The inner model $C(aa^+)$

Otto Rajala

University of Helsinki

Arctic set theory workshop 7 Kilpisjärvi, February 22nd 2025

Extended constructibility

Research program started by Kennedy, Magidor, Väänänen ([2], [3]).

Definition

Suppose \mathcal{L}^* is a logic. The hierarchy (J'_{α}) , α a limit ordinal, of *sets* construbtible using \mathcal{L}^* and the class Tr are defined by transfinite double induction, as follows:

$$\mathrm{Tr} = \{ (\alpha, \varphi(\vec{a})) : (J'_{\alpha}, \in, \mathrm{Tr} \restriction \alpha) \models \varphi(\vec{a}), \varphi(\vec{x}) \in \mathcal{L}^*, \vec{a} \in J'_{\alpha}, \alpha \in \mathrm{Lim} \},$$

where

$$\mathrm{Tr} \upharpoonright \alpha = \{ (\beta, \vec{a}) \in \mathrm{Tr} : \beta < \alpha \},\$$

and

$$\begin{array}{ll} J_0' &= \emptyset, \\ J_{\alpha+\omega}' &= \operatorname{rud}_{\operatorname{Tr}}(J_\alpha' \cup \{J_\alpha'\}), \\ J_{\omega\delta}' &= \bigcup_{\alpha < \delta} J_{\omega\alpha}' \text{ for limit } \delta. \end{array}$$

The class $\bigcup_{\alpha \in \operatorname{Ord}} J'_{\alpha}$ is denoted by $C(\mathcal{L}^*)$.

Otto Rajala

イロン イヨン イヨン イヨン 三日

Inner model C(aa)

- C(aa) obtained from stationary logic
- Stationary logic $\mathcal{L}(aa)$ adds to first-order logic the aa-quantifier, defined as follows:

$$\textit{M} \models ext{aa} \, \textit{s} \, arphi(\textit{s}, ec{\textit{a}})$$

if there is a closed unbounded set $C \subset \mathcal{P}_{\omega_1}(M)$ such that for any $s \in C$,

$$(M,s) \models \varphi(s,\vec{a}).$$

Inner model C(aa)

- C(aa) obtained from stationary logic
- Stationary logic $\mathcal{L}(aa)$ adds to first-order logic the aa-quantifier, defined as follows:

$$\textit{M} \models \texttt{aa} \, \textit{s} \, arphi(\textit{s}, \vec{\textit{a}})$$

if there is a closed unbounded set $C \subset \mathcal{P}_{\omega_1}(M)$ such that for any $s \in C$,

$$(M,s)\models\varphi(s,\vec{a}).$$

 The aa-quantifier can express, e.g., that a set is countable, that an ordinal has countable cofinality, or that a linear order is ℵ₁-like.

The aa⁺-quantifier

- Variant of the aa-quantifier
- Defined intuitively by

$$M \models aa^+ s\varphi(s, \vec{a})$$

is there is a club $C \subset \mathcal{P}_{\omega_1}(M)$ such that for each $s \in C$

$$(M,s)^+ \models \varphi(s,\vec{a})$$

where $(M, s)^+$ is the next admissible of (M, s)

The aa⁺-quantifier

- Variant of the aa-quantifier
- Defined intuitively by

$$M \models aa^+ s\varphi(s, \vec{a})$$

is there is a club $C \subset \mathcal{P}_{\omega_1}(M)$ such that for each $s \in C$

$$(M,s)^+ \models \varphi(s,\vec{a})$$

where $(M, s)^+$ is the next admissible of (M, s)

- For nested aa⁺-quantifiers, the clubs are always taken in *M* not in the next admissibles
- Advantage over the aa-quantifier: the aa⁺-quantifier can talk about transitive collapses of well-founded sets in *M*

<ロ> <四> <ヨ> <ヨ>

The aa⁺-quantifier

- Variant of the aa-quantifier
- Defined intuitively by

$$M \models aa^+ s\varphi(s, \vec{a})$$

is there is a club $C \subset \mathcal{P}_{\omega_1}(M)$ such that for each $s \in C$

$$(M,s)^+ \models \varphi(s,\vec{a})$$

where $(M, s)^+$ is the next admissible of (M, s)

- For nested aa⁺-quantifiers, the clubs are always taken in *M* not in the next admissibles
- Advantage over the aa-quantifier: the aa⁺-quantifier can talk about transitive collapses of well-founded sets in *M*
- $\mathcal{L}(aa^+)$ logic which adds the aa^+ -quantifier to first order logic
- $C(aa^+)$ the inner model obtained from $\mathcal{L}(aa^+)$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The next admissible set

• A transitive set A is called admissible if (A, \in) is a model of KP.

The next admissible set

- A transitive set A is called admissible if (A, \in) is a model of KP.
- For a transitive set A, the next admissible of A is defined as $A^+ = \bigcap \{B : A \in B \text{ and } B \text{ admissible} \}.$
- For transitive A, the next admissible set A⁺ = L_α(A), where α is the least such that (L_α(A), ∈) ⊨ KP.

The next admissible set

- A transitive set A is called admissible if (A, \in) is a model of KP.
- For a transitive set A, the next admissible of A is defined as $A^+ = \bigcap \{B : A \in B \text{ and } B \text{ admissible} \}.$
- For transitive A, the next admissible set A⁺ = L_α(A), where α is the least such that (L_α(A), ∈) ⊨ KP.
- For a structure *M* = (*M*, *R_i*)_{*i*∈*I*} such that *M* is not a transitive set or ∈ is not in the vocabulary of *M*, a more natural notion of next admissible is based on structures which have the elements of the domain *M* as urelements
- For *M* as above, a set (*M*; *A*, ∈) is admissible above *M* if (*M*; *A*, ∈) ⊨ *KPU* (KP with urelements) and *M* ∈ *A*
- For \mathcal{M} as above, the next admissible of \mathcal{M} is $(\mathcal{M}; A, \in)$ where $A = \bigcap \{B : (\mathcal{M}; B, \in) \text{ admissible above } \mathcal{M}\}.$

æ

ヘロト ヘロト ヘヨト ヘヨト

Club determinacy

Idea: no definable stationary co-stationary sets.

Definition

The inner model C(aa) is said to be Club Determined if for all α and for all $\varphi(\vec{x}, \vec{t}, s) \in \mathcal{L}(aa)$, and for all finite sequences \vec{t} of countable subsets of J'_{α} :

$$(J'_{\alpha}, \in, \mathrm{Tr} \restriction \alpha) \models \forall \vec{x} \, [aa \, s \varphi(\vec{x}, \vec{t}, s) \lor aa \, s \neg \varphi(\vec{x}, \vec{t}, s)].$$

Definition

The inner model $C(aa^+)$ is said to be Club Determined if for all α and for all $\varphi(\vec{x}, \vec{t}, s) \in \mathcal{L}(aa)$, and for all finite sequences \vec{t} of countable subsets of J'_{α} :

$$(J'_{\alpha}, \in, \mathrm{Tr} \restriction \alpha) \models \forall \vec{x} \, [\, \mathtt{aa}^+ s \varphi(\vec{x}, \vec{t}, s) \lor \mathtt{aa}^+ s \neg \varphi(\vec{x}, \vec{t}, s) \,].$$

Club Determinacy

Theorems (Kennedy, Magidor, Väänänen)

- If there is a proper class of Woodin cardinals, then Club Determinacy holds in C(aa).
- Suppose C(aa) satisfies Club Determinacy. Then every regular $\kappa \ge \omega_1^V$ is measurable in C(aa).
- Suppose C(aa) satisfies Club Determinacy. Then the first-order theory of C(aa) is set forcing absolute.

_emma

All the above results hold for $C(aa^+)$ with the same proof.

aa-mice by Kennedy-Magidor-Väänänen

- An aa-mouse is a structure of the form $(J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$.
- For limit β < α, T_β = {φ(ā) : (β, ā) ∈ T} is a complete consistent L(aa)-theory with parameters from J^T_β that extends the first-order theory of (J^T_β, ∈, T↾β).
- *T*^{*} is a complete consistent *L*(aa)-theory that extends the first-order theory of (*J*^{*T*}_α, ∈, *T*).

aa-mice by Kennedy-Magidor-Väänänen

- An aa-mouse is a structure of the form $(J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$.
- For limit β < α, T_β = {φ(ā) : (β, ā) ∈ T} is a complete consistent L(aa)-theory with parameters from J^T_β that extends the first-order theory of (J^T_β, ∈, T↾β).
- *T*^{*} is a complete consistent *L*(aa)-theory that extends the first-order theory of (*J*^{*T*}_α, ∈, *T*).
- By starting from a countable as mouse (M_o, ∈, T, T*) and iterating the aa-ultrapower construction ω₁-many times, the images of the previous iterates {j_{αω1}[M_α] : α < ω₁} form a club in M_{ω1}.
- This allows one to prove that the predicate $T^*_{\omega_1}$ of the ω_1 -iterate is correct about $\mathcal{L}(aa)$ -truth.
- Consequently, the ω_1 -iterate is a level of the C(aa)-hierarchy.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Kennedy, Magidor, Väänänen)

If Club Determinacy holds in C(aa), then C(aa) satisfies the Continuum Hypothesis.

Theorem (Goldberg, Steel [1])

Is Club Determinacy holds in C(aa), then C(aa) satisfies the Ultrapower Axiom.

Theorem (Goldberg, Steel [1])

Is Club Determinacy holds in C(aa), then C(aa) satisfies GCH.

- In stationary logic, $\varphi \rightarrow aa s \varphi$, where s does not occur in φ , is valid.
- In $\mathcal{L}(aa^+)$, $\varphi \to aa^+s\varphi$ is not valid in general.
- Consider, e.g., a model M such that axiom φ of KP fails in M. Then M ⊨ ¬φ, but necessarily M ⊨ aa⁺sφ.

- In stationary logic, $\varphi \rightarrow aa s \varphi$, where s does not occur in φ , is valid.
- In $\mathcal{L}(aa^+)$, $\varphi \to aa^+s\varphi$ is not valid in general.
- Consider, e.g., a model M such that axiom φ of KP fails in M. Then M ⊨ ¬φ, but necessarily M ⊨ aa⁺sφ.
- We want to be able to use $arphi
 ightarrow {
 m aa}^+ s arphi$ in the definition of ${
 m aa}^+$ -mice

• Let $x \in J_{\sup T}^{T}$ be a shorthand for a first-order formula that says in any model containing J_{α}^{T} , where $T \subset \operatorname{Lim} \cap \alpha \times J_{\alpha}^{T}$, as a subset that $x \in J_{\alpha}^{T}$.

イロン イ団 とく ヨン イヨン

- Let $x \in J_{\sup T}^{T}$ be a shorthand for a first-order formula that says in any model containing J_{α}^{T} , where $T \subset \operatorname{Lim} \cap \alpha \times J_{\alpha}^{T}$, as a subset that $x \in J_{\alpha}^{T}$.
- For ordinals η_1, \ldots, η_n , we let $\Psi(y, \gamma, J_{\sup T}^T, \eta_1, \ldots, \eta_n, s_1, \ldots, s_k)$ be a shorthand for the formula

$$\exists z \left(\forall w \left(w \in z \leftrightarrow w \in J_{\sup T}^{T} \right) \right) \\ \wedge y \in J_{\gamma} \left(w, \in, T, \mathbf{P}_{\eta_{1}}, \dots, \mathbf{P}_{\eta_{n}}, s_{1}, \dots, s_{k} \right) \\ \wedge \neg \exists \gamma' \leq \gamma \left[J_{\gamma'} \left(w, \in, T, \mathbf{P}_{\eta_{1}}, \dots, \mathbf{P}_{\eta_{n}}, s_{1}, \dots, s_{k} \right) \models KP \right].$$

- Let $x \in J_{\sup T}^{T}$ be a shorthand for a first-order formula that says in any model containing J_{α}^{T} , where $T \subset \operatorname{Lim} \cap \alpha \times J_{\alpha}^{T}$, as a subset that $x \in J_{\alpha}^{T}$.
- For ordinals η_1, \ldots, η_n , we let $\Psi(y, \gamma, J_{\sup T}^T, \eta_1, \ldots, \eta_n, s_1, \ldots, s_k)$ be a shorthand for the formula

$$\exists z \left(\forall w \left(w \in z \leftrightarrow w \in J_{\sup T}^{T} \right) \right) \\ \wedge y \in J_{\gamma} \left(w, \in, T, \mathbf{P}_{\eta_{1}}, \dots, \mathbf{P}_{\eta_{n}}, s_{1}, \dots, s_{k} \right) \\ \wedge \neg \exists \gamma' \leq \gamma \left[J_{\gamma'} \left(w, \in, T, \mathbf{P}_{\eta_{1}}, \dots, \mathbf{P}_{\eta_{n}}, s_{1}, \dots, s_{k} \right) \models KP \right].$$

I.e., Ψ(y, γ, J^T_{supT}, η₁, ..., η_n, s₁, ..., s_k) says in any model containing the next admissible (J^T_α, ∈, T, P_{η1}, ..., P_{ηn}, s₁, ..., s_k)⁺ that y is in the next admissible of (J^T_α, ∈, T, P_{η1}, ..., P_{ηn}, s₁, ..., s_k)⁺.

Definition (Good formula)

Suppose φ is an $\mathcal{L}(aa^+)$ -formula in vocabulary τ_{ξ}^- . We say that a set $\{\theta': \theta \text{ a subformula of } \varphi\}$ is an existential specification of φ in vocabulary τ_{ξ}^- if it satisfies:

1. If θ is atomic, then $\theta' = \theta$.

2. If
$$\theta = \psi \land \gamma$$
, then $\theta' = \psi' \land \gamma'$. If $\theta = \neg \psi$, then $\theta' = \neg \psi'$. If $\theta = aa^+ s \psi$, then $\theta' = aa^+ s \psi'$.

Definition (Good formula)

Suppose φ is an $\mathcal{L}(aa^+)$ -formula in vocabulary τ_{ξ}^- . We say that a set $\{\theta': \theta \text{ a subformula of } \varphi\}$ is an existential specification of φ in vocabulary τ_{ξ}^- if it satisfies:

- 1. If θ is atomic, then $\theta' = \theta$.
- 2. If $\theta = \psi \land \gamma$, then $\theta' = \psi' \land \gamma'$. If $\theta = \neg \psi$, then $\theta' = \neg \psi'$. If $\theta = aa^+ s \psi$, then $\theta' = aa^+ s \psi'$.
- 3. If θ is $\exists x \psi(x)$, then θ' is $\exists x (\psi^* \land \psi'(x))$ where ψ^* is one of the following:
 - 3.1 $x \in J_{\sup T}^T$.
 - 3.2 There are $\{\eta_1, \ldots, \eta_n\} \subset \xi$ and $\{k_1, \ldots, k_l\} \subset \omega$, at least one of them nonempty, such that
 - 3.2.1 if $\{k_1, \ldots, k_l\} \neq \emptyset$, then for some m, θ is in the scope of $aa^+s_1, \ldots aa^+s_m$ in φ , $\{k_1, \ldots, k_l\} \subset m$, 3.2.2 ψ^* is $\exists \beta \in \text{Ord} (\Psi(x, \beta, J_{\text{sup}T}^T, \eta_1, \ldots, \eta_n, s_{k_1}, \ldots, s_{k_l}))$.

ヘロト ヘロト ヘヨト ヘヨト

Definition (Good formula)

Suppose φ is an $\mathcal{L}(aa^+)$ -formula in vocabulary τ_{ξ}^- . We say that a set $\{\theta': \theta \text{ a subformula of } \varphi\}$ is an existential specification of φ in vocabulary τ_{ξ}^- if it satisfies:

- 1. If θ is atomic, then $\theta' = \theta$.
- 2. If $\theta = \psi \land \gamma$, then $\theta' = \psi' \land \gamma'$. If $\theta = \neg \psi$, then $\theta' = \neg \psi'$. If $\theta = aa^+ s \psi$, then $\theta' = aa^+ s \psi'$.
- 3. If θ is $\exists x \psi(x)$, then θ' is $\exists x (\psi^* \land \psi'(x))$ where ψ^* is one of the following:
 - 3.1 $x \in J_{\sup T}^T$.
 - 3.2 There are $\{\eta_1, \ldots, \eta_n\} \subset \xi$ and $\{k_1, \ldots, k_l\} \subset \omega$, at least one of them nonempty, such that

3.2.1 if $\{k_1, \ldots, k_l\} \neq \emptyset$, then for some m, θ is in the scope of $aa^+s_1, \ldots aa^+s_m$ in $\varphi, \{k_1, \ldots, k_l\} \subset m$, 3.2.2 ψ^* is $\exists \beta \in \operatorname{Ord} (\Psi(x, \beta, J_{\sup T}^T, \eta_1, \ldots, \eta_n, s_{k_1}, \ldots, s_{k_l}))$.

We say that φ is good (in τ_{ξ}^{-}) if there is a formula ψ (in τ_{ξ}^{-}) and an existential specification $\{\theta': \theta \text{ a subformula of } \psi\}$ of ψ such that $\varphi = \psi'$.

2

An aa⁺-premouse in vocabulary $\tau_{\xi} = \{\in, R_T, R_{T^*}\} \cup \{\mathbf{P}_{\alpha} : \alpha < \xi\}$ is a structure of the form

$$\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$$

An aa⁺-premouse in vocabulary $\tau_{\xi} = \{\in, R_T, R_{T^*}\} \cup \{\mathbf{P}_{\alpha} : \alpha < \xi\}$ is a structure of the form

$$\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$$

where

• $T \subset \{\beta < \alpha : \operatorname{Lim}(\beta)\} \times \mathcal{L}(aa^+)$, and for all limit ordinals $\beta < \alpha$, $T_{\beta} = \{\varphi(\vec{a}) : (\beta, \varphi(\vec{a})) \in T\}$ is an $\mathcal{L}(aa^+)$ -theory in vocabulary $\tau_0^$ with parameters from J_{β}^T .

イロン イ団 とく ヨン イヨン

An aa⁺-premouse in vocabulary $\tau_{\xi} = \{\in, R_T, R_{T^*}\} \cup \{\mathbf{P}_{\alpha} : \alpha < \xi\}$ is a structure of the form

$$\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$$

where

- $T \subset \{\beta < \alpha : \operatorname{Lim}(\beta)\} \times \mathcal{L}(aa^+)$, and for all limit ordinals $\beta < \alpha$, $T_{\beta} = \{\varphi(\vec{a}) : (\beta, \varphi(\vec{a})) \in T\}$ is an $\mathcal{L}(aa^+)$ -theory in vocabulary $\tau_0^$ with parameters from J_{β}^T .
- For each $\varphi \in \mathcal{L}(aa^+)$ in vocabulary τ_0^- and each $\vec{a} \in J_\beta^T$, T_β contains either $\varphi(\vec{a})$ or $\neg \varphi(\vec{a})$.
- T_{β} is closed under the rules for first-order logic and the axioms (A0⁺) (A5⁺), and weakly consistent for good formulas relative to J_{β}^{T}
- T_{β} attempts to describe what $\mathcal{L}(aa^+)$ -truth in the relevant next admissibles of $(J_{\beta}, \in, T \upharpoonright \beta)$, where $T \upharpoonright \beta =_{def} T \upharpoonright J_{\beta}^T$, but may be wrong about the aa^+ -quantifiers.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

- If φ is a first-order formula in vocabulary τ_0^- and $\vec{a} \in J_\beta^T$, then $\varphi(\vec{a}) \in T_\beta$ if and only if $(J_\beta^T, \in, T \upharpoonright \beta) \models \varphi(\vec{a})$.
- Conditions which describe in which way the formulas T_{β} are about the next admissibles. For example, the following sentence, which intuitively says that J_{α}^{T} is a member of the relative next admissible, is always in T_{β} :

$$\begin{aligned} &\mathsf{aa}^+ s_1 \dots \mathsf{aa}^+ s_m \, \exists y \\ &[\exists \beta \in \operatorname{Ord} \left(\,\Psi(y, \beta, J_{\sup T}^T, s_1, \dots, s_m) \wedge \right. \\ &\forall x \, \left(\,\exists \gamma \in \operatorname{Ord} \Psi(x, \gamma, J_{\sup T}^T, s_1, \dots, s_m) \rightarrow \left(x \in J_{\sup T}^T \leftrightarrow x \in y \right) \right) \end{aligned}$$

• . . .

- $T^* \subset \mathcal{L}(aa^+) \times J^T_{\alpha}$ is an $\mathcal{L}(aa^+)$ -theory in the vocabulary τ^-_{ξ} with parameters from J^T_{α} .
- T^* is complete for good formulas in vocabulary τ_{ξ}^- with parameters in J_{α}^{T} , closed under first-order axioms and the axioms (A0⁺) -(A5⁺), and weakly consistent for good formulas in vocabulary τ_{ξ}^- .
- T* is right about first order truth in the next admissible sets built with the predicates P_η but may be wrong about the aa⁺-quantifier.
- If a first-order formula φ is good, the **P**-predicates appearing in φ are among $\mathbf{P}_{\eta_1}, \ldots, \mathbf{P}_{\eta_n}$, and $\vec{a} \in J_{\alpha}^T$, then

$$\varphi(\vec{a}) \in T^* \Leftrightarrow (J^T_{\alpha}, \in, T, P_{\eta_1}, \dots, P_{\eta_n})^+ \models \varphi(\vec{a}).$$

ヘロン 人間 とくほど 人間と

Some other conditions

- For any good L(aa⁺)-formula φ and any a ∈ J^T_α, φ(a) is in T^{*} if and only if aa⁺sφ(a) is in T^{*}, where none of the subset variables in s occur in φ.
- For any good L(aa⁺)-formula φ, ∃x (x ∈ J^T_{supT} ∧ φ(x, *ā*)) is in T* if and only if there is some b ∈ J^T_α such that φ(b, *ā*) is in T*.
- Coherence between *T* and *T*^{*} for formulas not containing any
 P-predicates: For all limit β < α, all *a* ∈ J^T_β, and all very good φ in vocabulary τ₀⁻,

$$arphi(ec{a})\in T_eta$$
 if and only if $(arphi(ec{a})^{(J_eta^ au)})'\in T^*,$

where $\varphi(\vec{a})^{(J_{\beta}^{T})}$ is obtained by replacing each occurrence of $x \in J_{\sup T}^{T}$ by $x \in J_{\beta}^{T}$, and if $aa^{+}s$ appears in φ , each $x \in s$ is replaced by $x \in s \land x \in J_{\beta}^{T}$.

aa⁺-embeddings

Definition

Suppose $\mathbf{M} = (M, \in, T, T^*, (P)_{\xi})$ is τ_{ξ} -structure and $\mathbf{N} = (N, \in, \overline{T}, \overline{T}^*, (\overline{P})_{\nu})$ is a τ_{ν} -structure with $\xi \leq \nu$. A function $\pi : M \to N$ is called an aa⁺-embedding if it satisfies the following conditions:

- 1. π is a first-order elementary embedding from $(M, \in, T, (P)_{\xi})$ to $(N, \in, \overline{T}, (\overline{P})_{\xi})$.
- 2. For all good $\varphi \in \mathcal{L}(aa^+)$ in vocabulary τ_{ξ}^- , and $\vec{a} \in J_{\alpha}^T$, $\varphi(\vec{a}) \in T^*$ if and only if $\varphi(\pi(\vec{a})) \in \overline{T}^*$.

- The aa⁺-ultrapower of an aa⁺-mouse (J^T_α, ∈, T, T^{*}) will be a structure of the form (M, E, S, S^{*}, (P')_{ξ+1})
- One new predicate P'_ξ which is the image j[J^T_α] of the domain of the mouse under the aa⁺-ultrapower embedding j

イロン イ団 とく ヨン イヨン

- The aa⁺-ultrapower of an aa⁺-mouse (J^T_α, ∈, T, T^{*}) will be a structure of the form (M, E, S, S^{*}, (P')_{ξ+1})
- One new predicate P'_ξ which is the image j[J^T_α] of the domain of the mouse under the aa⁺-ultrapower embedding j
- For each finite $d = \{\eta_1, \ldots, \eta_n\} \subset \xi + 1$, we form an auxiliary model $\mathbf{M}_d = (M_d, E_d, S_d, S_d^*, P_{\eta_1}^d, \ldots, P_{\eta_n}^d)$.
- The idea is that if the ultrapower $(M, E, S, S^*, (P')_{\xi+1})$ and the auxiliary model \mathbf{M}_d are well-founded, then the transitive collapse of the domain M_d is the next admissible of the collapse of $(M, E, S, S^*, P'_{\eta_1}, \dots, P'_{\eta_n})$.
- This allows us to show that if the aa⁺-ultrapower and all the auxiliary models **M**_d are well-founded, then the ultrapower collapses to an aa⁺-premouse

イロン イヨン イヨン イヨン 三日

aa^+ -ultrapower

Definition

Suppose
$$\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$$
 is an aa^{+} -premouse.
1. $M' = M'_{\emptyset}$ is the set of all $\varphi(s, x, \vec{a})$ in vocabulary τ_{ξ}^{-} , where $\vec{a} \in J_{\alpha}^{T}$, such that $aa^{+}s \varphi(s, x, \vec{y})$ is good, and
 $aa^{+}s \exists x (x \in J_{\sup T}^{T} \land \varphi(s, x, \vec{a})) \in T^{*}$.

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$ is an aa^{+} -premouse.

- 1. $M' = M'_{\emptyset}$ is the set of all $\varphi(s, x, \vec{a})$ in vocabulary τ_{ξ}^{-} , where $\vec{a} \in J_{\alpha}^{T}$, such that $aa^{+}s \varphi(s, x, \vec{y})$ is good, and $aa^{+}s \exists x (x \in J_{\sup T}^{T} \land \varphi(s, x, \vec{a})) \in T^{*}$.
- 2. For nonempty $d \in [\xi + 1]^{<\omega}$, there are two cases. If $\xi \notin d$ and $d = \{\eta_1, \ldots, \eta_n\}$, M'_d is the set of all $\varphi(s, x, \vec{a})$ in vocabulary τ_{ξ}^- , where $\vec{a} \in J^{\mathcal{T}}_{\alpha}$, such that $aa^+ s \varphi(s, x, \vec{y})$ is good, and

$$\operatorname{aa}^+ s \exists x \exists \beta \in \operatorname{Ord} (\Gamma(x, \beta, J_{\sup T}^T, \eta_1, \dots, \eta_n) \land \varphi(s, x, \vec{a})) \in T^*.$$

If $\xi \in d$ and $d = \{\eta_1, \ldots, \eta_n, \xi\}$, then M'_d is the set of all $\varphi(s, x, \vec{a})$ in vocabulary τ_{ξ}^- , where $\vec{a} \in J_{\alpha}^T$, such that $aa^+s \varphi(s, x, \vec{y})$ is good, and

$$\mathtt{a}\mathtt{a}^+s\,\exists x\,\existseta\in\mathrm{Ord}\,(\,\mathsf{\Gamma}(x,eta,J^{\mathsf{T}}_{\sup\mathsf{T}},\eta_1,\ldots,\eta_n,s)\wedgearphi(s,x,ec{a}))\in \mathsf{T}^*.$$

ヘロン 人間 とくほど 人間と

Definition

The equivalence relations for members of M' and M'_d are defined as follows: For $\varphi(s, x, \vec{a}), \varphi'(s, x, \vec{a}') \in M'$,

$$arphi(s,x,ec{a})\simarphi'(s,x,ec{a}') ext{ if } \operatorname{aa}^+s\left(\mathit{f}_{arphi(s,x,ec{a})}(s)=\mathit{f}_{arphi'(s,x,ec{a}')}(s)
ight)\in \mathcal{T}^*.$$

For $\varphi(s, x, \vec{a}), \varphi'(s, x, \vec{a}') \in M'_d$, suppose $e, e' \subset d$ are minimal such that $\varphi(s, x, \vec{a}) \in M'_e$ and $\varphi'(s, x, \vec{a}') \in M_{e'}$. We define

$$arphi(s, x, \vec{a}) \sim_d arphi'(s, x, \vec{a}') ext{ if }$$

 $e = e' ext{ and } aa^+s \left(f^{e, \xi}_{\varphi(s, x, \vec{a})}(s) = f^{e', \xi}_{\varphi'(s, x, \vec{a}')}(s)
ight) \in T^*.$

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$ is an aa⁺-premouse. Its aa⁺-ultrapower is the $\tau_{\xi+1}$ -structure $\mathbf{M} = (M, E, S, S^{*}, (P')_{\xi+1})$ defined as follows:

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$ is an aa⁺-premouse. Its aa⁺-ultrapower is the $\tau_{\xi+1}$ -structure $\mathbf{M} = (M, E, S, S^{*}, (P')_{\xi+1})$ defined as follows:

- 1. *M* is the set of equivalence classes $[\varphi(s, x, \vec{a})]$ of \sim on *M'*.
- 2. $[\varphi(s,x,\vec{a})]E[\varphi'(s,x,\vec{a}')]$ iff $aa^+s R_{\in}(f_{\varphi(s,x,\vec{a})}(s), f_{\varphi'(s,x,\vec{a}')}(s)) \in T^*$.

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = (J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi})$ is an aa⁺-premouse. Its aa⁺-ultrapower is the $\tau_{\xi+1}$ -structure $\mathbf{M} = (M, E, S, S^{*}, (P')_{\xi+1})$ defined as follows:

- 1. *M* is the set of equivalence classes $[\varphi(s, x, \vec{a})]$ of \sim on *M'*.
- 2. $[\varphi(s,x,\vec{a})]E[\varphi'(s,x,\vec{a}')]$ iff $aa^+s R_{\in}(f_{\varphi(s,x,\vec{a})}(s), f_{\varphi'(s,x,\vec{a}')}(s)) \in T^*$.
- 3. $([\varphi(s,x,\vec{a})], [\varphi'(s,x,\vec{a}')]) \in S$ iff $\operatorname{aa}^+ s R_T(f_{\varphi(s,x,\vec{a})}(s), f_{\varphi'(s,x,\vec{a}')}(s)) \in T^*.$
- 4. S^* consists of $\varphi(\mathbf{P}_{\xi}, [\theta_1(s, x, \vec{a}_1)], \dots, [\theta_n(s, x, \vec{a}_n)])$, where $\varphi(s, x_1, \dots, x_n) \in \mathcal{L}(aa^+)$ is in vocabulary τ_{ξ}^- and $aa^+ s \, \varphi(s, f_{\theta_1(s, x, \vec{a}_1)}(s), \dots, f_{\theta_n(s, x, \vec{a}_n)}(s)) \in T^*$.
- 5. $[\varphi(s, x, \vec{a})] \in P'_{\gamma} \text{ iff } aa^+ s P_{\gamma}(f_{\varphi(s, x, \vec{a})}(s)) \in T^* \text{ for } \gamma < \xi.$
- 6. $P'_{\xi} = \{j(b) : b \in J^{T}_{\alpha}\}$, where $j : J^{T}_{\alpha} \to M$ is the canonical embedding defined by j(b) = [x = b].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = \langle J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi} \rangle$ is an aa⁺-premouse. For all $d = \{\eta_{1}, \ldots, \eta_{n}\} \in [\xi + 1]^{<\omega}$, the model $\mathbf{M}_{d} = (M_{d}, E_{d}, S_{d}, S_{d}^{*}, P_{\eta_{1}}^{d}, \ldots, P_{\eta_{n}}^{d})$ is defined as follows:

イロン イ団 とく ヨン イヨン

Definition

Suppose $\mathbf{J}_{\alpha}^{T} = \langle J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi} \rangle$ is an aa^{+} -premouse. For all $d = \{\eta_{1}, \ldots, \eta_{n}\} \in [\xi + 1]^{\leq \omega}$, the model $\mathbf{M}_{d} = (M_{d}, E_{d}, S_{d}, S_{d}^{*}, P_{\eta_{1}}^{d}, \ldots, P_{\eta_{n}}^{d})$ is defined as follows:

M_d is the set of equivalence classes [φ(s, x, a)]_d of ∼_d on M'_d.

Definition

- Suppose $\mathbf{J}_{\alpha}^{T} = \langle J_{\alpha}^{T}, \in, T, T^{*}, (P)_{\xi} \rangle$ is an aa⁺-premouse. For all $d = \{\eta_{1}, \dots, \eta_{n}\} \in [\xi + 1]^{<\omega}$, the model $\mathbf{M}_{d} = (M_{d}, E_{d}, S_{d}, S_{d}^{*}, P_{\eta_{1}}^{d}, \dots, P_{\eta_{n}}^{d})$ is defined as follows: • M_{d} is the set of equivalence classes $[\varphi(s, x, \vec{a})]_{d}$ of \sim_{d} on M'_{d} . • $[\varphi_{1}(s, x, \vec{a}_{1})]_{d} E_{d}[\varphi_{2}(s, x, \vec{a}_{2})]_{d}$ iff
 - $[\varphi_1(s, x, \vec{a_1})]_d E_d[\varphi_2(s, x, \vec{a_2})]_d$ iff $aa^+s R_{\in}(f_{\varphi_1(s, x, \vec{a_1})}^{d_1}(s), f_{\varphi_2(s, x, \vec{a_2})}^{d_2}(s)) \in T^*$, where $d_1, d_2 \subset d$ are minimal such that $\varphi_1(s, x, \vec{a_1}) \in M_{d_1}$ and $\varphi_2(s, x, \vec{a_2}) \in M_{d_2}$.
 - $([\varphi_1(s, x, \vec{a}_1)]_d, [\varphi_2(s, x, \vec{a}_2)]_d) \in S_d$ iff aa⁺s $R_T(f_{\varphi_1(s, x, \vec{a}_1)}^{d_1}(s), f_{\varphi_2(s, x, \vec{a}_2)}^{d_2}(s)) \in T^*$, where $d_1, d_2 \subset d$ are minimal such that $\varphi_1(s, x, \vec{a}_1) \in M_{d_1}$ and $\varphi_2(s, x, \vec{a}_2) \in M_{d_2}$.

イロト イヨト イヨト --

• If $\xi \in d$, S_d^* consists of $\varphi(\mathbf{P}_{\xi}, [\theta_1(s, x, \vec{a_1})]_d, \dots, [\theta_n(s, x, \vec{a_n})]_d)$ in vocabulary τ_d^- such that

$$\operatorname{aa}^+ s \, arphi(s, f^{d_1, \xi}_{ heta_1(s, x, ec a_1)}(s), \dots, f^{d_n, \xi}_{ heta_n(s, x, ec a_n)}(s)) \in T^*,$$

where each $d_i \subset d$ is minimal such that $\theta_i(s, x, \vec{a}_i) \in M_{d_i}$. If $\xi \notin d$, S_d^* consists of $\varphi([\theta_1(s, x, \vec{a}_1)]_d, \dots, [\theta_n(s, x, \vec{a}_n)]_d)$ in vocabulary τ_d^- such that

$$\operatorname{aa}^+ s \, \varphi(f^{d_1,\xi}_{ heta_1(s, imes,ec{a_1})}(s),\ldots,f^{d_n,\xi}_{ heta_n(s, imes,ec{a_n})}(s)) \in T^*,$$

where each $d_i \subset d$ is minimal such that $\theta_i(s, x, \vec{a_i}) \in M_{d_i}$.

• If $\xi \in d$, S_d^* consists of $\varphi(\mathbf{P}_{\xi}, [\theta_1(s, x, \vec{a_1})]_d, \dots, [\theta_n(s, x, \vec{a_n})]_d)$ in vocabulary τ_d^- such that

$$\operatorname{aa}^+ s \, arphi(s, f^{d_1, \xi}_{ heta_1(s, x, ec a_1)}(s), \dots, f^{d_n, \xi}_{ heta_n(s, x, ec a_n)}(s)) \in \, {\mathcal T}^*,$$

where each $d_i \subset d$ is minimal such that $\theta_i(s, x, \vec{a}_i) \in M_{d_i}$. If $\xi \notin d$, S_d^* consists of $\varphi([\theta_1(s, x, \vec{a}_1)]_d, \dots, [\theta_n(s, x, \vec{a}_n)]_d)$ in vocabulary τ_d^- such that

$$\operatorname{aa}^+ s \, arphi(f^{d_1,\xi}_{ heta_1(s, imes,ec{a_1})}(s),\ldots,f^{d_n,\xi}_{ heta_n(s, imes,ec{a_n})}(s)) \in \mathcal{T}^*,$$

where each $d_i \subset d$ is minimal such that $\theta_i(s, x, \vec{a}_i) \in M_{d_i}$.

• For all $\eta_i \in d \setminus \{\xi\}$, $[\varphi(s, x, \vec{a})]_d \in P^d_{\eta_i}$ iff $aa^+s \mathbf{P}_{\eta_i}(f^{d',\xi}_{\varphi(s,x,\vec{a})}(s)) \in T^*$, where $d' \subset d$ is minimal such that $\varphi(s, x, \vec{a}) \in M_{d'}$. • $P^d_{\xi} = \{[x = b]_d : b \in J^T_{\alpha}\}$ if $\xi \in d$.

イロン イ団 とく ヨン イヨン

Key lemma

Lemma

Suppose φ is a first-order formula.

• If $d = \{\eta_1, \dots, \eta_n\} \in [\xi + 1]^{<\omega}$ is nonempty, $\xi \notin d$, and φ is in vocabulary τ_d^- , then the following are equivalent:

•
$$\mathbf{M}_d^- \models \varphi([\theta_1(s, x, \vec{a}_1)]_d, \dots, [\theta_m(s, x, \vec{a}_m)]_d),$$

• $\mathbf{a}\mathbf{a}^+ s \, \varphi_d^*(f_{\theta_1(s, x, \vec{a}_1)}^{d_1}(s), \dots, f_{\theta_m(s, x, \vec{a}_m)}^{d_m}(s)) \in T^*,$

where each d_i is the minimal subset of d such that $\theta_i(s, x_i, \vec{a_i}) \in d_i$.

• If $\xi \in d = \{\eta_1, \dots, \eta_n, \xi\} \in [\xi + 1]^{<\omega+1}$, and φ is in vocabulary τ_d^- , then the following are equivalent:

•
$$\mathbf{M}_d^- \models \varphi(P_{\xi}^d, [\theta_1(s, x, \vec{a}_1)]_d, \dots, [\theta_m(s, x, \vec{a}_m)]_d),$$

• $\mathbf{a}^+ s \, \varphi_d^*(s, f_{\theta_1(s, x, \vec{a}_1)}(s), \dots, f_{\theta_m(s, x, \vec{a}_m)}(s)) \in T^*,$

where each d_i is the minimal subset of d such that $\theta_i(s, x_i, \vec{a_i}) \in d_i$.

Here, e.g., φ_d^* for $\xi \in d$ is obtained by inductively replacing each subformula $\exists x \psi(x)$ of φ by $\exists x (\exists \beta \in \operatorname{Ord} \Psi(x, \beta, J_{\sup T}^T, \eta_1, \dots, \eta_n, s) \land \psi(x))$

イロン イヨン イヨン イヨン 三日

Key lemma continued

Moreover, the following are equivalent

•
$$(M, E, S, (P')_{\xi+1}) \models \varphi([\theta_1(s, x, \vec{a}_1)], \dots, [\theta_m(s, x, \vec{a}_m)]),$$

•
$$\operatorname{aa}^+ s \, \varphi^*_\emptyset(f_{\theta_1(s,x,\vec{a}_1)}(s),\ldots,f_{\theta_m(s,x,\vec{a}_m)}(s)) \in T^*.$$

M_d next admissible of the aa⁺-ultrapower

Corollary

Suppose **M** and **M**_d, where $d = \{\eta_1, \ldots, \eta_n\} \neq \emptyset$, are well-founded and $\overline{\mathbf{M}} = (J_{\beta}^{\overline{T}}, \in, \overline{T}, \overline{T}^*, (\overline{P})_{\xi+1})$ and $\overline{\mathbf{M}}_d = (\overline{M}_d, \in, \overline{T}_d, (\overline{T}_d)^*, \overline{P}_{\eta_1}^d, \ldots, \overline{P}_{\eta_n}^d)$ are their transitive collapses. Then \overline{M}_d , the domain of $\overline{\mathbf{M}}_d$, is the next admissible set of $(J_{\beta}^{\overline{T}}, \in, \overline{T}, \overline{P}_{\eta_1}, \ldots, \overline{P}_{\eta_n})$. Moreover, for any good first-order φ in vocabulary τ_d^- and any $[\theta_1(s, x, \vec{a}_1)]_d, \ldots, [\theta_m(s, x, \vec{a}_m)]_d \in M_d$, we have

$$\varphi([\theta_1(s,x,\vec{a}_1)]_d,\ldots,[\theta_m(s,x,\vec{a}_m)]_d) \in (\bar{T})_d^*$$

$$\Leftrightarrow \bar{\mathbf{M}}_d^- \models \varphi([\theta_1(s,x,\vec{a}_1)]_d,\ldots,[\theta_m(s,x,\vec{a}_m)]_d).$$

Ultrapower is an aa⁺-premouse

Lemma

If the ultrapower $\mathbf{M} = (M, \in, S, S^*, (P')_{\xi+1})$ of an aa^+ -premouse $\mathbf{J}_{\alpha}^T = (J_{\alpha}^T, \in, T, T^*, (P)_{\xi})$ is well-founded, then its transitive collapse $\mathbf{\bar{M}} = (J_{\beta}^{\bar{T}}, \in, \bar{T}, \bar{T}^*, (\bar{P})_{\xi+1})$ is also an aa^+ -premouse. Moreover, the ultrapower embedding j (composed with the collapse) is an aa^+ -embedding.

Iterated aa⁺-ultrapowers

Definition

Suppose $\mathbf{J}_{\gamma}^{T} = (J_{\gamma}^{T}, \in, T, T^{*}, (P^{0})_{0})$ is an aa^{+} -premouse with vocabulary τ_{0} and δ is an ordinal. The models $\mathbf{M}_{\alpha} = (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), \alpha < \delta$, and the directed system

$$\langle (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), j_{\alpha\beta} : \alpha < \beta < \delta \rangle,$$

called the aa⁺-*iteration* of \mathbf{J}_{α}^{T} of length δ , are defined as follows:

- $(M_0, E_0, T_0, T_0^*, (P^0)_0) = \mathbf{J}_{\gamma}^T$
- The vocabulary of (M_α, E_α, T_α, T^{*}_α, (P^α)_α) is τ_α.
- The $j_{\alpha\beta}$ form a commuting system of aa^+ -embeddings

$$j_{\alpha\beta}: (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}) \rightarrow (M_{\beta}, E_{\beta}, T_{\beta}, T_{\beta}^{*}, (P^{\beta})_{\beta}) \upharpoonright \tau_{\alpha}.$$

• For successor $\alpha + 1$ we let

$$(M_{\alpha+1}, E_{\alpha+1}, T_{\alpha+1}, T_{\alpha+1}^*, (P^{\alpha+1})_{\alpha+1}) = \mathsf{Ult}(M_\alpha, E_\alpha, T_\alpha, T_\alpha^*, (P^\alpha)_\alpha).$$

The embedding $j_{\alpha,\alpha+1}$ is the aa⁺-ultrapower embedding.

Definition continued

For limit ν, we let (M_ν, E_ν, T_ν, T^{*}_ν, (P^ν)_ν) be the direct limit of the directed system

$$\langle (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), j_{\alpha\beta} : \alpha < \beta < \nu \rangle.$$

The embeddings $j_{\alpha\nu}$ for $\alpha < \nu$ are the direct limit embeddings. The models \mathbf{M}_{α} are called iterates of \mathbf{J}_{γ}^{T} .

Iterated aa⁺-ultrapowers

Definition

Suppose α is an ordinal and $d \in [\alpha + 1]^{<\omega}$.

- 1. $(M_{\emptyset}^{\alpha})'$ is the set of $\varphi(s, x, \vec{a})$, where $\vec{a} \in M_{\alpha}$, such that $aa^+s \, \varphi(s, x, \vec{y})$ is good, and $aa^+s \, \exists x(x \in J_{\sup T}^T \land \varphi(s, x, \vec{a})) \in T_{\alpha}^*$.
- 2. If $\alpha \in d = \{\eta_1, \dots, \eta_n, \alpha\}$, then $(M_d^{\alpha})'$ is the set of $\varphi(s, x, \vec{a})$, where $\vec{a} \in M_{\alpha}$, such that $aa^+ \varphi(s, x, \vec{a}) \in (M_e^{\alpha})'$ for some $e \subsetneq d$ or

$$aa^+s \exists x \exists \beta \in Ord (\Gamma(\beta, x, \eta_1, \dots, \eta_n, s) \land \varphi(s, x, \vec{a})) \in T^*_{\alpha}.$$

3. If $\alpha \notin d = \{\eta_1, \dots, \eta_n\}$, then $(M_d^{\alpha})'$, is the set of those good $\varphi(s, x, \vec{a})$, where $\vec{a} \in M_{\alpha}$, such that

$$\operatorname{aa}^{+} s \exists x \exists \beta \in \operatorname{Ord} (\Gamma(\beta, x, \eta_1, \dots, \eta_n) \land \varphi(s, x, \vec{a})) \in T^*_{\alpha}.$$

 For members of (M^α_d)', ~^α_d is defined as ~_d was defined in Definition 10, only replacing T* with T^{*}_α. The equivalence class of φ(s, x, ā) under ~^α_d is denoted by [φ(s, x, ā)]^α_d.

Iterated aa⁺-ultrapowers

Definition

Suppose $\mathbf{J}_{\gamma}^{T} = (J_{\gamma}^{T}, \in, T, T^{*}, (P^{0})_{0})$ is an aa^{+} -premouse with vocabulary τ_{0} , and the iteration of \mathbf{J}_{γ}^{T} of length δ is as in Definition 17. For any $\alpha < \beta < \delta$ and nonempty finite $d \subset \alpha$, the models $\mathbf{M}_{d}^{\alpha} = (M_{d}^{\alpha}, E_{d}^{\alpha}, T_{d}^{\alpha}, (T_{d}^{\alpha})^{*}, P_{d,\eta_{1}}^{\alpha}, \dots, P_{d,\eta_{n}}^{\alpha})$, where $d = \{\eta_{1}, \dots, \eta_{n}\}$, and the maps $j_{d}^{\alpha\beta} : \mathbf{M}_{d}^{\alpha} \to \mathbf{M}_{d}^{\beta}$ are defined inductively as follows:

1. If $\alpha = \lambda + 1$, then \mathbf{M}_{d}^{α} is defined using $\mathcal{T}_{\lambda}^{*}$ and the equivalence classes $[\varphi(s, x, \vec{a})]_{d}^{\lambda}$ as \mathbf{M}_{d} was defined in 13 using \mathcal{T}^{*} and $[\varphi(s, x, \vec{a})]_{d}$.

2. If
$$\alpha = \lambda + 1$$
, $j_d^{\alpha, \alpha+1} (= j_d^{\lambda+1, \lambda+2})$ is defined by

$$j_d^{\alpha,\alpha+1}([\varphi(s,x,\vec{a})]_d^{\lambda}) = [\varphi(\mathbf{P}_{\lambda},x,j_{\lambda,\alpha}(\vec{a}))]_d^{\alpha}.$$

3. Suppose α is a limit, and \mathbf{M}_{d}^{λ} and $j_{d}^{\lambda\eta}$ have been defined for all $\lambda < \eta < \alpha$ such that $d \subset \lambda$, and $\langle \mathbf{M}_{d}^{\lambda}, j_{d}^{\lambda\eta} : d \subset \lambda < \eta < \alpha \rangle$ is a directed system. Then \mathbf{M}_{d}^{α} is a direct limit of the system $\langle \mathbf{M}_{d}^{\gamma}, j_{d}^{\lambda\eta} : d \subset \lambda < \eta < \alpha \rangle$ and $j_{d}^{\lambda\alpha}, \lambda < \alpha$, are the direct limit maps.

Otto Rajala

Definition continued

• Suppose α is a limit, \mathbf{M}_{d}^{λ} has been defined for each $\lambda \leq \alpha$ such that $d \subset \lambda$, and $j_{d}^{\lambda\eta}$ has been defined for all $d \subset \lambda < \eta \leq \alpha$. Then $j_{d}^{\alpha,\alpha+1}$ is defined as follows. Suppose $y \in M_{d}^{\alpha}$ is such that $y = j_{d}^{\lambda+1,\alpha}([\varphi(s, x, \vec{a})]_{d}^{\lambda})$ for some $[\varphi(s, x, \vec{a})]_{d}^{\lambda} \in M_{d}^{\lambda+1}$. Then we define

$$j_d^{lpha,lpha+1}(y) = [\varphi(\mathsf{P}_{\lambda}, x, j_{\lambda lpha}(\vec{a}))]_d^{lpha}.$$

イロン イヨン イヨン イヨン 三日

Iterated aa⁺-ultrapowers

Lemma

Suppose $\langle (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), j_{\alpha\beta} : \alpha < \beta < \delta \rangle$ is the aa⁺-iteration of $(M_{0}, \in, T_{0}, T_{0}^{*})$ of length δ and for all $\alpha < \delta$ and nonempty $d \in [\alpha]^{<\omega}$ the models $\mathbf{M}_{d}^{\alpha} = (M_{d}^{\alpha}, E_{d}^{\alpha}, T_{d}^{\alpha}, (T_{d}^{\alpha})^{*}, P_{d,\eta_{1}}^{\alpha}, \dots, P_{d,\eta_{n}}^{\alpha})$ are as in the preceding definition. Suppose that for all $\alpha < \delta$ and all nonempty $d \in [\alpha]^{<\omega}$, M_{α} and M_{d}^{α} are well-founded. Then the following hold:

- For all $\alpha < \delta$, \mathbf{M}_{α} is (isomorphic to) an aa^+ -premouse.
- For all $\alpha < \beta < \delta$, $j_{\alpha\beta}$ is an aa^+ -embedding.
- For all α < δ and d = {η₁,...,η_n} ∈ [α]^{<ω}, M^α_d is the next admissible of (M_α, ∈, T_α, P^α_{η1},..., P^α_{ηn}).
- For all $\alpha < \delta$, $d \in [\alpha]^{<\omega}$, all good first-order φ in vocabulary τ_d^- , and all $\vec{a} \in M_d^{\alpha}$, $\varphi(\vec{a}) \in (T_d^{\alpha})^*$ if and only if $(\mathbf{M}_d^{\alpha})^- \models \varphi(\vec{a})$.

• For all
$$\alpha < \beta < \delta$$
, $j_d^{\alpha\beta}$ is an aa^+ -embedding.

Frame Title

Lemma

Suppose $\langle (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), j_{\alpha\beta} : \alpha < \beta < \delta \rangle$ is the aa⁺-iteration of an aa⁺-mouse $(M_{0}, \in, T_{0}, T_{0}^{*})$ of length δ , and for $d \subset \alpha < \beta < \delta$ the models $\mathbf{M}_{d}^{\alpha} = (M_{d}^{\alpha}, E_{d}^{\alpha}, T_{d}^{\alpha}, (T_{d}^{\alpha})^{*}, P_{d,\eta_{1}}^{\alpha}, \dots, P_{d,\eta_{n}}^{\alpha})$ and maps $j_{d}^{\alpha\beta} : \mathbf{M}_{d}^{\alpha} \to \mathbf{M}_{d}^{\beta}$, are as in Definition 19. Suppose further that κ is a regular cardinal such that $|M_{0}| < \kappa$ and $\kappa < \delta$. Then for any $d \in [\kappa]^{<\omega}$, any good formula φ in vocabulary τ_{d}^{-} , and any $\vec{a} \in M_{d}^{\kappa}$, $\varphi(\vec{a}) \in (T_{d}^{\kappa})^{*} \Leftrightarrow ((\mathbf{M}_{d}^{\kappa})^{-}; M_{\kappa}) \models^{+} \varphi_{\kappa}(\vec{a})$.

where φ_{κ} is obtained from φ by replacing each quantifier aa^+s by $aa^+_{\kappa}s$.

The main result

Theorem

Suppose $\langle (M_{\alpha}, E_{\alpha}, T_{\alpha}, T_{\alpha}^{*}, (P^{\alpha})_{\alpha}), j_{\alpha\beta} : \alpha < \beta < \delta \rangle$ is the aa⁺-iteration of an aa⁺-mouse $(M_{0}, \in, T_{0}, T_{0}^{*})$ of length δ . If $\kappa < \delta$ is a regular cardinal such that $|M_{0}| < \kappa$, then the domain $M_{\kappa} = J_{\beta_{\kappa}}^{T_{\kappa}}$ of the κ -iterate is the level $J_{\beta_{\kappa}}^{Tr^{\kappa}}$ of $C(aa_{\kappa}^{+})$. In particular, if M_{0} is countable, then $M_{\omega_{1}}$ is the level $J_{\beta_{\omega_{1}}}^{Tr}$ of $C(aa^{+})$.

Thank you!

References

- Gabriel Goldberg and John Steel. The structure of C(aa). Preprint, 2024.
- [2] Juliette Kennedy, Menachem Magidor, and Jouko Väänänen. Inner models from extended logics: Part 1. J. Math. Log., 21(2):Paper No. 2150012, 53, 2021.
- [3] Juliette Kennedy, Menachem Magidor, and Jouko Väänänen. Inner models from extended logics: Part 2, 2024. https://arxiv.org/abs/2007.10766.