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Outline

Joint work with Steve Jackson on proving the Ultrapower Axiom
from the Axiom of Determinacy:

Theorem (G.—Jackson)
AD implies UA below X,,,.

1. Preliminaries on UA and AD

2. Formulating UA without AC

3. A bit of the proof

4. Pictures of ultrafilters
Background theory: ZF + DC.
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Motivation

Why do models of determinacy resemble canonical inner models of
large cardinal axioms?

Example

Kunen showed that in L[U], there is a unique normal measure, and
every measure is a finite power of it.

Solovay showed that under AD, there is a unique normal measure
on wi, and every measure on wj is a finite power of it.
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New notation

If N is a transitive model of set theory and U is an N-ultrafilter,
the ultrapower of N by U, using functions in N, is denoted by Ny.

The ultrapower embedding is denoted by jy : N — Ny.
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The Ultrapower Axiom

We refer to countably complete ultrafilters as measures.
Definition (ZFC)

The Ultrapower Axiom states that for all measures U and W,
there exist measures W, € Vy and U, € Viy such that

(Vu)w, = (Vw)u. and

Jw, °Jju = ju, °jw

The pair (W, U,) is called a comparison of (U, W).
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Example: the Mitchell order

If U and W are measures on k and W is k-complete, then U
precedes W in the Mitchell order, denoted U <« W, if U € V.

Proposition (ZFC)
If U< W, then UA holds for U and W .
Sketch. Set W, = jy(W) and U, = U. Then

Vulw. = (Vu)jyw) =Jju(Vw) = (Vw)u.

and similarly jyw, o ju = ju, °jw-
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The Ketonen order

Notation: v(X) denotes the set of measures on X.

Definition

If § is an ordinal and U, W € v(9), then U precedes W in the
Ketonen order, denoted U <y W, if there are measures U, € v(«),
defined for all positive a < 9, such that

AclU < {a<d:AnaeclU,}eW

Introduced by Ketonen in 1971.

Theorem
The Ketonen order on v(0) is a well-founded partial order.
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Example: the Ketonen order on normal measures

Proposition

If U € v(k) and W is a normal measure on k, then U < W if and
only if U< W.

As a consequence, the following are equivalent:
» The Ketonen order is linear on normal measures.
» The Mitchell order is linear on normal measures.

» UA holds for normal measures.
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The Ketonen order and UA

Theorem (ZFC)

The following are equivalent:
» For all ordinals 6, the Ketonen order on v(¢) is linear.
» The Ultrapower Axiom holds.
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AD and UA

AD implies that for all 6 < ©, the Ketonen order on v(9) is linear.

>
>

Measures on ordinals are central to determinacy theory.

There are many: Kunen showed every countably complete

filter on an ordinal extends to a countably complete ultrafilter.

Cardinal structure under AD reduces to analysis of measures.
Measures on small ordinals have been classified, leading to
Jackson's analysis of the cardinals below X..
Sample theorem (Jackson). Assume AD. If a < ¢g,
Rot1 — (Rgy1)¥e#1 if and only if o = 0 or o = w 11 n for
some odd number n.
To extend Jackson's analysis to higher cardinals requires a
global classification of measures.
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Evidence for the conjecture assuming AD

» As we'll see later, it is not hard to prove UA(R,) for n < 3.

» UA holds for any pair of normal measures below X, by
Jackson's analysis.

» Kunen showed that for § < ©, v(J) has a definable well-order.

» The linearity of the Ketonen order can be reformulated as a
form of Lipschitz determinacy for measures.

> Many consequences of UA can be established using that
HOD, F UA for all x € R.
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Global evidence for the conjecture

Definition
lo(A\) holds if there is j : L(Va41) — L(Viy1) with crit(j) < A.

L(Vx41) under lp(A) bears a resemblance to L(R) under AD. For
example, Woodin proved At is measurable and ©L(Va+1) js a
strong limit cardinal.

Theorem
Assume lo(N\). Then L(V\y1) satisfies:
» Every \T-complete filter on an ordinal extends to a
AT -complete ultrafilter.
» For any 6 < ©, each level of the Ketonen order on v(9) has
cardinality less than X.
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Ultrapowers without choice

The class of hereditarily well-orderable sets is given by

' = {a: tc(a) is well-orderable} = U L[A]
AcVv

In the choiceless context, the Ultrapower Axiom is defined in terms
of iterated ultrapowers of 7.

Suppose N is transitive, N = (Jacpy L[A], and U is an N-ultrafilter.
» juy: N — Ny is cofinal and X1-elementary.
» So Ny is extensional.
» If well-founded, Ny can be identified with its collapse.
> So again Ny = Uaen, LIA]
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UA without choice

UA(k) states that for all U, W € v(k), there exist W, €[], v(k)
and U, € [[y v(k) such that (2y)w, = (#w)u, and

Jw, °Jju = Jju, °jw-

The following are equivalent for any cardinal k:

» The Ketonen order on v(k) is linear.
» UA(k) holds.
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The main theorem

Theorem (G.—Jackson)
For all n < w, UA(R,) holds.

The proof proceeds one aleph at a time.
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Theorem (Solovay)
Assume AD.

» The club filter C,, on wy is a normal measure.

» Every measure on wi is isomorphic to a finite power of C,, .

If k is the least measurable cardinal, the following are equivalent:
» UA(k) holds.

» There is a unique normal measure on k, and every measure on
K is isomorphic to a power of it.
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Theorem (Martin—Paris, Kunen)

Assume AD.
» The w-club and w1-club filters on wy, denoted C,, ., and

Cu w1, are normal measures.
» Every measure on w» is isomorphic to a finite product of Cy,,

Cuw, and Cuyp i -
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UA(R,)

Theorem (Martin—Paris, Kunen)

Assume AD.

» The w-club and w1-club filters on wy, denoted C,, ., and
Cu w1, are normal measures.

» Every measure on w» is isomorphic to a finite product of C,,,
Cuw, and Cuyp i -

Note that C,, o, <k Cupw,: A € w2 contains an w-club iff there is
an wi-club of & < wy such that AN « contains an w-club.

Since Cy, ., is normal, it follows that C,, ., <1 Cy, ., and hence UA
holds for this pair.
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Singular successors

Theorem (Martin)

Assume AD. For all n > 3, then wy, is singular with cofinality w.

In particular, w3 is not measurable.

Nevertheless, the structure of measures on w3 does not reduce to
measures on wo.
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Measures on w3

The proof that w, is singular shows w, :j(cw)nq(wl).

Definition

Let F,, be the filter on w, generated by the club filter as
computed in e%”(cwl),ﬂ and the Fréchet filter on w,.

Forw <k <ws, let Fuy = Fuy [ {a € A: A, 2 F cf(@) = &}

Theorem (Kunen)

Under AD, F., . is an wo-complete measure on w3.

Roughly, every measure on w3 is a product of the prime measures
Cwlr sz,aw sz,wlr ‘FO.J?,,OJV ]:w;;,wlv and ‘FUJ3,UJ2'
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The Rudin—Frolik order

Suppose U, W € v(k).
> U <gk W if there is a X1-elementary k : £y — F€y such
that jyy = k o jy.
> U <grg W if there is some W, €[], v(x) such that
Hw = (Hu)w. and jw = jw, ° ju-

Note that UA(k) is just the statement that (v(k), <grg) is directed.
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The Rudin—Frolik order on the primes

[ ]
/
Cu
ng,w ng,wl
/
}—wg,w fou3,w1 ]:w3,w2

It remains to compare F,; o, Fuswp, and Fu, 0, pairwise, and also
to compare Cy, .,, With Fo; o, .
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Cunwrr Fusw, and F,. ., lie below F,, .,

It turns out that Cyy, 0 <1 Fg -
Fusw and Fo, o, are also roughly Mitchell predecessors of F,; w,.

More precisely, suppose U is Fi;w OF Fugwr- Let Fu = ju(Fusw)-
Thereis U. € [, , v(k) such that (), = (HF,, .,)u. and

JF. 0 Ju = JU. ©JFuyu,

This is an instance of the internal relation, a generalization of the
Mitchell order that is a key tool in the theory of UA (under ZFC).
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fw?z ;W VS " Fw3 ;W1

There is a “weighted linear order” on the prime measures on each
wp, with weights in {0,1,...,n—1}.

Roughly, the weight describes how far apart two measures are: the
larger the weight, the farther the measures.

It is related to, but distinct from, the Ketonen order.

The internal relation corresponds to weight n — 1; for example,
Fw3,w <2 ]:w3,w27 Fw3,w1 <2 ‘FUJ37UJ2

On the other hand, F, ., <1 Fusw;. reflecting their common
Rudin—Frolik predecessor.
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The prime measures on wy, are the extensions of the filter F,, .
There's one prime measure on wi, two on wy, and three on ws.

In general, there are (n — 1)! + (n — 2)! prime measures on w,
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