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Outline

Joint work with Steve Jackson on proving the Ultrapower Axiom
from the Axiom of Determinacy:

Theorem (G.–Jackson)
AD implies UA below ℵω.

1. Preliminaries on UA and AD
2. Formulating UA without AC
3. A bit of the proof
4. Pictures of ultrafilters

Background theory: ZF + DC.
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Motivation

Question
Why do models of determinacy resemble canonical inner models of
large cardinal axioms?

Example
Kunen showed that in L[U], there is a unique normal measure, and
every measure is a finite power of it.

Solovay showed that under AD, there is a unique normal measure
on ω1, and every measure on ω1 is a finite power of it.
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New notation

If N is a transitive model of set theory and U is an N-ultrafilter,
the ultrapower of N by U, using functions in N, is denoted by NU .

The ultrapower embedding is denoted by jU : N → NU .
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The Ultrapower Axiom

We refer to countably complete ultrafilters as measures.

Definition (ZFC)
The Ultrapower Axiom states that for all measures U and W ,
there exist measures W∗ ∈ VU and U∗ ∈ VW such that
(VU)W∗ = (VW )U∗ and

jW∗ ◦ jU = jU∗ ◦ jW

The pair (W∗, U∗) is called a comparison of (U, W ).
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Example: the Mitchell order

If U and W are measures on κ and W is κ-complete, then U
precedes W in the Mitchell order, denoted U ◁ W , if U ∈ VW .

Proposition (ZFC)
If U ◁ W , then UA holds for U and W .

Sketch. Set W∗ = jU(W ) and U∗ = U. Then

(VU)W∗ = (VU)jU(W ) = jU(VW ) = (VW )U∗

and similarly jW∗ ◦ jU = jU∗ ◦ jW .
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The Ketonen order

Notation: υ(X ) denotes the set of measures on X .

Definition
If δ is an ordinal and U, W ∈ υ(δ), then U precedes W in the
Ketonen order, denoted U <k W , if there are measures Uα ∈ υ(α),
defined for all positive α < δ, such that

A ∈ U ⇐⇒ {α < δ : A ∩ α ∈ Uα} ∈ W

Introduced by Ketonen in 1971.

Theorem
The Ketonen order on υ(δ) is a well-founded partial order.
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Example: the Ketonen order on normal measures

Proposition
If U ∈ υ(κ) and W is a normal measure on κ, then U <k W if and
only if U ◁ W .

As a consequence, the following are equivalent:
▶ The Ketonen order is linear on normal measures.
▶ The Mitchell order is linear on normal measures.
▶ UA holds for normal measures.
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The Ketonen order and UA

Theorem (ZFC)
The following are equivalent:
▶ For all ordinals δ, the Ketonen order on υ(δ) is linear.
▶ The Ultrapower Axiom holds.
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AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.

▶ There are many: Kunen showed every countably complete
filter on an ordinal extends to a countably complete ultrafilter.

▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.

▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.

▶ Measures on small ordinals have been classified, leading to
Jackson’s analysis of the cardinals below ℵϵ0 .

Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .

Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



AD and UA

Conjecture
AD implies that for all δ < Θ, the Ketonen order on υ(δ) is linear.

▶ Measures on ordinals are central to determinacy theory.
▶ There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.
▶ Cardinal structure under AD reduces to analysis of measures.
▶ Measures on small ordinals have been classified, leading to

Jackson’s analysis of the cardinals below ℵϵ0 .
Sample theorem (Jackson). Assume AD. If α < ϵ0,
ℵα+1 → (ℵα+1)ℵα+1 if and only if α = 0 or α = ω ↑↑ n for
some odd number n.

▶ To extend Jackson’s analysis to higher cardinals requires a
global classification of measures.

10 / 28



Evidence for the conjecture assuming AD

▶ As we’ll see later, it is not hard to prove UA(ℵn) for n < 3.
▶ UA holds for any pair of normal measures below ℵϵ0 by

Jackson’s analysis.
▶ Kunen showed that for δ < Θ, υ(δ) has a definable well-order.
▶ The linearity of the Ketonen order can be reformulated as a

form of Lipschitz determinacy for measures.
▶ Many consequences of UA can be established using that

HODx ⊨ UA for all x ∈ R.
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Global evidence for the conjecture

Definition
I0(λ) holds if there is j : L(Vλ+1) → L(Vλ+1) with crit(j) < λ.

L(Vλ+1) under I0(λ) bears a resemblance to L(R) under AD. For
example, Woodin proved λ+ is measurable and ΘL(Vλ+1) is a
strong limit cardinal.

Theorem
Assume I0(λ). Then L(Vλ+1) satisfies:
▶ Every λ+-complete filter on an ordinal extends to a

λ+-complete ultrafilter.
▶ For any δ < Θ, each level of the Ketonen order on υ(δ) has

cardinality less than λ.
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Ultrapowers without choice

The class of hereditarily well-orderable sets is given by

H = {a : tc(a) is well-orderable} =
⋃

A∈V
L[A]

In the choiceless context, the Ultrapower Axiom is defined in terms
of iterated ultrapowers of H .

Suppose N is transitive, N =
⋃

A∈N L[A], and U is an N-ultrafilter.
▶ jU : N → NU is cofinal and Σ1-elementary.
▶ So NU is extensional.
▶ If well-founded, NU can be identified with its collapse.
▶ So again NU =

⋃
A∈NU

L[A].
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UA without choice

Definition
UA(κ) states that for all U, W ∈ υ(κ), there exist W∗ ∈

∏
U υ(κ)

and U∗ ∈
∏

W υ(κ) such that (HU)W∗ = (HW )U∗ and

jW∗ ◦ jU = jU∗ ◦ jW .

Theorem
The following are equivalent for any cardinal κ:
▶ The Ketonen order on υ(κ) is linear.
▶ UA(κ) holds.
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The main theorem

Theorem (G.–Jackson)
For all n < ω, UA(ℵn) holds.

The proof proceeds one aleph at a time.
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UA(ℵ1)

Theorem (Solovay)
Assume AD.
▶ The club filter Cω1 on ω1 is a normal measure.
▶ Every measure on ω1 is isomorphic to a finite power of Cω1 .

Proposition
If κ is the least measurable cardinal, the following are equivalent:
▶ UA(κ) holds.
▶ There is a unique normal measure on κ, and every measure on

κ is isomorphic to a power of it.
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UA(ℵ2)

Theorem (Martin–Paris, Kunen)
Assume AD.
▶ The ω-club and ω1-club filters on ω2, denoted Cω2,ω and

Cω2,ω1 , are normal measures.
▶ Every measure on ω2 is isomorphic to a finite product of Cω1 ,

Cω2,ω, and Cω2,ω1 .

Note that Cω2,ω <k Cω2,ω1 : A ⊆ ω2 contains an ω-club iff there is
an ω1-club of α < ω2 such that A ∩ α contains an ω-club.

Since Cω2,ω1 is normal, it follows that Cω2,ω ◁ Cω2,ω1 , and hence UA
holds for this pair.
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Singular successors

Theorem (Martin)
Assume AD. For all n ≥ 3, then ωn is singular with cofinality ω2.

In particular, ω3 is not measurable.

Nevertheless, the structure of measures on ω3 does not reduce to
measures on ω2.
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Measures on ω3

The proof that ωn is singular shows ωn = j(Cω1 )n−1(ω1).

Definition
Let Fωn be the filter on ωn generated by the club filter as
computed in H(Cω1 )n−1 and the Fréchet filter on ωn.

For ω ≤ κ < ω3, let Fω3,κ = Fω3 ↾ {α ∈ A : H(Cω1 )2 ⊨ cf(α) = κ}.

Theorem (Kunen)
Under AD, Fω3,κ is an ω2-complete measure on ω3.

Roughly, every measure on ω3 is a product of the prime measures
Cω1 , Cω2,ω, Cω2,ω1 , Fω3,ω, Fω3,ω1 , and Fω3,ω2 .
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The Rudin–Froĺık order

Definition
Suppose U, W ∈ υ(κ).
▶ U ≤RK W if there is a Σ1-elementary k : HU → HW such

that jW = k ◦ jU .
▶ U ≤RF W if there is some W∗ ∈

∏
U υ(κ) such that

HW = (HU)W∗ and jW = jW∗ ◦ jU .

Note that UA(κ) is just the statement that (υ(κ), ≤RF) is directed.
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The Rudin–Froĺık order on the primes

•

Cω1

Cω2,ω Cω2,ω1

Fω3,ω Fω3,ω1 Fω3,ω2

It remains to compare Fω3,ω, Fω3,ω1 , and Fω3,ω2 pairwise, and also
to compare Cω2,ω1 with Fω3,ω2 .
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Cω2,ω1, Fω3,ω, and Fω3,ω1 lie below Fω3,ω2

It turns out that Cω2,ω1 ◁ Fω3,ω2 .

Fω3,ω and Fω3,ω1 are also roughly Mitchell predecessors of Fω3,ω2 .

More precisely, suppose U is Fω3,ω or Fω3,ω1 . Let F∗ = jU(Fω3,ω2).
There is U∗ ∈

∏
Fω3,ω2

υ(κ) such that (HU)F∗ = (HFω3,ω2
)U∗ and

jF∗ ◦ jU = jU∗ ◦ jFω3,ω2

This is an instance of the internal relation, a generalization of the
Mitchell order that is a key tool in the theory of UA (under ZFC).
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Fω3,ω vs. Fω3,ω1

There is a “weighted linear order” on the prime measures on each
ωn, with weights in {0, 1, . . . , n − 1}.

Roughly, the weight describes how far apart two measures are: the
larger the weight, the farther the measures.

It is related to, but distinct from, the Ketonen order.

The internal relation corresponds to weight n − 1; for example,

Fω3,ω <2 Fω3,ω2 , Fω3,ω1 <2 Fω3,ω2

On the other hand, Fω3,ω <1 Fω3,ω1 , reflecting their common
Rudin–Froĺık predecessor.
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UA(ℵn)

The prime measures on ωn are the extensions of the filter Fωn .

There’s one prime measure on ω1, two on ω2, and three on ω3.

In general, there are (n − 1)! + (n − 2)! prime measures on ωn,
corresponding to the different “types” of ordinals in H(Cω1 )n−1 .

Let us denote them by {Sσ}σ∈Sn−1 and {Sσω}σ∈Sn−2 .

Cω1 = Sε

Cω2,ω = Sεω, Cω2,ω1 = S(1)

Fω3,ω = S(1)ω, Fω3,ω1 = S(21), Fω3,ω2 = S(12)
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