PFA and Derived Models

Derek Levinson

University of North Texas

February 18, 2025

Joint work with Nam Trang

The Derived Model

How does one obtain models of AD?

How does one obtain models of AD?

Definition

If κ is limit of Woodin cardinals and G generic for the Levy collapse $Col(\omega, < \kappa)$ define the symmetric reals $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \restriction \alpha]}$

How does one obtain models of AD?

Definition

If κ is limit of Woodin cardinals and G generic for the Levy collapse $Col(\omega, < \kappa)$ define the symmetric reals $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \restriction \alpha]}$

The model $L(\mathbb{R}^*)$ satisfies

- AD⁺
- 2 Every set of reals is ordinal definable from a real parameter.

How does one obtain models of AD?

Definition

If κ is limit of Woodin cardinals and G generic for the Levy collapse $Col(\omega, < \kappa)$ define the symmetric reals $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \restriction \alpha]}$

The model $L(\mathbb{R}^*)$ satisfies

- AD⁺
- 2 Every set of reals is ordinal definable from a real parameter.

What might a "bigger" model of AD look like?

The Derived Model

Definition

$\Theta = \sup\{\alpha \in \mathit{On}: \text{ exists surjection } f: \mathbb{R} \to \alpha\}$

The Derived Model

Definition

 $\Theta = \sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \to \alpha\}$

Definition (Solovay Hierarchy)

For $A \subseteq \mathbb{R}$, $\Theta(A) = \sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \to \alpha \text{ which is } OD(A, x) \text{ for some } x \in \mathbb{R}\}.$

Definition

 $\Theta = sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \to \alpha\}$

Definition (Solovay Hierarchy)

For $A \subseteq \mathbb{R}$, $\Theta(A) = sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \rightarrow \alpha$ which is OD(A, x) for some $x \in \mathbb{R}\}$. We set

- $\Theta_0 = \Theta(\emptyset)$,
- 2 $\Theta_{\alpha+1} = \Theta(A)$ for any A such that $w(A) = \theta_{\alpha}$, and
- $\Theta_{\lambda} = sup_{\alpha < \lambda} \Theta_{\alpha} \text{ for } \lambda \text{ a limit ordinal.}$

Definition

 $\Theta = sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \to \alpha\}$

Definition (Solovay Hierarchy)

For $A \subseteq \mathbb{R}$, $\Theta(A) = sup\{\alpha \in On : \text{ exists surjection } f : \mathbb{R} \to \alpha$ which is OD(A, x) for some $x \in \mathbb{R}\}$. We set

- $\Theta_0 = \Theta(\emptyset)$,
- 2 $\Theta_{\alpha+1} = \Theta(A)$ for any A such that $w(A) = \theta_{\alpha}$, and
- $\Theta_{\lambda} = sup_{\alpha < \lambda} \Theta_{\alpha} \text{ for } \lambda \text{ a limit ordinal.}$

- In $L(\mathbb{R}^*)$, every set of reals was OD(x) for some $x \in \mathbb{R}^*$, so $\Theta_0 = \Theta$ and Θ_1 is not defined.

Woodin developed a method of producing models of AD:

Definition

If κ is limit of Woodin cardinals and G generic for the Levy collapse $\mathit{Col}(\omega,<\kappa)$ define

- the symmetric reals $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \restriction \alpha]}$
- **2** the symmetric extension $V(\mathbb{R}^*) = HOD_{V,\mathbb{R}^*}^{V[G]}$
- the derived model $D(V, \kappa) = L(\mathcal{A}, \mathbb{R}^*)$, where $\mathcal{A} = \{A \subseteq \mathbb{R}^* : A \in V(\mathbb{R}^*) \land L(\mathcal{A}, \mathbb{R}^*) \models AD^+\}$

Woodin developed a method of producing models of AD:

Definition

If κ is limit of Woodin cardinals and G generic for the Levy collapse $\mathit{Col}(\omega,<\kappa)$ define

- the symmetric reals $\mathbb{R}^* = \bigcup_{\alpha < \kappa} \mathbb{R}^{V[G \restriction \alpha]}$
- **2** the symmetric extension $V(\mathbb{R}^*) = HOD_{V,\mathbb{R}^*}^{V[G]}$
- the derived model $D(V, \kappa) = L(\mathcal{A}, \mathbb{R}^*)$, where $\mathcal{A} = \{A \subseteq \mathbb{R}^* : A \in V(\mathbb{R}^*) \land L(\mathcal{A}, \mathbb{R}^*) \models AD^+\}$

$D(V,\kappa)$ satisfies

- AD⁺
- $2 V = L(P(\mathbb{R}^*))$

Let κ be a singular cardinal with $cof(\kappa) = \omega$.

Let κ be a singular cardinal with $cof(\kappa) = \omega$.

Definition

A covering matrix for κ^+ is a sequence $(K_{\alpha,i} : \alpha < \kappa^+, i < \omega)$ s.t.

$$|K_{\alpha,i}| < \kappa$$

$$a = \bigcup_{i \in \omega} K_{\alpha,i}$$

Let κ be a singular cardinal with $cof(\kappa) = \omega$.

Definition

A covering matrix for κ^+ is a sequence $(K_{\alpha,i} : \alpha < \kappa^+, i < \omega)$ s.t.

$$|K_{\alpha,i}| < \kappa$$

$$a = \bigcup_{i \in \omega} K_{\alpha, ...}$$

Definition

A covering matrix for κ^+ is coherent if for any $\alpha < \beta < \kappa^+$

$$(\forall i)(\exists j) K_{\alpha,i} \subseteq K_{\beta,j} \cap \alpha$$

$$(\forall j)(\exists i) K_{\beta,j} \cap \alpha \subseteq K_{\alpha,i}.$$

Let κ be a singular cardinal with $cof(\kappa) = \omega$.

Definition

A covering matrix for κ^+ is a sequence $(K_{\alpha,i} : \alpha < \kappa^+, i < \omega)$ s.t.

$$|K_{\alpha,i}| < \kappa$$

$$a = \bigcup_{i \in \omega} K_{\alpha,i}$$

Definition

A covering matrix for κ^+ is coherent if for any $\alpha < \beta < \kappa^+$

$$(\forall i)(\exists j) K_{\alpha,i} \subseteq K_{\beta,j} \cap \alpha$$

$$(\forall j)(\exists i) K_{\beta,j} \cap \alpha \subseteq K_{\alpha,i}.$$

Theorem (Viale)

- $V = L \implies$ is a coherent covering matrix for κ^+ .
- PFA \implies is no coherent covering matrix for κ^+ .

Wilson used Viale's Theorem to show:

Theorem (Wilson)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Wilson used Viale's Theorem to show:

Theorem (Wilson)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

Let $\langle \kappa_i : i < \omega \rangle$ be cofinal in κ . Suppose have $OD^{D(V,\kappa)}$ surjections $f_\alpha : \mathbb{R}^* \to \alpha$.

Wilson used Viale's Theorem to show:

Theorem (Wilson)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

Let $\langle \kappa_i : i < \omega \rangle$ be cofinal in κ . Suppose have $OD^{D(V,\kappa)}$ surjections $f_{\alpha} : \mathbb{R}^* \to \alpha$.

Note $\mathbb{R}^* = \bigcup_{i < \omega} \mathbb{R}^{V[G \upharpoonright \kappa_i]}$. So $\alpha = \bigcup_{i < \omega} f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}]$. Let $K_{\alpha,i} = f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}]$.

Wilson used Viale's Theorem to show:

Theorem (Wilson)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

Let $\langle \kappa_i : i < \omega \rangle$ be cofinal in κ . Suppose have $OD^{D(V,\kappa)}$ surjections $f_{\alpha} : \mathbb{R}^* \to \alpha$.

Note
$$\mathbb{R}^* = \bigcup_{i < \omega} \mathbb{R}^{V[G \upharpoonright \kappa_i]}$$
.
So $\alpha = \bigcup_{i < \omega} f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}]$.
Let $K_{\alpha,i} = f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}]$.

 $\langle K_{\alpha,i} : \alpha < \kappa^+, i < \omega \rangle$ is a covering matrix for κ^+ in V. Use $D(V, \kappa) \models CC_{\mathbb{R}}$ to check $\langle K_{\alpha,i} \rangle$ is coherent.

Theorem (L., Trang)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta^{D(V,\kappa)} < \kappa^+$.

Theorem (L., Trang)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta^{D(V,\kappa)} < \kappa^+$.

Lemma

Suppose κ is a limit of Woodin cardinals and $D(V, \kappa) \models AD_{\mathbb{R}}$. Then $\Theta^{D(V,\kappa)} < \kappa^+$.

Theorem (L., Trang)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta^{D(V,\kappa)} < \kappa^+$.

Lemma

Suppose κ is a limit of Woodin cardinals and $D(V, \kappa) \models AD_{\mathbb{R}}$. Then $\Theta^{D(V,\kappa)} < \kappa^+$.

Proof idea.

By the Lemma, we may assume $\Theta = \Theta_{\gamma+1}$. Have surjections $f_{\alpha} : \mathbb{R}^* \to \alpha$ which are ordinal definable from a set A of Wadge rank Θ_{γ} in $D(V, \kappa)$. If A has a nice enough name in V, then $f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}] \in V$ and Wilson's proof applies.

Theorem (L., Trang)

(PFA) If κ is a limit of Woodin cardinals and $cof(\kappa) = \omega$, then $\Theta^{D(V,\kappa)} < \kappa^+$.

Lemma

Suppose κ is a limit of Woodin cardinals and $D(V, \kappa) \models AD_{\mathbb{R}}$. Then $\Theta^{D(V,\kappa)} < \kappa^+$.

Proof idea.

By the Lemma, we may assume $\Theta = \Theta_{\gamma+1}$. Have surjections $f_{\alpha} : \mathbb{R}^* \to \alpha$ which are ordinal definable from a set A of Wadge rank Θ_{γ} in $D(V, \kappa)$. If A has a nice enough name in V, then $f_{\alpha}[\mathbb{R}^{V[G \upharpoonright \kappa_i]}] \in V$ and Wilson's proof applies.

Is the assumption $cof(\kappa) = \omega$ necessary?

Conjecture (Wilson)

Conjecture (Wilson)

(PFA) If κ is a limit of Woodin cardinals, then

$$\Theta_0^{D(V,\kappa)} < \kappa^+$$
$$\Theta_0^{D(V,\kappa)} < \Theta^{D(V,\kappa)}$$

Remark

The 2nd part of Wilson's conjecture implies the 1st.

Conjecture (Wilson)

(PFA) If κ is a limit of Woodin cardinals, then

$$\Theta_0^{D(V,\kappa)} < \kappa^+$$
$$\Theta_0^{D(V,\kappa)} < \Theta^{D(V,\kappa)}$$

Remark

The 2nd part of Wilson's conjecture implies the 1st.

We prove the first part of the conjecture with the additional assumption that the derived model satisfies "mouse capturing" (MC).

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*)).$

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*))$. - Then *MC* implies $D(V, \kappa) \models P(\mathbb{R}^*) = Lp(\mathbb{R}^*) \cap P(\mathbb{R}^*)$.

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*))$. - Then *MC* implies $D(V, \kappa) \models P(\mathbb{R}^*) = Lp(\mathbb{R}^*) \cap P(\mathbb{R}^*)$.

- So $Lp(\mathbb{R}^*)$ has height κ^+ .

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*))$. - Then *MC* implies $D(V, \kappa) \models P(\mathbb{R}^*) = Lp(\mathbb{R}^*) \cap P(\mathbb{R}^*)$. - So $Lp(\mathbb{R}^*)$ has height κ^+ .

- Let τ be a $Col(\omega, < \kappa)$ -name for \mathbb{R}^* .

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*))$. - Then *MC* implies $D(V, \kappa) \models P(\mathbb{R}^*) = Lp(\mathbb{R}^*) \cap P(\mathbb{R}^*)$. - So $Lp(\mathbb{R}^*)$ has height κ^+ .

- Let
$$au$$
 be a $\mathit{Col}(\omega, <\kappa)$ -name for \mathbb{R}^* .

- Then $Lp(\tau)$ has height κ^+ .

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V, \kappa) \models MC$. Then $\Theta_0^{D(V,\kappa)} < \kappa^+$.

Proof.

- If
$$\Theta_0^{D(V,\kappa)} = \kappa^+$$
, then $\Theta_0^{D(V,\kappa)} = \Theta^{D(V,\kappa)}$.

- Any derived model satisfies $V = L(P(\mathbb{R}))$, so $D(V, \kappa) \models V = L(P_{\Theta_0}(\mathbb{R}^*))$. - Then *MC* implies $D(V, \kappa) \models P(\mathbb{R}^*) = Lp(\mathbb{R}^*) \cap P(\mathbb{R}^*)$. - So $Lp(\mathbb{R}^*)$ has height κ^+ .

- Let au be a $Col(\omega, < \kappa)$ -name for \mathbb{R}^* .
- Then $Lp(\tau)$ has height κ^+ .

- By arguments of Schimmerling/Trang/Zeman, can construct a \Box_{κ} sequence from $Lp(\tau)$.

Is Θ_0 special?

Is Θ_0 special?

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V,\kappa) \models "\Theta_{\alpha+1}$ exists" + "there is a hod pair (P,Σ) below $AD_{\mathbb{R}} + "\Theta$ is regular' such that $P_{\Theta_{\alpha+1}}(\mathbb{R}^*) = Lp^{\Sigma}(\mathbb{R}^*) \cap P(\mathbb{R}^*)$, Σ is fullness-preserving, and has branch condensation." Then $\Theta_{\alpha+1}^{D(V,\kappa)} < \kappa^+$.

Is Θ_0 special?

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}$, κ is a limit of Woodin cardinals and $D(V,\kappa) \models "\Theta_{\alpha+1}$ exists" + "there is a hod pair (P,Σ) below $AD_{\mathbb{R}} + "\Theta$ is regular' such that $P_{\Theta_{\alpha+1}}(\mathbb{R}^*) = Lp^{\Sigma}(\mathbb{R}^*) \cap P(\mathbb{R}^*)$, Σ is fullness-preserving, and has branch condensation." Then $\Theta_{\alpha+1}^{D(V,\kappa)} < \kappa^+$.

Conjecture

Suppose $V \models \neg \Box_{\kappa}$ and κ is a limit of Woodin cardinals. Then $\Theta^{D(V,\kappa)} < \kappa^+$.

Definition

 \Box_{κ}^{*} (weak square) is the statement that there is a sequence $\langle C_{\alpha} : \alpha < \kappa^{+} \rangle$ s.t.

- $\ \, { \ 0 } \ \, { \mathcal C}_{\alpha} \ \, \text{is nonempty, } \ \, |{ \mathcal C}_{\alpha}| \leq \kappa \text{, and each } \ \, { \mathcal C} \in { \mathcal C}_{\alpha} \subset \alpha \ \, \text{is a club.}$
- **2** For all $C \in C_{\alpha}$ and all $\beta \in acc(C)$, $C \cap \beta \in C_{\beta}$.
- **③** If $cof(\alpha) < \kappa$ and $C ∈ C_{\alpha}$, then $|C| < \kappa$.

Definition

 \Box_{κ}^{*} (weak square) is the statement that there is a sequence $\langle C_{\alpha} : \alpha < \kappa^{+} \rangle$ s.t.

- $\ \, { \ 0 } \ \, { \mathcal C}_{\alpha} \ \, \text{is nonempty, } \ \, |{ \mathcal C}_{\alpha}| \leq \kappa \text{, and each } \ \, { \mathcal C} \in { \mathcal C}_{\alpha} \subset \alpha \ \, \text{is a club.}$
- **2** For all $C \in C_{\alpha}$ and all $\beta \in acc(C)$, $C \cap \beta \in C_{\beta}$.
- Solution If $cof(\alpha) < \kappa$ and $C \in C_{\alpha}$, then $|C| < \kappa$.
- $\square_{\kappa} \implies \square_{\kappa}^{*}$

Definition

 \Box_{κ}^{*} (weak square) is the statement that there is a sequence $\langle C_{\alpha} : \alpha < \kappa^{+} \rangle$ s.t.

- $\ \, { \ 0 } \ \, { \mathcal C}_{\alpha} \ \, \text{is nonempty, } \ \, |{ \mathcal C}_{\alpha}| \leq \kappa \text{, and each } \ \, { \mathcal C} \in { \mathcal C}_{\alpha} \subset \alpha \ \, \text{is a club.}$
- **2** For all $C \in C_{\alpha}$ and all $\beta \in acc(C)$, $C \cap \beta \in C_{\beta}$.
- Solution If $cof(\alpha) < \kappa$ and $C \in C_{\alpha}$, then $|C| < \kappa$.
- $\bullet \ \square_{\kappa} \implies \square_{\kappa}^{*}$
- (Magidor) PFA is consistent with \Box_{κ}^* for all $\kappa \geq \omega_2$

Definition

 \Box_{κ}^{*} (weak square) is the statement that there is a sequence $\langle C_{\alpha} : \alpha < \kappa^{+} \rangle$ s.t.

- $\ \, { \ 0 } \ \, { \mathcal C}_{\alpha} \ \, \text{is nonempty, } \ \, |{ \mathcal C}_{\alpha}| \leq \kappa \text{, and each } \ \, { \mathcal C} \in { \mathcal C}_{\alpha} \subset \alpha \ \, \text{is a club.}$
- **2** For all $C \in C_{\alpha}$ and all $\beta \in acc(C)$, $C \cap \beta \in C_{\beta}$.
- Solution If $cof(\alpha) < \kappa$ and $C \in C_{\alpha}$, then $|C| < \kappa$.

$$\bullet \square_{\kappa} \implies \square_{\kappa}^{*}$$

• (Magidor) PFA is consistent with \Box_{κ}^* for all $\kappa \geq \omega_2$

Theorem (L., Trang)

Suppose $V \models \neg \Box_{\kappa}^*$, κ is a regular limit of Woodin cardinals, and there is a least branch hod pair (P, Σ) in $D(V, \kappa)$ such that $D(V, \kappa) = L(Lp^{\Sigma}(\mathbb{R}^*))$. Then $\Theta^{D(V,\kappa)} < \kappa^+$.

Definition

A tree T is $< \kappa$ -absolutely complemented if is tree U such that for any $\lambda < \kappa$ and any $Col(\omega, \lambda)$ -generic G, $\rho[T] = (\rho[U])^c$.

Definition

A tree T is $< \kappa$ -absolutely complemented if is tree U such that for any $\lambda < \kappa$ and any $Col(\omega, \lambda)$ -generic G, $\rho[T] = (\rho[U])^c$.

Definition

The "old" derived model is $olD(V, \kappa) = L(Hom^*, \mathbb{R}^*)$, where $Hom^* = \{\rho[T] \cap \mathbb{R}^* : (\exists \gamma < \kappa)T \in V[G \upharpoonright \gamma] \land V[G \upharpoonright \gamma] \models T \text{ is } < \kappa - \text{absolutely complemented}\}$

Definition

A tree T is $< \kappa$ -absolutely complemented if is tree U such that for any $\lambda < \kappa$ and any $Col(\omega, \lambda)$ -generic G, $\rho[T] = (\rho[U])^c$.

Definition

The "old" derived model is $olD(V, \kappa) = L(Hom^*, \mathbb{R}^*)$, where $Hom^* = \{\rho[T] \cap \mathbb{R}^* : (\exists \gamma < \kappa)T \in V[G \upharpoonright \gamma] \land V[G \upharpoonright \gamma] \models T \text{ is } < \kappa - \text{absolutely complemented}\}$

 $Hom^* =$ the Suslin-co-Suslin sets of $olD(V, \kappa)$ (or $D(V, \kappa)$)

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

- There is a $Col(\omega, < \kappa)$ -name π for (Hom^*, \mathbb{R}^*) and a code CODE for π such that $CODE \subset H_{\kappa}^V$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

- There is a $Col(\omega, < \kappa)$ -name π for (Hom^*, \mathbb{R}^*) and a code CODE for π such that $CODE \subset H_{\kappa}^V$. - Let $M = L(H_{\kappa}^V, CODE)$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

- There is a $Col(\omega, < \kappa)$ -name π for (Hom^*, \mathbb{R}^*) and a code CODE for π such that $CODE \subset H_{\kappa}^V$. - Let $M = L(H_{\kappa}^V, CODE)$.

- $M[G] \supseteq olD(V, \kappa)$, so $\Theta^{M[G]} = \kappa^+$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

- There is a $Col(\omega, < \kappa)$ -name π for (Hom^*, \mathbb{R}^*) and a code CODE for π such that $CODE \subset H_{\kappa}^V$.

- Let $M = L(H_{\kappa}^V, CODE)$.
- $M[G] \supseteq olD(V, \kappa)$, so $\Theta^{M[G]} = \kappa^+$.
- Then $\Theta^M = \kappa^+$.

Theorem (L., Trang)

Suppose κ is a limit of Woodin cardinals and $\neg \Box_{\kappa}$. Then $\Theta^{olD(V,\kappa)} < \kappa^+$.

Proof.

Suppose $\Theta^{olD(V,\kappa)} = \kappa^+$.

- There is a $Col(\omega, < \kappa)$ -name π for (Hom^*, \mathbb{R}^*) and a code CODE for π such that $CODE \subset H_{\kappa}^V$.

- Let $M = L(H_{\kappa}^V, CODE)$.
- $M[G] \supseteq olD(V, \kappa)$, so $\Theta^{M[G]} = \kappa^+$.
- Then $\Theta^M = \kappa^+$.

 $M \subseteq V$, and by arguments of Schimmerling/Trang/Zeman can build a \Box_{κ} -sequence in V.