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Borel Equivalence Relations: some definitions

Recall that an equivalence relation E on a standard Borel space X
is Borel if {(x, y) | xEy} is a Borel set.

Let E be a Borel equivalence relation.

I E is called finite if it has finite classes.

I E is countable if it has countable classes. These are referred
to as cbers.

I E is hyperfinite if E is the increasing union of finite Borel
equivalence relations.

I E is hyperhyperfinite if E is the increasing union of
hyperfinite equivalence relations.

A motivational open problem:
(The Union Problem): Does hyperhyperfinite imply hyperfinite?
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Examples of cbers

Def. E0 on 2ω given by xE0y iff for all large n, xn = yn.
E0 is hyperfinite, and actually the hyperfinite equivalence relation
in the sense that each hyperfinite E is Borel reducible to E0.

Def. E is Borel reducible to F if there is a Borel function f, such
that xEy iff f(x)Ff(y).

More general examples:

I Def. Let G be a countable group acting on a space X in a
Borel way. The induced orbit equivalence relation EG is a cber.

I And actually every cber is obtained in such a way (Feldman
Moore)
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Another way of obtaining cbers, using forcing

Due to Smythe, 2018.

The set up:

I Let M be a countable model and P a poset in M.

I Define Gen(P,M) to be the space of all M-generic filters
G ⊂ P.

I Define an equivalence relation EM
P on Gen(M,P) as follows:

set GEM
P H iff M[G] = M[H].

Theorem (Smythe)

1. Gen(P,M) is a Gδ set.

2. EM
P is a countable Borel equivalence relation.

3. EM
P is induced by the action of the group of automorphisms of

P that are in M.
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A Characterization of Smoothness

Recall, an equivalence relation E is smooth iff it is Borel reducible
to =R.

Smythe: P is atomless and weakly homogeneous, then EM
P is not

smooth.

A key point in the proof is that P is weakly homogeneous iff the
action generating EM

P is generically ergodic. This is combined with
having meager orbits, which follows from P being atomless.

We show a characterization of smoothness for equivalence relations
of the form EM

P .
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A Characterization of Smoothness

Definition
(†)p: for all p′ ≤ p, there are incompatible q, r ≤ p′, such that
there exists distinct generic filters G,H, such that q ∈ G, r ∈ H and
V[H] = V[G].

Theorem EM
P is not smooth iff for some p ∈ M, †p holds.

The idea: a translation of the topological characterization of
smoothness via condensation, which is weaker than generic
ergodicity.
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About †

(†)p: for all p′ ≤ p, there are incompatible q, r ≤ p′, such that
there exists distinct generic filters G,H, such that q ∈ G, r ∈ H and
V[H] = V[G].

Roughly, this says that densely often below p, we can find
instances of homogeneity.

I densely weakly homogeneous implies (†)p for all p.

I The converse fails i.e. † is strictly weaker.

Lemma
There is a poset P that is not densely weakly homogeneous, but †p
holds for all p.

idea of the proof: take lottery sums of nonisomorphic
homogeneous forcings in a tree like fashion.
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Prikry forcing

P

uses a normal measure on κ to add an ω-sequence through κ.

Let κ be a measurable cardinal and U be a normal measure on κ.
The forcing conditions are pairs 〈s,A〉, where s is a finite sequence
of ordinals in κ and A ∈ U. 〈s1,A1〉 ≤ 〈s0,A0〉 iff:

I s0 is an initial segment of s1.

I s1 \ s0 ⊂ A0,

I A1 ⊂ A0.

Let G be generic for this poset, and let
⋃
〈s,A〉∈G s.

This gives a sequence 〈αn | n < ω〉, cofinal in κ, such that for
every A ∈ U, for all large n, αn ∈ A.

For p = 〈s,A〉 ∈ P, set lh(p) = |s|.
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The equivalence relation for Prikry forcing

Let P be the Prikry poset for some measure and M a countable
model. Let G,H be M-generic for P.

Fact (Gitik-Kanovei-Koepke) M[G] = M[H](i.e. GEM
P H) iff on a

tail end the two Prikry sequences coincide.

Theorem. EM
P is hyperfinite.
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The Cohen real

Let M be a countable model and P = Add(ω, 1), the poset to add
a Cohen real.

Smythe: EM
P is hyperhyperfinite. Some key points in that proof:

1. Any cber is hyperfinite of a comeager set,

2. If C ∈ M is comeager, then any M-generic real is in C.

3. EM
P =

⋃
n En, an increasing union, where each En ∈ M.

About item one: any cber is hyperfinite of a comeager set.
For any x, there are comeagerly many y in N (the Baire space),
”coding” [x]E , i.e. can define a hyperfinite equivalence relation Ey

such that [x]E = [x]Ey .
Then, for comeagerly many x, there are comegearly many such y’s.
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Exploiting mutual genericity

Let P be the Cohen poset and let X = Gen(P,M). Let E = EM
P ,

and

suppose that {gn | n < ω} are the automorphisms in M
generating E.

Can identify finite partial function from ω to ω with P, and so
elements in the Baire space with elements in X.

Lemma
If y and x are M-mutually generic, and {gn | n < ω} ∈ M[y], then
[x]E = [x]Ey . Namely, EM

P restricted to Gen(P,M[y]) is hyperfinite.

Let N ⊃ M be a countable model, such that the {gn | n < ω} ∈ N.
Define EN by xENz iff:
xEz, x � Even = z � Even, and the latter is N -generic.

Lemma
EN is hyperfinite.
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Open questions

1. Let E = EM
P , where P is the Cohen poset. Is E hyperfinite?

2. Define E∗ to be xE∗z iff xEz and x � Even = z � Even.
Is E Borel reducible to E∗?

3. Is there a Borel function f : Gen(P,M)→ Gen(P,M), such
that for all x, f(x) is M[x]-generic and xEy implies f(x) = f(y).

4. Let P be the Magidor forcing. What is the Borel complexity of
EM
P ?

5. What about Namba forcing?

THANK YOU
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