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Hausdorff Dimension
review

Define a family of outer measures, parameterized by s > 0. For A ⊆ Rn,

Hs(A) = lim
r→0

inf

{∑
i

d s
i :

there is a cover of A by balls Bi

with diameters di < r

}
.

Definition (Hausdorff 1918)

The Hausdorff dimension of A is as follows.

dimH(A) = inf{s > 0 : Hs(A) = 0}
=sup ({s > 0 : Hs(A) = ∞} ∪ {0})

Remark

The numerical Hausdorff dimension of a set A characterizes the cut of
functions x s which assign A infinite outer-measure.
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Examples

Example

▶ A line segment within Rn has Hausdorff dimension 1.

▶ The Sierpinski triangle has Hausdorff dimension log 3/ log 2.

▶ Almost surely, the path of a Brownian motion in R3 has Hausdorff
dimension 2.
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Gauge Functions and General Hausdorff Dimension

Definition

A gauge function is a function f : (0,∞) → (0,∞) which has the
following properties:

▶ continuous

▶ increasing

▶ limx→0+ f (x) = 0

Example

For s > 0, x s is a gauge function.

As above, we can associate a Hausdorff outer measure H f with any
gauge function f .
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Gauge Functions and General Hausdorff Dimension

▶ Write f ≺ g to indicate that limx→0+
g(x)
f (x) = 0.

▶ Say that g has higher order than f .

x

y

f (x) =
√
x

g(x) = x/2

Hg (A) > 0 indicates a higher dimension than H f (A) > 0 does.

5/27



Gauge Functions and General Hausdorff Dimension

▶ If f ≺ g and H f (A) < ∞ then Hg (A) = 0.

▶ If f ≺ g and Hg (A) > 0 then H f (A) = ∞.

A set determines a filter of gauge functions for which it is null and an
ideal of gauge functions for which it has positive outer measure.

Here is a principal example.

Example

Almost surely, the path of a Brownian motion in R3 has positive finite H f

measure for f (x) = x2 log log(1/x) ≺ x2. See Falconer (2003).
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Capacitability
Quantitative versions of the perfect set property

In many cases, the dimension of a set is established by exhibiting a closed
subset with verifiable dimension. In concrete cases, this is without loss of
generality.

Theorem

▶ (Davies 1952) If A is analytic and H f (A) > 0 then A has a compact
subset C such that H f (C ) > 0.

▶ (Davies 1956 for x s , Sion and Sjerve 1962) If A is analytic and not
σ-finite for H f then A has a compact subset C such that C is not
σ-finite for H f .
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Capacitability

The previous results of Davies are the most that can be proven within
ZFC.

Theorem

If V = L then the maximal thin Π1
1-set, {x : x ∈ Lωx

1
}, is a co-analytic set

of dimension 1 with no perfect subset.

Stronger set theoretic hypotheses yield capacitability for larger classes of
sets.

Theorem (Crone, Fishman and Jackson (2020); Yinhe Peng, Liuzhen Wu
and Liang Yu (2023))

Under the Axiom of Determinacy, for every set A, if A has Hausdoff
dimension s then for every d < s there is closed subset C of A such that
C has Hausdorff dimension at least d.
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Sets of Strong Dimension f

Definition

A set A has strong dimension f iff

∀h [h ≺ f ⇒ Hh(A) = ∞]

∀g [f ≺ g ⇒ Hg (A) = 0]

As a limiting case, A has strong dimension zero iff for all g , Hg (A) = 0.

Example

A line, or even a line segment, within Rn has strong linear dimension.
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Size Matters

Repeat. A has strong dimension f iff

▶ Hh(A) = ∞ whenever h ≺ f and

▶ Hg (A) = 0 whenever f ≺ g .

Besicovitch raised the question, “What about H f (A), the size of A, when
A has strong dimension f ?”

There are three possibilites:

1. H f (A) = 0

2. H f (A) > 0 and A is σ-finite for H f

3. A is not σ-finite for H f
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Case 1. H f (A) = 0

Theorem (Besicovitch 1956)

Suppose that f is a gauge function such that H f (A) = 0. Then there is
an h such that f ≻ h and Hh(A) = 0.

Consequently, if H f (A) = 0 then A does not have strong dimension f .
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Aside: Nonprincipal Dimension

Question (C. A. Rogers 1962)

Suppose that A ⊆ R, that (fi : i ∈ ω) is a sequence of gauge functions
such that for all i , fi ≻ fi+1, and that for all i , H fi (A) = 0. Does there
exist a gauge function h such that for all i , fi ≻ h and Hh(A) = 0?

Although positive for closed sets, Rogers’s question is settled negatively
by the following.

Theorem (Olsen and Renfro 2006)

Let L denote the set of Liouville numbers, those with infinite exponent of
irrationality. For a gauge function h,

▶ if there is an s > 0 such that x s ≺ h, then Hh(L) = 0

▶ if for every s > 0, h ≺ x s , then Hh(L) = ∞

For Rogers’s question, use the functions fi = x
1

i+1 .

12/27



Aside: Nonprincipal Dimension

Question (C. A. Rogers 1962)

Suppose that A ⊆ R, that (fi : i ∈ ω) is a sequence of gauge functions
such that for all i , fi ≻ fi+1, and that for all i , H fi (A) = 0. Does there
exist a gauge function h such that for all i , fi ≻ h and Hh(A) = 0?

Although positive for closed sets, Rogers’s question is settled negatively
by the following.

Theorem (Olsen and Renfro 2006)

Let L denote the set of Liouville numbers, those with infinite exponent of
irrationality. For a gauge function h,

▶ if there is an s > 0 such that x s ≺ h, then Hh(L) = 0

▶ if for every s > 0, h ≺ x s , then Hh(L) = ∞

For Rogers’s question, use the functions fi = x
1

i+1 .

12/27



Aside: Nonprincipal Dimension
dimension for comeager sets

Definition

If f is a gauge function, define the gauge function
Γf : {1/2n : n ∈ ω} → R+ by

Γf (x) = inf
0<s≤x

f (s)/s

In their analysis of Liouville numbers, Olsen and Renfro showed that
H f = HΓf .

Theorem (Yiping Miao, work in progress)

Let G be the set of arithmetically generic reals. For a gauge function f ,
H f (G ) > 0 iff for all arithmetic gauge functions g, Γf ̸≻ g.
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Aside: Nonprincipal Dimension

More generally:

Theorem

Suppose that (fi : i ∈ ω) is a sequence of gauge functions such that for all
i , fi ≻ fi+1. There is a Π0

3 set A such that the following conditions hold.

▶ For all i , H fi (A) = 0.

▶ For all gauge functions h, if for all i , fi ≻ h, then Hh(A) = ∞.
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Case 2. H f (A) > 0 and A is σ-finite for H f

Remark

▶ If H f (A) is finite and f ≺ g , then Hg (A) = 0.

▶ Hg is countably additive.

Consequently, if H f (A) > 0 and A is σ-finite for H f , then A has strong
dimension f .
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Case 3. A is not σ-finite for H f

This case was first settled for analytic sets.

Theorem (Besicovitch 1956, generalized Rogers 1962)

If A is compact and is not σ-finite for H f , then there is a g such that
f ≺ g and A is not σ-finite for Hg .

Thus, if A is compact and not σ-finite for H f , then A does not have
strong dimension f .

By the Davies/Sion-Sjerve Theorem, the non-σ-finiteness of an analytic
set is supported by that of its compact subsets, so we have the same
conclusion for analytic sets.
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Consistency Results for Case 3

Theorem (Besicovitch 1963)

If CH, or the failure of the Borel Conjecture, then there is a set A ⊂ R2

such that A has strong linear dimension and is not σ-finite for linear
measure.
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Borel Conjecture

Definition

A set A ⊆ R has strong measure zero iff for any sequence of positive real
numbers {ϵi} there is a sequence of open intervals {Oi} such that for
each i , Oi has length ϵi , and A ⊆ ∪∞

i=1Oi .

Borel (1919) conjectured that strong measure zero implies countable
(BC).

Theorem

▶ (Sierpiński 1928) CH implies ¬BC.
▶ (Laver 1976) Con(ZFC ) implies Con(ZFC+ BC).
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Besicovitch’s Proof Sketch

Let S ⊂ [0, 1] be a counterexample to the Borel Conjecture: uncountable
with strong measure zero. Show that [0, 1]× S has strong linear
dimension and is not σ-finite for linear measure.

−0.5 0.5 1 1.5

−0.5

0.5

1

1.5
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Extending the Borel Conjecture to Dimension

Recall that a set A has strong dimension zero iff for all gauge functions f ,
H f (A) = 0.

Theorem (Besicovitch 1955)

A set A has strong measure zero iff it has strong dimension zero.

This suggests the following.

Extended Borel Conjecture (BC ∗)

For all A ⊂ Rn and for all gauge functions f , A has strong dimension f iff
H f (A) > 0 and A is σ-finite for H f .

In the context of our discussion, BC ∗ implies that A does not have
strong dimension f when Case 3 applies.
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The Consistency of BC ∗

Theorem

If ZFC is consistent then so is ZFC+ BC ∗.

So, the analysis of Case 3 is necessarily meta-mathematical.

In the proof, show that Laver’s model for BC is also one for BC ∗.
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Laver’s Model
Laver’s model is obtained by starting with a model M of ZFC+ CH and
adding an ω2-sequence of Laver-generic reals.

▶ Each step of the iteration adds a function G : ω → ω which is
fast-growing compared to those which precede it.

▶ For f a gauge function and G : ω → ω Laver-generic, define g so
that for x ∈ [1/G (k + 1), 1/G (k)), g(x) = f (x)/(k + 1).

x

y

f (x)

g(x)
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Heuristic

Proposal. Given a gauge function f and a set A ⊂ Rn in M[Gω2 ] so that

M[Gω2 ] |= “A is not σ-finite for H f .”

Show that Hg (A) > 0, where g ≻ f is the gauge function induced from f
by a Laver generic.
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Sections of the proof

Three parts:

Reflection There is an α < ω2 such that
M[Gα] |= “Aα is not σ-finite for H f .”

Fusion For a contradiction, analyze in M[Gα] how there could be
open covers of Aα to show that it is null for Hgα+1(Aα) in
M[Gω2 ].

Investigation of rank Still in M[Gα], extract an ordinal ranking of this
analysis so that the countably many rank zero reasons for
a ∈ Aα to be covered have finite H f -measure.

The last step yields a contradiction to the first two steps.
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An Application of Absoluteness

The previous argument showed that if V |= ZFC then there is a generic
extension V [G ] in which BC ∗ holds.

▶ When restricted to refer only to closed sets, the assertion of BC ∗ is
equivalent to a Π1

3-statement.

▶ Since Π1
3-statements are downward absolute for inner models of

ZFC, BC ∗ is true for closed sets.

This provides an alternate proof of Besicovitch’s theorem that closed sets
of non-σ-finite measure for H f do not have strong dimension f .
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A Final Challenge

A set A ⊂ R determines an ideal I (A) in the gauge functions:

I (A) = {f : H f (A) > 0}.

Question

▶ What is a necessary and sufficient condition on an an ideal I to
ensure that there is a compact set A such that I = I (A)?

▶ What is a necessary and sufficient condition on an an ideal I to
ensure that there is a Borel set A such that I = I (A)?

▶ What is a necessary and sufficient condition on an an ideal I to
ensure that there is an unrestricted set A such that I = I (A)?
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The End
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