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Motivation

originally trying to justify methods used by physisists in quantum
mechanical calculations

▶ using eigenvectors where such don’t really exist
▶ using finite-dimensional approximation without specifying how they

approximate the space being studied

I talked about a first approach last time I was here

our next approach was Rigged Hilbert spaces and distributions, which
turned into a study of ultraproduct approaches to spectral theorems
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Background on operators
Recall:

Definition

For a bounded operator A on a Hilbert space, there is a unique operator
A∗, the adjoint of A that for all u and v satisfies

⟨Au, v⟩ = ⟨u,A∗v⟩

If it happens that A = A∗, A is called self-adjoint.

Definition

The spectrum of an operator A, denoted σ(A), is the set of λ ∈ C such
that

A− λI

does not have a bounded inverse.

Å. Hirvonen (University of Helsinki) An ultraproduct approach to spectral theorems February 17, 2025 3 / 16



Spectral theorem for bounded self-adjoint operators

Theorem (Spectral theorem)

For A a bounded self-adjoint operator on a Hilbert space H, there exists a
measure µ on σ(A) and an isomorphism U : H → L2(σ(A), µ) such that

UAU−1f = Mg f

where Mg is the multiplication operator f (x) 7→ g(x)f (x).

Moreover, if A has a cyclic vector, the multiplication operator is just
f (x) 7→ xf (x).
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Cyclic vectors

Definition

For H a Hilbert space and A a bounded self-adjoint operator, a vector φ is
called cyclic for A if the vectors Anφ, n < ω, span a dense subset of H.

Fact

A Hilert space can be decomposed into a direct sum of invariant
subspaces, each with a cyclic vector,

So from the spectral theorem point of view, one can work with cyclic
vectors and just get a sum of L2-spaces.
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Self-adjoint via unitary

Theorem (Stone)

There is a one-one correspondence between unitary operators U and
self-adjoint operators A with spectrum ⊆ [0, 1] and not having 0 in the
point spectrum, given by U = e2πiA.

Fact

We can modify the above, to consider spectra ⊂ [−π
2 ,

π
2 ], and a

correspondence U = e iA.

So, we start with a bounded self-adjoint operator A, with a cyclic vector φ
(of norm 1).

We assume σ(A) ⊂ [−π
2 ,

π
2 ], and consider U = e iA.

Now φ is cyclic also for U, in the sense that the vectors Ukφ, k ∈ Z, span
a dense set of H.
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Finding finite dimensional approximations of (H ,U)

Consider the spanning vectors

· · · U−nφ U−n+1φ · · · U−1φ φ Uφ · · · Un−1φ Unφ · · ·

Define finite dimensional spaces

HN = span{Ukφ : −N ≤ k ≤ N}

U−Nφ · · · U−1φ φ Uφ · · · UNφ
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Approximations of U

Let
H−
N = span{Ukφ : −N ≤ k < N}

and
H+
N = span{Ukφ : −N < k ≤ N}

and let W+ and W− be their corresponding orthogonal complements in

HN

HN = H−
N ⊕W+ = W− ⊕ H+

N

Let UN be built from

U on H−
N

a unitary operator mapping W+ to W−
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Eigenvectors

In each HN

UN is unitary and has an eigenvector basis (uN(k))k<2N+1 with
corresponding eigenvalues λN(k),

the cyclic vector can be written as

φ =
2N∑
k=0

ξN(k)uN(k)

where each ξN(k) is a non-negative real, and
∑2N

k=0 ξN(k)
2 = 1.

Note: The spaces HN extend each other, but the bases do not.
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The ultraproduct model

Let U be a non-principal ultrafilter on ω.

We will work with the metric ultraproduct of the spaces (HN ,UN).

As φ is cyclic, there is a natural embedding of H into Hm:

Definition

For P(X ,Y ) ∈ C[X ,Y ], let P(U,U−1) be natural interpretation as an
operator on H, e.g.,

X 2Y (U,U−1) = U ◦ U ◦ U−1 = U.

Then P(U,U−1)(φ) makes sense in almost all HN , and thus we can define
Gm : H → Hm by

Gm(P(U,U−1)(φ)) = (P(U,U−1)(φ))N<ω/U .
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Spectral measure in HN

Remember: in each HN , φ =
∑2N

k=0 ξN(k)uN(k)

Definition

For each N < ω, define a measure µN for subsets X ⊂ C:

µN(X ) =
∑

k<2N,λN(k)∈X

ξN(k)
2

Note that for all X ⊂ C, µN(X ) ≤ 1, as ∥φ∥ = 1.
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Spectral measure from ultraproduct
We construct a spectral measure for U in steps:

1 For each X ⊆ C, let µn(X ) be the ultralimit limU µN(X )

2 consider a set of nice vertical (Ir ) and horizontal (Jr ) lines for which
for all δ > 0 there is ε > 0 such that their “ε-thickenings” I εr and JεR
have small “measure”

µn(I εr ) < δ, µn(Jεr ) < δ

3 define an outer measure based on the µn-value of boxes bounded by
nice lines

µ∗(Y ) = inf

{ ∞∑
k=0

µn(Xk) | Xk a nice box,Y ⊆
⋃
k<ω

Xk

}

4 by Caratheodory’s construction, find a σ-algebra of sets for which µ∗

is a measure
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Spectral representation for U

Consider the space L2(S , µ
∗), where S is a suitable compact subset of C,

the complement of which has zero µ∗-measure.

Definition

Let D(S) be the subspace of C (S) that consists of functions

fP(λ) = P(λ, λ̄)

where P ∈ C[X ,Y ] and λ̄ is the complex conjugate of λ.
Define UD and U∗

D by

UD(fP) = fXP and U∗
D(fP) = fYP .

Note that UD(fP)(λ) = λfP(λ), and U∗
D(fP)(λ) = λ̄fP(λ).
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Theorem
1 The measure µ∗ is zero outside the spectrum of U.

2 There is an isometry mapping L2(S , µ
∗) to H, and (the extension of)

UD to U. (We find it going via Hm.)

3 We can transfer the measure µ∗ from the unit circle to the real line to
get (from the isometry above) an isomorphism between L2(σ(A), µ)
and (H,A).
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Next steps

currently working on extending the result to unbounded self-adjoint
operators

▶ also these translate to unitary operators, that can be used for a
decomposition

▶ we get bounded self-adjoint operators on finite dimensional spaces (but
without a uniform bound), and need to take a guarded ultraproduct of
them – this gives a partially defined operator

the following step is to look at bounded normal operators via their
decomposition into self-adjoint operators
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Thank you!
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