FI-sentence is equivalent to an∃∀-sentence and, vice versa, every
∃∀-sentence is equivalent to an FI-sentence.

Proof. One direction (FI�→ ∃∀) follows fromTheorem 11and condition (3) ofLemma 10.
For the converse implication it suffices to notice that the following are equivalent:

A |= (∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ

A |={∅} (∃x1//) . . . (∃xn//)(∀y1//) . . . (∀ym//)ϕ
′,

where ϕ′ is obtained fromϕ by replacing each disjunctionθ(�x) ∨ ψ(�x) by θ(�x) ∨
//θ(�x),ψ(�x)ψ(�x). Note thatφ is quantifier-free, soits subformulas can occur in connection
with //. �

Theorem 15. FI has an exponential compression relative to first-order∃∀ logic.

Proof. Consider the structureA whose domain consists of all binary numerals. The
predicateC(x, y) means thaty = x + 1 mod 2n. Of course 0≤ y < 2n. Thepredicate
Pi (x) for i ≤ n means that thei -th digit of x from the right is 1. Consider the formula
θ = (∀x)(∃y//P1(x),...,Pn(x)C(x, y)). The formula says that∃ can choosey knowing only
the truth values ofPi (x) : i ≤ n. θ is true inA, and remains true if we only take integers
<2n. But it is not true in any (non-empty) substructure of size<2n. Such asubstructure
will alwayscontain anx suchthatthe ysuchthatC(x, y) is missing.Thus any∃∀ formula
which was equivalent toθ would have to have at least 2n quantifiers. �

However, note that if we use full first-order logic to expressθ we do not need
exponential growth. This is because the formulaφ = (∀x)(∃y)(∀z)([∧i≤n Pi (x) ↔
Pi (z)] → C(z, y)) is equivalent toθ . Intuitively, if ∀ is allowed tochange his move
(from x to z) after ∃ has played hers, but satisfying the same Booleans, then she is in effect
restricted to what she could have done had she knownonly the values of the Booleans.

We now show that every model of a FI-formula has a finite submodel of at most
exponential size.

Theorem 16. Let A |= ϕ where the logical complexity ofϕ is n. ThenA has a submodel
B of ϕ of size at most n2n.

Proof. Assume thatϕ is written so that all negations apply only to atoms, so thatϕ is
constructed from literals using∃,∀,∨,∧ only. For simplicity we assume that theϕ in
//ϕ is a combination of Booleans, although a more complex argument would remove this
assumption. Eloise has a winning strategy for the game corresponding toϕ. For each move
∃y of Eloise, consider the moves∀x//P(x) in whose scopey lies. There are at mostn of
such predicatesP(x) and the value ofy is determined by the truth values of theseP(x).
(y may be determined also by previous movesy′ of Eloise, but these are also determined
by these BooleansP and therefore byall Booleans, whethery is in their scope or not.) So
consider the setV of all Boolean vectors governingany moveof Eloise. The cardinality of
V is at most 2n. For each move∃yi of Eloise, her strategy gives a functionfi fromV into A,
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thedomain ofA. Since Eloisehas at mostn moves, there are at mostn functions, and the
range of all these functions gives us a subset ofA of size at mostn2n. Let this subset beB.

Consider the modified game where Abelard is allowed to move inA but Eloise is
restricted to moving inB. Clearly Eloise is free to use her former winning strategy and
wins. Consider now a further restriction where Abelard is also restricted toB. Certainly
this does not harm Eloise and she still wins. But that means that ifB is the submodel
corresponding toB, its size is at mostn2n andB |= ϕ. �

This result does not necessarily imply an exponential translation of FI-logic into∃∀
logic. For consider an arbitrary formulaθ of first-order logic. If the formulaφ = θ ∨
(∃x)(∀y)(x = y) is true in some model, then there is a one-element submodel satisfying
φ. But we would not therefore expect a translation ofφ into an∃∀ formula. However,
intuitively such a translation of FI-logic does seem highly likely.

Further work. While we have carried out a certain amount of investigation of FI-logic and
its semantics, the question of proof theory remains. As we already mentioned, we could
also consider non-classical semantics, imposing restrictions on both Eloise’s knowledge
and Abelard’s knowledge.
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