AD and UA

Gabriel Goldberg

UC Berkeley

February 21, 2025

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

AD implies UA below \aleph_{ω} .

1. Preliminaries on UA and AD

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

- 1. Preliminaries on UA and AD
- 2. Formulating UA without AC

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

- 1. Preliminaries on UA and AD
- 2. Formulating UA without AC
- 3. A bit of the proof

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

- 1. Preliminaries on UA and AD
- 2. Formulating UA without AC
- 3. A bit of the proof
- 4. Pictures of ultrafilters

Joint work with Steve Jackson on proving the Ultrapower Axiom from the Axiom of Determinacy:

Theorem (G.–Jackson)

AD implies UA below \aleph_{ω} .

- 1. Preliminaries on UA and AD
- 2. Formulating UA without AC
- 3. A bit of the proof
- 4. Pictures of ultrafilters

Background theory: ZF + DC.

3

イロト 不得 トイヨト イヨト

Question

Why do models of determinacy resemble canonical inner models of large cardinal axioms?

Question

Why do models of determinacy resemble canonical inner models of large cardinal axioms?

Example

Question

Why do models of determinacy resemble canonical inner models of large cardinal axioms?

Example

Kunen showed that in L[U], there is a unique normal measure, and every measure is a finite power of it.

Question

Why do models of determinacy resemble canonical inner models of large cardinal axioms?

Example

Kunen showed that in L[U], there is a unique normal measure, and every measure is a finite power of it.

Solovay showed that under AD, there is a unique normal measure on ω_1 , and every measure on ω_1 is a finite power of it.

New notation

New notation

If N is a transitive model of set theory and U is an N-ultrafilter, the ultrapower of N by U, using functions in N, is denoted by N_U . If N is a transitive model of set theory and U is an N-ultrafilter, the ultrapower of N by U, using functions in N, is denoted by N_U .

The ultrapower embedding is denoted by $j_U: N \to N_U$.

We refer to countably complete ultrafilters as measures.

We refer to countably complete ultrafilters as measures.

Definition (ZFC)

The Ultrapower Axiom states that for all measures U and W, there exist measures $W_* \in V_U$ and $U_* \in V_W$ such that $(V_U)_{W_*} = (V_W)_{U_*}$ and

 $j_{W_*} \circ j_U = j_{U_*} \circ j_W$

イロト 不得 トイラト イラト 一日

We refer to countably complete ultrafilters as measures.

Definition (ZFC)

The Ultrapower Axiom states that for all measures U and W, there exist measures $W_* \in V_U$ and $U_* \in V_W$ such that $(V_U)_{W_*} = (V_W)_{U_*}$ and

$$j_{W_*} \circ j_U = j_{U_*} \circ j_W$$

The pair (W_*, U_*) is called a *comparison* of (U, W).

イロト 不得 トイラト イラト 一日

If U and W are measures on κ and W is κ -complete, then U precedes W in the *Mitchell order*, denoted $U \triangleleft W$, if $U \in V_W$.

If U and W are measures on κ and W is κ -complete, then U precedes W in the *Mitchell order*, denoted $U \triangleleft W$, if $U \in V_W$.

Proposition (ZFC)

If $U \triangleleft W$, then UA holds for U and W.

If U and W are measures on κ and W is κ -complete, then U precedes W in the *Mitchell order*, denoted $U \triangleleft W$, if $U \in V_W$.

Proposition (ZFC)

If $U \lhd W$, then UA holds for U and W.

Sketch. Set $W_* = j_U(W)$ and $U_* = U$. Then

$$(V_U)_{W_*} = (V_U)_{j_U(W)} = j_U(V_W) = (V_W)_{U_*}$$

and similarly $j_{W_*} \circ j_U = j_{U_*} \circ j_W$.

イロト 不得 トイラト イラト 一日

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 4 目 9 9 0 0
7 / 28

Notation: v(X) denotes the set of measures on *X*.

Notation: v(X) denotes the set of measures on X.

Definition

If δ is an ordinal and $U, W \in \upsilon(\delta)$, then U precedes W in the *Ketonen order*, denoted $U <_{\Bbbk} W$, if there are measures $U_{\alpha} \in \upsilon(\alpha)$, defined for all positive $\alpha < \delta$, such that

$$A \in U \iff \{\alpha < \delta : A \cap \alpha \in U_{\alpha}\} \in W$$

Notation: v(X) denotes the set of measures on X.

Definition

If δ is an ordinal and $U, W \in \upsilon(\delta)$, then U precedes W in the *Ketonen order*, denoted $U <_{\Bbbk} W$, if there are measures $U_{\alpha} \in \upsilon(\alpha)$, defined for all positive $\alpha < \delta$, such that

$$A \in U \iff \{\alpha < \delta : A \cap \alpha \in U_{\alpha}\} \in W$$

Introduced by Ketonen in 1971.

Notation: v(X) denotes the set of measures on X.

Definition

If δ is an ordinal and $U, W \in \upsilon(\delta)$, then U precedes W in the *Ketonen order*, denoted $U <_{\Bbbk} W$, if there are measures $U_{\alpha} \in \upsilon(\alpha)$, defined for all positive $\alpha < \delta$, such that

$$A \in U \iff \{\alpha < \delta : A \cap \alpha \in U_{\alpha}\} \in W$$

Introduced by Ketonen in 1971.

Theorem

The Ketonen order on $v(\delta)$ is a well-founded partial order.

Example: the Ketonen order on normal measures

Example: the Ketonen order on normal measures

Proposition

If $U \in v(\kappa)$ and W is a normal measure on κ , then $U <_{\Bbbk} W$ if and only if $U \lhd W$.

Example: the Ketonen order on normal measures

Proposition

If $U \in v(\kappa)$ and W is a normal measure on κ , then $U <_{\Bbbk} W$ if and only if $U \lhd W$.

As a consequence, the following are equivalent:

- ▶ The Ketonen order is linear on normal measures.
- ► The Mitchell order is linear on normal measures.
- ► UA holds for normal measures.

The Ketonen order and UA

The Ketonen order and UA

Theorem (ZFC)

The following are equivalent:

- For all ordinals δ , the Ketonen order on $v(\delta)$ is linear.
- The Ultrapower Axiom holds.

AD and UA

<ロト < 部 ト < 言 ト < 言 ト こ の < で 10 / 28

AD and UA

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.
Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

Measures on ordinals are central to determinacy theory.

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

- Measures on ordinals are central to determinacy theory.
- There are many: Kunen showed every countably complete filter on an ordinal extends to a countably complete ultrafilter.

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

- Measures on ordinals are central to determinacy theory.
- There are many: Kunen showed every countably complete filter on an ordinal extends to a countably complete ultrafilter.
- Cardinal structure under AD reduces to analysis of measures.

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

- Measures on ordinals are central to determinacy theory.
- There are many: Kunen showed every countably complete filter on an ordinal extends to a countably complete ultrafilter.
- Cardinal structure under AD reduces to analysis of measures.
- Measures on small ordinals have been *classified*, leading to Jackson's analysis of the cardinals below ℵ_{e0}.

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

- Measures on ordinals are central to determinacy theory.
- There are many: Kunen showed every countably complete filter on an ordinal extends to a countably complete ultrafilter.
- Cardinal structure under AD reduces to analysis of measures.
- ► Measures on small ordinals have been *classified*, leading to Jackson's analysis of the cardinals below ℵ_{ϵ0}.

Sample theorem (Jackson). Assume AD. If $\alpha < \epsilon_0$, $\aleph_{\alpha+1} \rightarrow (\aleph_{\alpha+1})^{\aleph_{\alpha+1}}$ if and only if $\alpha = 0$ or $\alpha = \omega \uparrow\uparrow n$ for some odd number n.

イロト 不得下 イヨト イヨト 二日

Conjecture

AD implies that for all $\delta < \Theta$, the Ketonen order on $v(\delta)$ is linear.

- Measures on ordinals are central to determinacy theory.
- There are many: Kunen showed every countably complete filter on an ordinal extends to a countably complete ultrafilter.
- Cardinal structure under AD reduces to analysis of measures.
- ► Measures on small ordinals have been *classified*, leading to Jackson's analysis of the cardinals below ℵ_{e0}.

Sample theorem (Jackson). Assume AD. If $\alpha < \epsilon_0$, $\aleph_{\alpha+1} \rightarrow (\aleph_{\alpha+1})^{\aleph_{\alpha+1}}$ if and only if $\alpha = 0$ or $\alpha = \omega \uparrow\uparrow n$ for some odd number n.

 To extend Jackson's analysis to higher cardinals requires a global classification of measures.

(日)

▶ As we'll see later, it is not hard to prove $UA(\aleph_n)$ for n < 3.

- As we'll see later, it is not hard to prove $UA(\aleph_n)$ for n < 3.
- ► UA holds for any pair of normal measures below ℵ_{ϵ0} by Jackson's analysis.

- As we'll see later, it is not hard to prove $UA(\aleph_n)$ for n < 3.
- ► UA holds for any pair of normal measures below ℵ_{ϵ0} by Jackson's analysis.
- Kunen showed that for $\delta < \Theta$, $v(\delta)$ has a definable well-order.

- As we'll see later, it is not hard to prove $UA(\aleph_n)$ for n < 3.
- ► UA holds for any pair of normal measures below ℵ_{ϵ0} by Jackson's analysis.
- Kunen showed that for $\delta < \Theta$, $v(\delta)$ has a definable well-order.
- The linearity of the Ketonen order can be reformulated as a form of Lipschitz determinacy for measures.

- As we'll see later, it is not hard to prove $UA(\aleph_n)$ for n < 3.
- UA holds for any pair of normal measures below
 ^k_{ε0} by
 Jackson's analysis.
- Kunen showed that for $\delta < \Theta$, $v(\delta)$ has a definable well-order.
- The linearity of the Ketonen order can be reformulated as a form of Lipschitz determinacy for measures.
- Many consequences of UA can be established using that HOD_x ⊨ UA for all x ∈ ℝ.

Definition

$\mathsf{I}_0(\lambda)$ holds if there is $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

Definition

 $\mathsf{I}_0(\lambda)$ holds if there is $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

 $L(V_{\lambda+1})$ under $I_0(\lambda)$ bears a resemblance to $L(\mathbb{R})$ under AD. For example, Woodin proved λ^+ is measurable and $\Theta^{L(V_{\lambda+1})}$ is a strong limit cardinal.

Definition

 $\mathsf{I}_0(\lambda)$ holds if there is $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

 $L(V_{\lambda+1})$ under $I_0(\lambda)$ bears a resemblance to $L(\mathbb{R})$ under AD. For example, Woodin proved λ^+ is measurable and $\Theta^{L(V_{\lambda+1})}$ is a strong limit cardinal.

Theorem

Assume $I_0(\lambda)$. Then $L(V_{\lambda+1})$ satisfies:

Definition

 $\mathsf{I}_0(\lambda)$ holds if there is $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

 $L(V_{\lambda+1})$ under $I_0(\lambda)$ bears a resemblance to $L(\mathbb{R})$ under AD. For example, Woodin proved λ^+ is measurable and $\Theta^{L(V_{\lambda+1})}$ is a strong limit cardinal.

Theorem

Assume $I_0(\lambda)$. Then $L(V_{\lambda+1})$ satisfies:

 Every λ⁺-complete filter on an ordinal extends to a λ⁺-complete ultrafilter.

Definition

 $\mathsf{I}_0(\lambda)$ holds if there is $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$.

 $L(V_{\lambda+1})$ under $I_0(\lambda)$ bears a resemblance to $L(\mathbb{R})$ under AD. For example, Woodin proved λ^+ is measurable and $\Theta^{L(V_{\lambda+1})}$ is a strong limit cardinal.

Theorem

Assume $I_0(\lambda)$. Then $L(V_{\lambda+1})$ satisfies:

 Every λ⁺-complete filter on an ordinal extends to a λ⁺-complete ultrafilter.

For any δ < Θ, each level of the Ketonen order on υ(δ) has cardinality less than λ.

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ < ○ Q (~ 13 / 28

The class of hereditarily well-orderable sets is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

Suppose N is transitive, $N = \bigcup_{A \in N} L[A]$, and U is an N-ultrafilter.

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

Suppose N is transitive, $N = \bigcup_{A \in N} L[A]$, and U is an N-ultrafilter.

► $j_U : N \to N_U$ is cofinal and Σ_1 -elementary.

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

Suppose N is transitive, $N = \bigcup_{A \in N} L[A]$, and U is an N-ultrafilter.

•
$$j_U:N o N_U$$
 is cofinal and Σ_1 -elementary.

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

Suppose N is transitive, $N = \bigcup_{A \in N} L[A]$, and U is an N-ultrafilter.

•
$$j_U: N o N_U$$
 is cofinal and Σ_1 -elementary.

- So N_U is extensional.
- lf well-founded, N_U can be identified with its collapse.

The class of *hereditarily well-orderable sets* is given by

$$\mathscr{H} = \{a : \mathsf{tc}(a) \text{ is well-orderable}\} = \bigcup_{A \in V} L[A]$$

In the choiceless context, the Ultrapower Axiom is defined in terms of iterated ultrapowers of \mathcal{H} .

Suppose N is transitive, $N = \bigcup_{A \in N} L[A]$, and U is an N-ultrafilter.

•
$$j_U:N o N_U$$
 is cofinal and Σ_1 -elementary.

- So N_U is extensional.
- If well-founded, N_U can be identified with its collapse.

• So again
$$N_U = \bigcup_{A \in N_U} L[A]$$

イロト イヨト イヨト イヨト 二日

UA without choice

<□> < 클> < 클> < 클> = ♡Q (~ 14 / 28)

UA without choice

Definition

UA(κ) states that for all $U, W \in v(\kappa)$, there exist $W_* \in \prod_U v(\kappa)$ and $U_* \in \prod_W v(\kappa)$ such that $(\mathscr{H}_U)_{W_*} = (\mathscr{H}_W)_{U_*}$ and

 $j_{W_*} \circ j_U = j_{U_*} \circ j_W.$

UA without choice

Definition

UA(κ) states that for all $U, W \in v(\kappa)$, there exist $W_* \in \prod_U v(\kappa)$ and $U_* \in \prod_W v(\kappa)$ such that $(\mathscr{H}_U)_{W_*} = (\mathscr{H}_W)_{U_*}$ and

$$j_{W_*} \circ j_U = j_{U_*} \circ j_W.$$

Theorem

The following are equivalent for any cardinal κ :

• The Ketonen order on $v(\kappa)$ is linear.

イロト 不得 トイヨト イヨト

The main theorem

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ < ○ Q (~ 15 / 28

The main theorem

Theorem (G.–Jackson)

For all $n < \omega$, $UA(\aleph_n)$ holds.

The main theorem

Theorem (G.–Jackson)

For all $n < \omega$, $UA(\aleph_n)$ holds.

The proof proceeds one aleph at a time.

$\mathsf{UA}(\aleph_1)$

$\mathsf{UA}(\aleph_1)$

Theorem (Solovay)

Assume AD.

- The club filter C_{ω_1} on ω_1 is a normal measure.
- Every measure on ω_1 is isomorphic to a finite power of C_{ω_1} .

$\mathsf{UA}(\aleph_1)$

Theorem (Solovay)

Assume AD.

- The club filter C_{ω_1} on ω_1 is a normal measure.
- Every measure on ω_1 is isomorphic to a finite power of \mathcal{C}_{ω_1} .

Proposition

If κ is the least measurable cardinal, the following are equivalent:

- UA(κ) holds.
- There is a unique normal measure on κ, and every measure on κ is isomorphic to a power of it.

(日)

$UA(\aleph_2)$

Theorem (Martin–Paris, Kunen)

Assume AD.

- The ω-club and ω₁-club filters on ω₂, denoted C_{ω2,ω} and C_{ω2,ω1}, are normal measures.
- Every measure on ω_2 is isomorphic to a finite product of C_{ω_1} , $C_{\omega_2,\omega}$, and C_{ω_2,ω_1} .

$UA(\aleph_2)$

Theorem (Martin–Paris, Kunen)

Assume AD.

- The ω-club and ω₁-club filters on ω₂, denoted C_{ω2,ω} and C_{ω2,ω1}, are normal measures.
- Every measure on ω_2 is isomorphic to a finite product of C_{ω_1} , $C_{\omega_2,\omega}$, and C_{ω_2,ω_1} .

Note that $\mathcal{C}_{\omega_2,\omega} <_{\Bbbk} \mathcal{C}_{\omega_2,\omega_1}$: $A \subseteq \omega_2$ contains an ω -club iff there is an ω_1 -club of $\alpha < \omega_2$ such that $A \cap \alpha$ contains an ω -club.

$UA(\aleph_2)$

Theorem (Martin–Paris, Kunen)

Assume AD.

- The ω-club and ω₁-club filters on ω₂, denoted C_{ω2,ω} and C_{ω2,ω1}, are normal measures.
- Every measure on ω₂ is isomorphic to a finite product of C_{ω1}, C_{ω2,ω}, and C_{ω2,ω1}.

Note that $\mathcal{C}_{\omega_2,\omega} <_{\Bbbk} \mathcal{C}_{\omega_2,\omega_1}$: $A \subseteq \omega_2$ contains an ω -club iff there is an ω_1 -club of $\alpha < \omega_2$ such that $A \cap \alpha$ contains an ω -club.

Since C_{ω_2,ω_1} is normal, it follows that $C_{\omega_2,\omega} \lhd C_{\omega_2,\omega_1}$, and hence UA holds for this pair.

<ロト < 部 ト < 言 ト < 言 ト 言 の Q () 18 / 28

Theorem (Martin)

Assume AD. For all $n \ge 3$, then ω_n is singular with cofinality ω_2 .

Theorem (Martin)

Assume AD. For all $n \ge 3$, then ω_n is singular with cofinality ω_2 .

In particular, ω_3 is not measurable.

Theorem (Martin)

Assume AD. For all $n \ge 3$, then ω_n is singular with cofinality ω_2 .

In particular, ω_3 is not measurable.

Nevertheless, the structure of measures on ω_3 does not reduce to measures on ω_2 .

The proof that ω_n is singular shows $\omega_n = j_{(\mathcal{C}_{\omega_1})^{n-1}}(\omega_1)$.

The proof that ω_n is singular shows $\omega_n = j_{(\mathcal{C}_{\omega_1})^{n-1}}(\omega_1)$.

Definition

Let \mathcal{F}_{ω_n} be the filter on ω_n generated by the club filter as computed in $\mathscr{H}_{(\mathcal{C}_{\omega_n})^{n-1}}$ and the Fréchet filter on ω_n .

The proof that ω_n is singular shows $\omega_n = j_{(\mathcal{C}_{\omega_1})^{n-1}}(\omega_1)$.

Definition

Let \mathcal{F}_{ω_n} be the filter on ω_n generated by the club filter as computed in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$ and the Fréchet filter on ω_n .

For
$$\omega \leq \kappa < \omega_3$$
, let $\mathcal{F}_{\omega_3,\kappa} = \mathcal{F}_{\omega_3} \upharpoonright \{ \alpha \in \mathcal{A} : \mathscr{H}_{(\mathcal{C}_{\omega_1})^2} \vDash \mathsf{cf}(\alpha) = \kappa \}.$

The proof that ω_n is singular shows $\omega_n = j_{(\mathcal{C}_{\omega_1})^{n-1}}(\omega_1)$.

Definition

Let \mathcal{F}_{ω_n} be the filter on ω_n generated by the club filter as computed in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$ and the Fréchet filter on ω_n .

For
$$\omega \leq \kappa < \omega_3$$
, let $\mathcal{F}_{\omega_3,\kappa} = \mathcal{F}_{\omega_3} \upharpoonright \{ \alpha \in \mathcal{A} : \mathscr{H}_{(\mathcal{C}_{\omega_1})^2} \vDash \mathsf{cf}(\alpha) = \kappa \}.$

Theorem (Kunen)

Under AD, $\mathcal{F}_{\omega_3,\kappa}$ is an ω_2 -complete measure on ω_3 .

The proof that ω_n is singular shows $\omega_n = j_{(\mathcal{C}_{\omega_1})^{n-1}}(\omega_1)$.

Definition

Let \mathcal{F}_{ω_n} be the filter on ω_n generated by the club filter as computed in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$ and the Fréchet filter on ω_n .

For
$$\omega \leq \kappa < \omega_3$$
, let $\mathcal{F}_{\omega_3,\kappa} = \mathcal{F}_{\omega_3} \upharpoonright \{ \alpha \in \mathcal{A} : \mathscr{H}_{(\mathcal{C}_{\omega_1})^2} \vDash \mathsf{cf}(\alpha) = \kappa \}.$

Theorem (Kunen)

Under AD, $\mathcal{F}_{\omega_3,\kappa}$ is an ω_2 -complete measure on ω_3 .

Roughly, every measure on ω_3 is a product of the prime measures C_{ω_1} , $C_{\omega_2,\omega}$, C_{ω_2,ω_1} , $\mathcal{F}_{\omega_3,\omega}$, $\mathcal{F}_{\omega_3,\omega_1}$, and $\mathcal{F}_{\omega_3,\omega_2}$.

The Rudin–Frolík order

The Rudin-Frolík order

Definition

Suppose $U, W \in v(\kappa)$.

The Rudin-Frolík order

Definition

Suppose $U, W \in v(\kappa)$.

► $U \leq_{\mathsf{RK}} W$ if there is a Σ_1 -elementary $k : \mathscr{H}_U \to \mathscr{H}_W$ such that $j_W = k \circ j_U$.

The Rudin-Frolik order

Definition

Suppose $U, W \in v(\kappa)$.

- ► $U \leq_{\mathsf{RK}} W$ if there is a Σ_1 -elementary $k : \mathscr{H}_U \to \mathscr{H}_W$ such that $j_W = k \circ j_U$.
- $U \leq_{\mathsf{RF}} W$ if there is some $W_* \in \prod_U v(\kappa)$ such that $\mathscr{H}_W = (\mathscr{H}_U)_{W_*}$ and $j_W = j_{W_*} \circ j_U$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖

The Rudin-Frolik order

Definition

Suppose $U, W \in v(\kappa)$.

- ► $U \leq_{\mathsf{RK}} W$ if there is a Σ_1 -elementary $k : \mathscr{H}_U \to \mathscr{H}_W$ such that $j_W = k \circ j_U$.
- $U \leq_{\mathsf{RF}} W$ if there is some $W_* \in \prod_U v(\kappa)$ such that $\mathscr{H}_W = (\mathscr{H}_U)_{W_*}$ and $j_W = j_{W_*} \circ j_U$.

Note that $UA(\kappa)$ is just the statement that $(v(\kappa), \leq_{\mathsf{RF}})$ is directed.

The Rudin–Frolík order on the primes

The Rudin-Frolík order on the primes

 $\mathcal{F}_{\omega_3,\omega}$ $\mathcal{F}_{\omega_3,\omega_1}$ $\mathcal{F}_{\omega_3,\omega_2}$

The Rudin–Frolík order on the primes

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ や 21 / 28

The Rudin–Frolík order on the primes

The Rudin-Frolík order on the primes

It remains to compare $\mathcal{F}_{\omega_3,\omega}$, $\mathcal{F}_{\omega_3,\omega_1}$, and $\mathcal{F}_{\omega_3,\omega_2}$ pairwise, and also to compare $\mathcal{C}_{\omega_2,\omega_1}$ with $\mathcal{F}_{\omega_3,\omega_2}$.

It turns out that $\mathcal{C}_{\omega_2,\omega_1} \lhd \mathcal{F}_{\omega_3,\omega_2}$.

It turns out that $\mathcal{C}_{\omega_2,\omega_1} \lhd \mathcal{F}_{\omega_3,\omega_2}$.

 $\mathcal{F}_{\omega_3,\omega}$ and $\mathcal{F}_{\omega_3,\omega_1}$ are also roughly Mitchell predecessors of $\mathcal{F}_{\omega_3,\omega_2}$.

It turns out that $\mathcal{C}_{\omega_2,\omega_1} \lhd \mathcal{F}_{\omega_3,\omega_2}$.

 $\mathcal{F}_{\omega_3,\omega}$ and $\mathcal{F}_{\omega_3,\omega_1}$ are also roughly Mitchell predecessors of $\mathcal{F}_{\omega_3,\omega_2}$.

More precisely, suppose U is $\mathcal{F}_{\omega_3,\omega}$ or $\mathcal{F}_{\omega_3,\omega_1}$. Let $\mathcal{F}_* = j_U(\mathcal{F}_{\omega_3,\omega_2})$. There is $U_* \in \prod_{\mathcal{F}_{\omega_3,\omega_2}} v(\kappa)$ such that $(\mathscr{H}_U)_{\mathcal{F}_*} = (\mathscr{H}_{\mathcal{F}_{\omega_3,\omega_2}})_{U_*}$ and $i_{\mathcal{F}_*} \circ j_U = j_{U_*} \circ j_{\mathcal{F}_{\omega_3,\omega_2}}$

It turns out that $\mathcal{C}_{\omega_2,\omega_1} \lhd \mathcal{F}_{\omega_3,\omega_2}$.

 $\mathcal{F}_{\omega_3,\omega}$ and $\mathcal{F}_{\omega_3,\omega_1}$ are also roughly Mitchell predecessors of $\mathcal{F}_{\omega_3,\omega_2}$.

More precisely, suppose U is $\mathcal{F}_{\omega_3,\omega}$ or $\mathcal{F}_{\omega_3,\omega_1}$. Let $\mathcal{F}_* = j_U(\mathcal{F}_{\omega_3,\omega_2})$. There is $U_* \in \prod_{\mathcal{F}_{\omega_3,\omega_2}} v(\kappa)$ such that $(\mathscr{H}_U)_{\mathcal{F}_*} = (\mathscr{H}_{\mathcal{F}_{\omega_3,\omega_2}})_{U_*}$ and $j_{\mathcal{F}_*} \circ j_U = j_{U_*} \circ j_{\mathcal{F}_{\omega_3,\omega_2}}$

This is an instance of the *internal relation*, a generalization of the Mitchell order that is a key tool in the theory of UA (under ZFC).

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

 $\mathcal{F}_{\omega_{3},\omega}$ vs. $\mathcal{F}_{\omega_{3},\omega_{1}}$

There is a "weighted linear order" on the prime measures on each ω_n , with weights in $\{0, 1, \ldots, n-1\}$.

There is a "weighted linear order" on the prime measures on each ω_n , with weights in $\{0, 1, \ldots, n-1\}$.

Roughly, the weight describes how far apart two measures are: the larger the weight, the farther the measures.

There is a "weighted linear order" on the prime measures on each ω_n , with weights in $\{0, 1, \ldots, n-1\}$.

Roughly, the weight describes how far apart two measures are: the larger the weight, the farther the measures.

It is related to, but distinct from, the Ketonen order.

There is a "weighted linear order" on the prime measures on each ω_n , with weights in $\{0, 1, \ldots, n-1\}$.

Roughly, the weight describes how far apart two measures are: the larger the weight, the farther the measures.

It is related to, but distinct from, the Ketonen order.

The internal relation corresponds to weight n - 1; for example,

$$\mathcal{F}_{\omega_3,\omega} <_2 \mathcal{F}_{\omega_3,\omega_2}, \quad \mathcal{F}_{\omega_3,\omega_1} <_2 \mathcal{F}_{\omega_3,\omega_2}$$

There is a "weighted linear order" on the prime measures on each ω_n , with weights in $\{0, 1, \ldots, n-1\}$.

Roughly, the weight describes how far apart two measures are: the larger the weight, the farther the measures.

It is related to, but distinct from, the Ketonen order.

The internal relation corresponds to weight n-1; for example,

$$\mathcal{F}_{\omega_3,\omega} <_2 \mathcal{F}_{\omega_3,\omega_2}, \quad \mathcal{F}_{\omega_3,\omega_1} <_2 \mathcal{F}_{\omega_3,\omega_2}$$

On the other hand, $\mathcal{F}_{\omega_{3},\omega} <_1 \mathcal{F}_{\omega_{3},\omega_1}$, reflecting their common Rudin–Frolík predecessor.

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

$UA(\aleph_n)$

The *prime measures* on ω_n are the extensions of the filter \mathcal{F}_{ω_n} .
There's one prime measure on ω_1 , two on ω_2 , and three on ω_3 .

There's one prime measure on ω_1 , two on ω_2 , and three on ω_3 .

In general, there are (n-1)! + (n-2)! prime measures on ω_n , corresponding to the different "types" of ordinals in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$.

There's one prime measure on ω_1 , two on ω_2 , and three on ω_3 .

In general, there are (n-1)! + (n-2)! prime measures on ω_n , corresponding to the different "types" of ordinals in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$.

Let us denote them by $\{S_{\sigma}\}_{\sigma \in S_{n-1}}$ and $\{S_{\sigma\omega}\}_{\sigma \in S_{n-2}}$.

There's one prime measure on ω_1 , two on ω_2 , and three on ω_3 .

In general, there are (n-1)! + (n-2)! prime measures on ω_n , corresponding to the different "types" of ordinals in $\mathscr{H}_{(\mathcal{C}_{\omega_1})^{n-1}}$.

Let us denote them by $\{S_{\sigma}\}_{\sigma \in S_{n-1}}$ and $\{S_{\sigma\omega}\}_{\sigma \in S_{n-2}}$.

$$\mathcal{C}_{\omega_1} = \mathcal{S}_{\varepsilon}$$

 $\mathcal{C}_{\omega_2,\omega} = \mathcal{S}_{\varepsilon\omega}, \quad \mathcal{C}_{\omega_2,\omega_1} = \mathcal{S}_{(1)}$
 $\mathcal{F}_{\omega_3,\omega} = \mathcal{S}_{(1)\omega}, \quad \mathcal{F}_{\omega_3,\omega_1} = \mathcal{S}_{(21)}, \quad \mathcal{F}_{\omega_3,\omega_2} = \mathcal{S}_{(12)}$

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

 $(2,1)\omega$ (3,2,1) (3,1,2) $(1,2)\omega$ (2,3,1) (1,3,2) (2,1,3) (1,2,3)

・ロ ・ (日 ト (目 ト (目 ト) 目) のへの 25 / 28

きょうかん 聞 エルド・エル・トレット

< □ > < (型 > < 注 > < 注 > < 注 > 注 の Q (~ 26 / 28

26 / 28

э

Question

What about $\aleph_{\omega+1}$?

Question

What about $\aleph_{\omega+1}$?

Question

Is there an abstract argument?

Question

What about $\aleph_{\omega+1}$?

Question

Is there an abstract argument?

Question

What about UA for measures on non-well-orderable sets?

Thanks!