Set Theoretic Aspects of Hausdorff Dimension

Theodore A. Slaman

University of California Berkeley

Hausdorff Dimension

review

Define a family of outer measures, parameterized by s > 0. For $A \subseteq \mathbb{R}^n$,

$$\mathcal{H}^{s}(A) = \lim_{r \to 0} \inf \left\{ \sum_{i} d_{i}^{s} : \frac{\text{there is a cover of } A \text{ by balls } B_{i}}{\text{with diameters } d_{i} < r} \right\}$$

Definition (Hausdorff 1918)

The *Hausdorff dimension* of A is as follows.

$$\begin{split} \dim_\mathsf{H}(A) &= \inf\{s > 0 : \mathcal{H}^s(A) = 0\} \\ &= \sup\left(\{s > 0 : \mathcal{H}^s(A) = \infty\} \cup \{0\}\right) \end{split}$$

Remark

The numerical Hausdorff dimension of a set A characterizes the cut of functions x^s which assign A infinite outer-measure.

.

Examples

Example

- A line segment within \mathbb{R}^n has Hausdorff dimension 1.
- ▶ The Sierpinski triangle has Hausdorff dimension log 3/log 2.
- ► Almost surely, the path of a Brownian motion in R³ has Hausdorff dimension 2.

Definition

A gauge function is a function $f : (0, \infty) \to (0, \infty)$ which has the following properties:

continuous

increasing

$$\blacktriangleright \lim_{x\to 0^+} f(x) = 0$$

Example

For s > 0, x^s is a gauge function.

As above, we can associate a Hausdorff outer measure H^{f} with any gauge function f.

• Write $f \prec g$ to indicate that $\lim_{x\to 0^+} \frac{g(x)}{f(x)} = 0$.

▶ Say that g has *higher order* than f.

 $H^{g}(A) > 0$ indicates a higher dimension than $H^{f}(A) > 0$ does.

• If
$$f \prec g$$
 and $H^f(A) < \infty$ then $H^g(A) = 0$.

• If
$$f \prec g$$
 and $H^g(A) > 0$ then $H^f(A) = \infty$.

A set determines a *filter* of gauge functions for which it is null and an *ideal* of gauge functions for which it has positive outer measure.

• If
$$f \prec g$$
 and $H^f(A) < \infty$ then $H^g(A) = 0$.

• If
$$f \prec g$$
 and $H^g(A) > 0$ then $H^f(A) = \infty$.

A set determines a *filter* of gauge functions for which it is null and an *ideal* of gauge functions for which it has positive outer measure.

Here is a principal example.

Example

Almost surely, the path of a Brownian motion in \mathbb{R}^3 has positive *finite* H^f measure for $f(x) = x^2 \log \log(1/x) \prec x^2$. See Falconer (2003).

Quantitative versions of the perfect set property

In many cases, the dimension of a set is established by exhibiting a closed subset with verifiable dimension. In concrete cases, this is without loss of generality.

Quantitative versions of the perfect set property

In many cases, the dimension of a set is established by exhibiting a closed subset with verifiable dimension. In concrete cases, this is without loss of generality.

Theorem

- ► (Davies 1952) If A is analytic and H^f(A) > 0 then A has a compact subset C such that H^f(C) > 0.
- (Davies 1956 for x^s, Sion and Sjerve 1962) If A is analytic and not σ-finite for H^f then A has a compact subset C such that C is not σ-finite for H^f.

The previous results of Davies are the most that can be proven within ZFC.

Theorem

If V = L then the maximal thin Π_1^1 -set, $\{x : x \in L_{\omega_1^x}\}$, is a co-analytic set of dimension 1 with no perfect subset.

The previous results of Davies are the most that can be proven within *ZFC*.

Theorem

If V = L then the maximal thin Π_1^1 -set, $\{x : x \in L_{\omega_1^x}\}$, is a co-analytic set of dimension 1 with no perfect subset.

Stronger set theoretic hypotheses yield capacitability for larger classes of sets.

Theorem (Crone, Fishman and Jackson (2020); Yinhe Peng, Liuzhen Wu and Liang Yu (2023))

Under the Axiom of Determinacy, for every set A, if A has Hausdoff dimension s then for every d < s there is closed subset C of A such that C has Hausdorff dimension at least d.

Sets of Strong Dimension f

Definition

A set A has strong dimension f iff

$$\forall h [h \prec f \Rightarrow H^h(A) = \infty]$$

$$\forall g [f \prec g \Rightarrow H^g(A) = 0]$$

As a limiting case, A has strong dimension zero iff for all g, $H^{g}(A) = 0$.

Sets of Strong Dimension f

Definition

A set A has strong dimension f iff

$$\forall h \left[h \prec f \Rightarrow H^h(A) = \infty \right]$$

$$\forall g [f \prec g \Rightarrow H^g(A) = 0]$$

As a limiting case, A has strong dimension zero iff for all g, $H^{g}(A) = 0$.

Example

A line, or even a line segment, within \mathbb{R}^n has strong linear dimension.

Size Matters

Repeat. A has strong dimension f iff

•
$$H^h(A) = \infty$$
 whenever $h \prec f$ and

•
$$H^g(A) = 0$$
 whenever $f \prec g$.

Besicovitch raised the question, "What about $H^{f}(A)$, the size of A, when A has strong dimension f?"

Size Matters

Besicovitch raised the question, "What about $H^{f}(A)$, the size of A, when A has strong dimension f?"

There are three possibilites:

1.
$$H^{f}(A) = 0$$

- 2. $H^{f}(A) > 0$ and A is σ -finite for H^{f}
- **3**. A is not σ -finite for H^f

Case 1.
$$H^{f}(A) = 0$$

Theorem (Besicovitch 1956)

Suppose that f is a gauge function such that $H^{f}(A) = 0$. Then there is an h such that $f \succ h$ and $H^{h}(A) = 0$.

Consequently, if $H^{f}(A) = 0$ then A does not have strong dimension f.

Question (C. A. Rogers 1962)

Suppose that $A \subseteq \mathbb{R}$, that $(f_i : i \in \omega)$ is a sequence of gauge functions such that for all i, $f_i \succ f_{i+1}$, and that for all i, $H^{f_i}(A) = 0$. Does there exist a gauge function h such that for all i, $f_i \succ h$ and $H^h(A) = 0$?

Question (C. A. Rogers 1962)

Suppose that $A \subseteq \mathbb{R}$, that $(f_i : i \in \omega)$ is a sequence of gauge functions such that for all i, $f_i \succ f_{i+1}$, and that for all i, $H^{f_i}(A) = 0$. Does there exist a gauge function h such that for all i, $f_i \succ h$ and $H^h(A) = 0$?

Although positive for closed sets, Rogers's question is settled negatively by the following.

Theorem (Olsen and Renfro 2006)

Let \mathbb{L} denote the set of Liouville numbers, those with infinite exponent of irrationality. For a gauge function h,

- if there is an s > 0 such that $x^s \prec h$, then $H^h(\mathbb{L}) = 0$
- if for every s > 0, $h \prec x^s$, then $H^h(\mathbb{L}) = \infty$

For Rogers's question, use the functions $f_i = x^{\frac{1}{i+1}}$.

dimension for comeager sets

Definition

If f is a gauge function, define the gauge function $\Gamma_f:\{1/2^n:n\in\omega\}\to\mathbb{R}^+$ by

$$f_f(x) = \inf_{0 < s \le x} f(s)/s$$

In their analysis of Liouville numbers, Olsen and Renfro showed that $H^f=H^{\Gamma_f}.$

Theorem (Yiping Miao, work in progress)

Let G be the set of arithmetically generic reals. For a gauge function f, $H^{f}(G) > 0$ iff for all arithmetic gauge functions g, $\Gamma_{f} \neq g$.

More generally:

Theorem

Suppose that $(f_i : i \in \omega)$ is a sequence of gauge functions such that for all $i, f_i \succ f_{i+1}$. There is a Π_3^0 set A such that the following conditions hold. For all $i, H^{f_i}(A) = 0$.

▶ For all gauge functions h, if for all i, $f_i > h$, then $H^h(A) = \infty$.

Case 2. $H^{f}(A) > 0$ and A is σ -finite for H^{f}

Remark

- If $H^{f}(A)$ is finite and $f \prec g$, then $H^{g}(A) = 0$.
- ▶ H^g is countably additive.

Consequently, if $H^{f}(A) > 0$ and A is σ -finite for H^{f} , then A has strong dimension f.

Case 3. A is not σ -finite for H^f

This case was first settled for analytic sets.

Case 3. A is not σ -finite for H^f

This case was first settled for analytic sets.

Theorem (Besicovitch 1956, generalized Rogers 1962)

If A is compact and is not σ -finite for H^f , then there is a g such that $f \prec g$ and A is not σ -finite for H^g .

Thus, if A is compact and not σ -finite for H^{f} , then A does not have strong dimension f.

Case 3. A is not σ -finite for H^f

This case was first settled for analytic sets.

Theorem (Besicovitch 1956, generalized Rogers 1962)

If A is compact and is not σ -finite for H^f , then there is a g such that $f \prec g$ and A is not σ -finite for H^g .

Thus, if A is compact and not σ -finite for H^{f} , then A does not have strong dimension f.

By the Davies/Sion-Sjerve Theorem, the non- σ -finiteness of an analytic set is supported by that of its compact subsets, so we have the same conclusion for analytic sets.

Consistency Results for Case 3

Theorem (Besicovitch 1963)

If CH, or the failure of the Borel Conjecture, then there is a set $A \subset \mathbb{R}^2$ such that A has strong linear dimension and is not σ -finite for linear measure.

Borel Conjecture

Definition

A set $A \subseteq \mathbb{R}$ has *strong measure zero* iff for any sequence of positive real numbers $\{\epsilon_i\}$ there is a sequence of open intervals $\{O_i\}$ such that for each *i*, O_i has length ϵ_i , and $A \subseteq \bigcup_{i=1}^{\infty} O_i$.

Borel (1919) conjectured that strong measure zero implies countable (BC).

Theorem

- ► (Sierpiński 1928) CH implies ¬BC.
- (Laver 1976) Con(ZFC) implies Con(ZFC + BC).

Besicovitch's Proof Sketch

Let $S \subset [0,1]$ be a counterexample to the Borel Conjecture: uncountable with strong measure zero. Show that $[0,1] \times S$ has strong linear dimension and is not σ -finite for linear measure.

Extending the Borel Conjecture to Dimension

Recall that a set A has strong dimension zero iff for all gauge functions f, $H^{f}(A) = 0$.

Theorem (Besicovitch 1955)

A set A has strong measure zero iff it has strong dimension zero.

Extending the Borel Conjecture to Dimension

Recall that a set A has strong dimension zero iff for all gauge functions f, $H^{f}(A) = 0$.

Theorem (Besicovitch 1955)

A set A has strong measure zero iff it has strong dimension zero.

This suggests the following.

Extended Borel Conjecture (BC*)

For all $A \subset \mathbb{R}^n$ and for all gauge functions f, A has strong dimension f iff $H^f(A) > 0$ and A is σ -finite for H^f .

Extending the Borel Conjecture to Dimension

Recall that a set A has strong dimension zero iff for all gauge functions f, $H^{f}(A) = 0$.

Theorem (Besicovitch 1955)

A set A has strong measure zero iff it has strong dimension zero.

This suggests the following.

Extended Borel Conjecture (BC*)

For all $A \subset \mathbb{R}^n$ and for all gauge functions f, A has strong dimension f iff $H^f(A) > 0$ and A is σ -finite for H^f .

In the context of our discussion, BC^* implies that A does not have strong dimension f when Case 3 applies.

The Consistency of BC^*

Theorem

If ZFC is consistent then so is $ZFC + BC^*$.

So, the analysis of Case 3 is necessarily meta-mathematical.

The Consistency of BC^*

Theorem

If ZFC is consistent then so is $ZFC + BC^*$.

So, the analysis of Case 3 is necessarily meta-mathematical.

In the proof, show that Laver's model for BC is also one for BC^* .

Laver's Model

Laver's model is obtained by starting with a model M of ZFC + CH and adding an ω_2 -sequence of Laver-generic reals.

Laver's Model

Laver's model is obtained by starting with a model M of ZFC + CH and adding an ω_2 -sequence of Laver-generic reals.

► Each step of the iteration adds a function G : ω → ω which is fast-growing compared to those which precede it.

Laver's Model

Laver's model is obtained by starting with a model M of ZFC + CH and adding an ω_2 -sequence of Laver-generic reals.

- ► Each step of the iteration adds a function G : ω → ω which is fast-growing compared to those which precede it.
- ▶ For f a gauge function and $G : \omega \to \omega$ Laver-generic, define g so that for $x \in [1/G(k+1), 1/G(k)), g(x) = f(x)/(k+1).$

Heuristic

Proposal. Given a gauge function f and a set $A \subset \mathbb{R}^n$ in $\mathcal{M}[G_{\omega_2}]$ so that $\mathcal{M}[G_{\omega_2}] \models "A \text{ is not } \sigma\text{-finite for } H^f."$ Show that $H^g(A) > 0$, where $g \succ f$ is the gauge function induced from f by a Laver generic.

Three parts:

Three parts:

Reflection There is an $\alpha < \omega_2$ such that $\mathcal{M}[\mathcal{G}_{\alpha}] \models ``\mathcal{A}_{\alpha}$ is not σ -finite for H^f ."

Three parts:

Reflection There is an $\alpha < \omega_2$ such that $\mathcal{M}[G_{\alpha}] \models "A_{\alpha}$ is not σ -finite for H^f ." Fusion For a contradiction, analyze in $\mathcal{M}[G_{\alpha}]$ how there could be open covers of A_{α} to show that it is null for $H^{g_{\alpha+1}}(A_{\alpha})$ in $\mathcal{M}[G_{\omega_2}]$.

Three parts:

Reflection There is an $\alpha < \omega_2$ such that $\mathcal{M}[G_{\alpha}] \models "A_{\alpha}$ is not σ -finite for H^f ." Fusion For a contradiction, analyze in $\mathcal{M}[G_{\alpha}]$ how there could be open covers of A_{α} to show that it is null for $H^{g_{\alpha+1}}(A_{\alpha})$ in $\mathcal{M}[G_{\omega_2}]$. Investigation of rank Still in $\mathcal{M}[G_{\alpha}]$, extract an ordinal ranking of this analysis so that the countably many rank zero reasons for

 $a \in A_{\alpha}$ to be covered have finite H^{f} -measure.

Three parts:

Reflection There is an $\alpha < \omega_2$ such that $\mathcal{M}[G_{\alpha}] \models "A_{\alpha}$ is not σ -finite for H^f ." Fusion For a contradiction, analyze in $\mathcal{M}[G_{\alpha}]$ how there could be open covers of A_{α} to show that it is null for $H^{g_{\alpha+1}}(A_{\alpha})$ in $\mathcal{M}[G_{\omega_2}]$. Investigation of rank Still in $\mathcal{M}[G_{\alpha}]$, extract an ordinal ranking of this analysis so that the countably many rank zero reasons for $a \in A_{\alpha}$ to be covered have finite H^f -measure.

The last step yields a contradiction to the first two steps.

An Application of Absoluteness

The previous argument showed that if $V \models ZFC$ then there is a generic extension V[G] in which BC^* holds.

An Application of Absoluteness

The previous argument showed that if $V \models ZFC$ then there is a generic extension V[G] in which BC^* holds.

- ▶ When restricted to refer only to closed sets, the assertion of BC^* is equivalent to a Π_3^1 -statement.
- ► Since Π¹₃-statements are downward absolute for inner models of ZFC, BC* is true for closed sets.

An Application of Absoluteness

The previous argument showed that if $V \models ZFC$ then there is a generic extension V[G] in which BC^* holds.

- ▶ When restricted to refer only to closed sets, the assertion of BC^* is equivalent to a Π_3^1 -statement.
- Since Π¹₃-statements are downward absolute for inner models of ZFC, BC* is true for closed sets.

This provides an alternate proof of Besicovitch's theorem that closed sets of non- σ -finite measure for H^f do not have strong dimension f.

A Final Challenge

A set $A \subset \mathbb{R}$ determines an ideal I(A) in the gauge functions:

```
I(A) = \{f : H^f(A) > 0\}.
```

Question

- What is a necessary and sufficient condition on an an ideal I to ensure that there is a compact set A such that I = I(A)?
- ► What is a necessary and sufficient condition on an ideal I to ensure that there is a Borel set A such that I = I(A)?
- What is a necessary and sufficient condition on an ideal I to ensure that there is an unrestricted set A such that I = I(A)?

The End