Generic gaps are descructible

David Chodounský

Charles University, Prague

joint work with Jeff Bergfalk, Osvaldo Guzmán and Michael Hrušák

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Overview

Proposition

The (ω_1, ω_1) -gap in $\mathcal{P}(\omega)$ forced with countable approximations is destructible.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Background on (ω_1, ω_1)-gaps

$$G = (A_{\alpha}, B_{\alpha})_{\alpha < \gamma}, \gamma \le \omega_{1} \text{ is a proto-gap if for each } \alpha < \beta < \gamma$$

$$A_{\alpha}, B_{\alpha} \subset \omega,$$

$$A_{\alpha} \cup B_{\alpha} \neq^{*} \omega, A_{\alpha} \cap B_{\alpha} = \emptyset \text{ and}$$

$$A_{\alpha} \subset^{*} A_{\beta}, B_{\alpha} \subset^{*} B_{\beta}.$$

If $\gamma = \omega_{1}$ we call *G* a *pre-gap*.

Background on (ω_1, ω_1) -gaps

 $G = (A_{\alpha}, B_{\alpha})_{\alpha < \gamma}, \gamma \le \omega_{1} \text{ is a proto-gap if for each } \alpha < \beta < \gamma$ $A_{\alpha}, B_{\alpha} \subset \omega,$ $A_{\alpha} \cup B_{\alpha} \neq^{*} \omega, A_{\alpha} \cap B_{\alpha} = \emptyset \text{ and}$ $A_{\alpha} \subset^{*} A_{\beta}, B_{\alpha} \subset^{*} B_{\beta}.$ If $\gamma = \omega_{1}$ we call *G* a *pre-gap*.

Define $\alpha \parallel \beta$ if $A_{\alpha} \cap B_{\beta} = \emptyset = B_{\alpha} \cap A_{\beta}$; and $\alpha \perp \beta$ if not $\alpha \parallel \beta$.

Pre-gap *G* is a *gap* if $\forall X \in [\omega_1]^{\omega_1} \exists \alpha, \beta \in X$ such that $\alpha \perp \beta$. Equivalently $\nexists C \subset \omega$ such that $(\forall \alpha \in \omega_1) A_\alpha \subset^* C$ and $C \cap B_\alpha =^* \emptyset$.

A gap *G* is *destructible* if $\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X$ such that $\alpha \parallel \beta$. Equivalently there is a c.c.c. (or just ω_1 -preserving) forcing such that *G* is not a gap in the extension.

A gap is *indestructible* if $(\exists X \in [\omega_1]^{\omega_1} \forall \alpha \neq \beta \in X) \alpha \perp \beta$.

Existence of gaps

An (indesctructible) gap exists in ZFC (Hausdorff).

All gaps are indesctructible assuming any of MA, PID, OCA.

How to get a destructible gap:

- Add a Cohen real.
- Add a gap with finite conditions.
- Construct one using \Diamond (Dow).

destructible/indesctructible gaps \simeq Suslin/special Aronszajn trees

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Existence of gaps

An (indesctructible) gap exists in ZFC (Hausdorff).

All gaps are indesctructible assuming any of MA, PID, OCA.

How to get a destructible gap:

- Add a Cohen real.
- Add a gap with finite conditions.
- Construct one using \Diamond (Dow).

destructible/indesctructible gaps \simeq Suslin/special Aronszajn trees

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Question

What about a gap added by countable approximations?

Forcing a gap with countable conditions

Let \mathbb{P} be the set of countable proto-gaps ordered by end-extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define *G* as the union of the generic filter.

Claim \mathbb{P} is σ -closed.

Claim

G is a gap.

Proposition

The gap G is destructible.

Forcing a gap with countable conditions

Let \mathbb{P} be the set of countable proto-gaps ordered by end-extension.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define *G* as the union of the generic filter.

Claim \mathbb{P} is σ -closed.

Claim

G is a gap.

Proposition The gap G is destructible.

Lemma G is sealing.

Lemma Sealing \Rightarrow destructible Let $G = (A_{\alpha}, B_{\alpha})_{\alpha < \gamma}$ be a proto-gap.

For $\alpha < \beta$, $n \in \omega$ define $\alpha \subset_n \beta$ if $(A_\alpha \setminus A_\beta) \cup (B_\alpha \setminus B_\beta) \subseteq n$ For $n \in \omega$, $x \subseteq n$ define $(n, x) \triangleleft \alpha$ if $A_\alpha \cap n \subseteq x$ and $B_\alpha \cap x = \emptyset$.

Set $E \subseteq \omega_1$ is evading if $(\forall \beta \in \omega_1 \exists \alpha \in E) \ \alpha \parallel \beta$ Gap *G* is sealing if for each evading $E \subseteq \omega_1$ $\exists \delta \in \omega_1 \exists^{\infty} n \in \omega \ \forall x \subseteq n \exists \alpha \in E \cap \delta$ such that $(n, x) \triangleleft \alpha$ and $\alpha \subset_n \delta$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $G = (A_{\alpha}, B_{\alpha})_{\alpha < \gamma}$ be a proto-gap.

For $\alpha < \beta$, $n \in \omega$ define $\alpha \subset_n \beta$ if $(A_\alpha \setminus A_\beta) \cup (B_\alpha \setminus B_\beta) \subseteq n$ For $n \in \omega$, $x \subseteq n$ define $(n, x) \triangleleft \alpha$ if $A_\alpha \cap n \subseteq x$ and $B_\alpha \cap x = \emptyset$.

Set $E \subseteq \omega_1$ is evading if $(\forall \beta \in \omega_1 \exists \alpha \in E) \ \alpha \parallel \beta$ Gap *G* is sealing if for each evading $E \subseteq \omega_1$ $\exists \delta \in \omega_1 \exists^{\infty} n \in \omega \ \forall x \subseteq n \exists \alpha \in E \cap \delta$ such that $(n, x) \triangleleft \alpha$ and $\alpha \subset_n \delta$.

Lemma

Sealing \Rightarrow destructible.

Suppose $E \in [\omega_1]^{\omega_1}$ is such that $(\forall \alpha \neq \beta \in E) \alpha \perp \beta$. WLOG assume E is \subseteq -maximal with this property $\Rightarrow E$ is evading. Take $\delta \in \omega_1$ as in the definition of sealing. Since $|E| = \omega_1$, take $\beta \in E \setminus \delta$. There is $n \in \omega$, $\alpha \in E \cap \delta$ such that $\alpha \subset_n \delta \subset_n \beta$ and $(n, n \cap A_\beta) \triangleleft \alpha \Rightarrow \alpha \parallel \beta$.

Set $E \subseteq \omega_1$ is evading if $(\forall \beta \in \omega_1 \exists \alpha \in E) \alpha \parallel \beta$ Gap *G* is sealing if for each evading $E \subseteq \omega_1$ $\exists \delta \in \omega_1 \exists^{\infty} n \in \omega \, \forall x \subseteq n \exists \alpha \in E \cap \delta$ such that $(n, x) \triangleleft \alpha$ and $\alpha \subset_n \delta$.

Lemma

The generic gap G is sealing. Suppose $p \vdash E$ is evading. Fix $M \prec H(\theta)$ countable elementary submodel; $E, p \in M$. Let $\delta = M \cap \omega_1$.

Extend p in ω -many steps to arrange that

 $\exists^{\infty} n \in \omega \, \forall x \subseteq n \, \exists \alpha \in E \cap \delta \text{ such that } (n, x) \triangleleft \alpha \text{ and } \alpha \subset_n \delta.$

Question Find a reasonable construction of a destructible gap under \Diamond (Dow).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○