CHAPTER 4

A Remark on Nondeterminacy in IF Logic

JOUKO VAANANEN

ABSTRACT. A sentence of [F-logic is nondetermined in a model if nei-
ther player has a winning strategy in the two-player semantic game on
that model. It is well-known that there are sentences® of IF-logic that
are nondetermined in every model with at least two elements. In fact,
only the first-order definable sentences of IF-logic are determined in
all models.? Thus every non first-order IF-sentence is nondetermined
in some models. In this paper we take a closer look at some familiar
examples of sentences of IF-logic and models in which they are deter-
mined. It turns out that if we want to use the familiar examples of
IF-sentences to characterize well-known mathematical structures, we
observe that the relevant IF-sentences are nondetermined in exactly
the standard models. This raises the question of what the game-
theoretical interpretation of these sentences tells us, if neither player
has a winning strategy in the standard, that is, intended models. We
consider also classes of structures with some standardness property
and make a similar observation.

1. Introduction

3

By [F-logic we mean the extension of first-order logic,® introduced in

Hintikka & Sandu (1989), in which quantifiers of the form
3X/y1,---,yn¢
X/Y1,.. o Un

are allowed. For player II to win the semantic game associated with these
formulas she has to have a winning strategy in the ordinary sense and in
addition, if the game is played again and players have played similarly apart
from the elements y1,...,yYn, then II has played the same element x. A
similar restriction concerns winning strategies of player I. We write M = ¢,
and say that ¢ is true in M (or M is a model of ¢) and that ¢ has a model,
if player II has a winning strategy in the associated semantical game. An IF-
sentence ¢ is said to be valid if ¢ is true in every model. For the complexity
of testing the validity of an [F-sentence, see Vaananen (2001).
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A crucial property of IF-logic is its close relationship with Z}—sentences
of second-order logic. A £]-sentence has the form

IRy ... IR,

where Ry, ..., R, are relation variables and ¢ is first-order. The relationship
we use is

FACT 1 (The X]-reduction). If ¢ is a sentence of IF-logic, then there is
a Y]-sentence @ such that for all models M we have

MEG & ME=0.
The converse is also true by Enderton (1970) and Walkoe (1970).

An immediate consequence of Fact 1 and the Compactness Theorem of
first-order logic, is the following fact, which we use in an essential way:

Fact 2 (The Compactness Theorem). Suppose L is an arbitrarily vo-
cabulary and ¥ any set of sentences of IF-logic in the vocabulary of L. If
every finite subset of £ has a model, then X itself has a model.

Another immediate consequence of Fact 1 is:

FacT 3 (The Lowenheim-Skolem Theorem). Suppose L is an arbitrarily
vocabulary and ¢ any sentence of [F-logic in the vocabulary of L. If ¢ has
an infinite model or arbitrary large finite models, then ¢ has models of all
infinite cardinalities.

We say that an IF-sentence ¢ is determined tn the model M if one of
the players has a winning strategy in the semantic game on ¢ and M. The
dual ¢ of an IF-sentence ¢ is defined as follows:

¢ = —o¢if ¢ atomic
—f'H) = ¢ if ¢ atomic

GV = bAD
(bAY) = GV
W/Gd = WGd

—_—

Vx/§d = I/

It follows from the definitions that
II has a winning strategy in the semantic game on ¢ and M
if and only if
I has a winning strategy in the semantic game on (T) and M.

Thus the determinacy of an [F-sentence ¢ in a model M means the same as
the truth of ¢ V ¢ in M, in other words that either ¢ or its dual is true in
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M. John Burgess (2003) has pointed out that the dual operation is not a
semantical operation in the sense that there are IF-sentences ¢ and { which
have the same models but their duals do not have the same models.

2. IF-characterizable structures

The truth of a first-order sentence in a model M can be characterized in
many important cases by means of validity in [F-logic. For example, suppose
M is any of the following models:

(N, +,-,0,1,<) The standard model of arithmetic.

(P(N),N,€,4,-,0,1,<)  The standard model of second-order arithmetic.
(R,+, x,0,1,<) The ordered field of real numbers.
(

Q +, x,0,1) The field of rational numbers (we use Julia Robinson’s def-
inition of the integers in this field, see Robinson 1949).

(R™, +,0; R, +, x,0,1,<;) The Euclidean vector space R™ as a two-sorted
structure (the last operation - is the operation
of multiplying a vector by a scalar).

(w, <) The order-type of (standard) natural numbers.

(Vw,€)  The smallest level of cumulative hierarchy of sets that is a model
of Zermelo’s set theory (The cumulative hierarchy is defined as
follows: Vo =@, Var1 =P(Va), Vv = Uy Va for limit v.)

(Vi, €) The smallest level of cumulative hierarchy of sets, where « is
strongly inaccessible. A very natural standard model of Zermelo-
Fraenkel’s axioms for set theory.

Then there is an IF-sentence ¢ such that for all N we have*

NEP & NzM

Naturally, there are many different ¢ with this property. Let us call all such
¢ IF-characterizations of M. Note that, for every first-order (or IF) 1V we
have
MEV & EoV.

Thus to decide whether M = { all we have to do is study the validity of
¢ VY in [F-logic for our favorite characterization ¢ of M. This gives a
reduction of truth in a structure to validity in IF-logic, emphasized strongly
in Hintikka (1996). The usefulness of this reduction is diminished by the
high complexity of validity in IF-logic (It is TT,-complete, see Vadndnen
(2001) for details.)

THEOREM 1. Suppose M is an infinite model with an [F-characterization
¢. Then ¢ is nondetermined in exactly the models isomorphic to M.

ProOF. Suppose N 2 M. Then N | ¢, so ¢ is determined in N. On
the other hand, suppose N = M. Then II does not have a winning strategy
in the semantic game on ¢ and N. Let us suppose I has. That means
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NE (I~) Since N = M, N is an infinite model. By Fact 2, there is N’ |= (I~) of
cardinality > [M|. Thus N’ 2 M, whence N’ = ¢. But this is impossible,
since N' & Ejv) Thus neither player has a winning strategy in the semantic
game on ¢ and N. The theorem is proved. a

We have shown that in the case of the standard infinite structures any IF-
characterization of the structure is bound to be nondetermined, and more-
over exactly in the very structure that we have characterized. This is not
affected by the choice of the characterizing IF-sentence.

Not all familiar mathematical structures are IF-characterizable. We give
below three examples:

LeEMmMA 1. The following structures do not have an [F-characterization:

(C,+,x,0,1)  The field of complex numbers.
(Q <) The order-type of rational numbers.
(Z,+) The abelian group of integers.

PrRoOOF. M = (Q,<): Since there are infinite models N = M (i.e., N
is elementarily equivalent to M) with N 22 M, there are dense order-types
N = ¢ without endpoints. By Fact 3 there is one of cardinality Xy. Thus
N = (Q,<). This contradicts N = ¢.

M = (C,+, x,0,1): Since there are infinite N = M with N 2 M, there
are algebraically closed fields N = ¢ of characteristic zero. By Fact 3 there
is one of cardinality 2. By 2%-categoricity of the theory of algebraically
closed fields of characteristic zero, N = (C,+, x,0,1). This contradicts

NE ¢. 0

By the T1;-completeness of the set of Godel-numbers of valid IF-
sentences, (Vaananen 2001, Theorem 1), truth in almost any structure can
be reduced by some recursive function to validity in IF-logic. In particu-
lar this concerns any mathematical structure first-order definable in (V,, €).
For any such M there is a recursive function f mapping a first-order sentence
to IF-sentences such that for all V:

MEY & Ef).

3. IF-characterizable classes of structures

We now extend the discussion on nondeterminacy and characterizations
by IF sentences from single structures to classes of structures. By Fact 1,
IF-definable model classes are exactly the ¥]-definable model classes. In line
with the previous section we investigate, not definability of model classes but
characterizability of truth in a model class. Truth of ¢ in a class K, K = ¢,
means truth of ¢ in every member of K. The truth of a first-order sentence
in all members of a model class K can be characterized in some important
cases by means of validity in IF-logic. For example, suppose M is any of the
following model classes:
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K<o The class of finite structures of a fixed vocabulary L

KXo The class of finite abelian groups

K< The class of complete infinite dense order-types (M, <)

Kt The class of well-orderings

Kt The class of transitive models (M, €) of ZFC™ (i.e., of a large
finite part of the ZFC axioms)

KC>°£€0 The class of well-ordered order-types of cofinality > N

K°>dxo The class of well-ordered order-types of cardinality > N

Ke The class of levels of the cumulative hierarchy that are models of
a fixed large finite part of ZFC

Keg The class of order-types of cardinal numbers

Kic The class of order-types of inaccessible cardinal numbers.

Then there is an [F-sentence ¢ such that for all N we have

NEb & N¢K,

in other words, K is lﬂ -definable. Naturally there are many different ¢ with
this property. Let us call all such ¢ IF-characterizations of K. Note that,
for every first-order (or even IF) { we have

Kb & FoéV.

Thus to decide whether K | { all we have to do is study the validity of
¢ V U in [F-logic for our favorite characterization ¢ of K.

Let us call a model class K X]-thin if it does not contain any ¥]-class
that has an infinite element or for each n an element with universe of size
at least n. All the above classes are ]-thin.

THEOREM 2. Suppose K is a £]-thin model class consisting of infinite
or arbitrarily large finite models, with an IF-characterization ¢. Then there
is a finite number N such that for models of size > N, ¢ is nondetermined
in exactly the models in K.

ProoF. Suppose N ¢ K. Then N E ¢, so ¢ is determined in N. On
the other hand, suppose N € K is infinite. Then II does not have a winning
strategy in the semantic game on ¢ and N. Let us suppose [ has. That
means N = $ Let K’ be the class of models of Ejv) Now K’ is a Z}—class with
an infinite element. By the X]-thinness of K, there is N’ € K’ \ K. But this
is impossible, since then N’ & (T) A ¢. Thus neither player has a winning
strategy in the semantic game on ¢ and N. Let us then consider the finite
N € K. Still, IT does not have a winning strategy in the semantic game on
¢ and N. Let us suppose I has a winning strategy in arbitrarily large such
N. Let K’ be the class of models of (T) Now K’ is a Z}—class with arbitrarily
large finite models. By the £]-thinness of K, there is N’ € K’ \ K. But this
is impossible, since then N’ |= $ A ¢. Thus there is a finite number N such
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that for models of size > N the sentence ¢ is nondetermined in exactly the
models in K. d

We have shown that in the case of the standard classes of mathematical
structures any [F-characterization of the class is bound to be nondetermined,
apart from some finite number of finite structures, and moreover exactly in
the very class of structures we have characterized.

LEMMA 2. The following classes do not have an [F-characterization:

Ky, The class of countable models of a fixed vocabulary L
K<k The class of models of size < k of vocabulary L
K e The class of non-well-founded models (M, E).

Proor. K = Ky,: Since there are infinite N' ¢ K, there are N = ¢ of
cardinality Xo. This contradicts the very definition of ¢.

K = Kuws: Since there are infinite N ¢ K, there are non-well-founded
N E ¢. This contradicts the very definition of ¢. O
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Notes

1. BE.g. VxJy/x(x =y).

2. Skolemization yields two disjoint X1-classes (see Fact 1) from model classes
definable by a determined sentence ¢ of IF-logic and its dual (see later for a
definition of dual). Craig Interpolation Theorem gives a first-order sentence ¢’
separating these two model classes, and ¢’ gives a first-order definition of ¢.

3. We assume first-order logic formulated so that negation is allowed only in front
of atomic formulas, and the logical operations are V, /A, 3, V.

4. We may ask why we did not define an IF-sentence ¢ to be an IF-characterization
of M if we have for all N: N = ¢ &= N = M. But then there would be no
infinite IF-characterizable models, an immediate consequence of Fact 2.
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