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Theorem 1 (Kunen)

It is consistent that there is a non-principal ultrafilter U on ω which is generated
by fewer than c-many sets.

To do that, Kunen iterated the Mathias forcing relative to an ultrafilter U,
denoted by MU :

Definition 2

Conditions of MU are pairs (a,A) ∈ [ω]<ω × U. The order is defined by
(a,A) ≤ (b,B) is b v a, a \ b ⊆ B and A ⊆ B.

MU is a ccc forcing which adds a set x which ⊆∗-generates U.

Question (Kunen)

Is it consistent to have a uniform ultrafilter on ℵ1 which is generated by fewer
than 2ℵ1-many sets?
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Kunen’s Problem at a measurable cardinal

Question
Is it consistent to have a measurable cardinal κ, carrying a uniform κ-complete
ultrafilter which is generated by fewer than 2κ-many sets?

In an unpublished work, Carlson gave a positive answer from a supercompact.

Definition 3 (Generalized Mathias forcing (aka long Prikry))

Let U be a κ-complete ultrafilter over κ. Conditions are pairs (a,A) ∈ [κ]<κ × U,
the order is similar to the countable case.

This forcing is κ-closed and κ+-cc. It adds a set x which ⊆∗-generates U, but the
proof that the iteration works has extra layers of complications.

Question
What is the consistency strength of having a uniform κ-complete ultrafilter over
κ > ω which is generated by fewer than 2κ-many sets? Is it more exactly
o(κ) = κ++?
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The Tukey order
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Definition 4 (Tukey [5] ’40)

Let (P,≤P), (Q,≤Q) be two partially ordered (directed) sets. Define

(P,≤P) ≤T (Q,≤Q) iff ∃ a Tukey map f : P → Q.

Where Tukey means ∀B ⊆ P unbounded, f [B] ⊆ Q is unbounded. Define

(P,≤P) ≡T (Q,≤Q) iff (P,≤P) ≤T (Q,≤Q) and (Q,≤Q) ≤T (P,≤P).

⇒ We focus on the posets (U,⊇), (U,⊇∗), where U is an ultrafilter.

⇒ Throughout this talk, assume that U is a uniform ult over a regular κ.

⇒ (U,⊇) ≤T (V ,⊇) iff there is a monotone map f : V → U such that Im(f ) is
cofinal in U (i.e. ∀X ∈ U∃Y ∈ V f (Y ) ⊆ X ).

⇒ U ≤RK V ⇒ (U,⊇) ≤T (V ,⊇) (same with ⊇∗).

⇒ Studied mostly for ultrafilters on ω.

Definition 5 (The Tukey Spectrum (aka the Point Spectrum))

SpT (U) = {λ ∈ Reg | λ ≤T U}.
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Definition 6 (Cohesive Ultrafilters (aka Galvin’s Property))

An ultrafilter U is (λ, µ)-cohesive iff ∀A ∈ [U]λ∃B ∈ [A]µ,
⋂
B ∈ U.

Theorem 7

Suppose that either λ = µ = cf (µ) or λ<µ = λ. TFAE for any ultrafilter U:

1 (U,⊇) is ≤T -above every µ-directed set of cardinality ≤ λ.

2 ([λ]<µ,⊆) ≤T (U,⊇).

3 U is not (λ, µ)-cohesive.

Corollary 8

SpT (U) = {λ ∈ Reg | U is not (λ, λ)-cohesive.

Theorem 9
1 Assume κ<κ = κ, ∀U normal on κ is (κ+, κ)-cohesive. [Galvin 73’]

2 Assume 2κ = κ+, ∀U uniform on κ is not (κ+, κ+)-cohesive. [Kanamori 78’]

Gained renewed interest due to their relevance to Prikry-type forcing.
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Kanamori’s question

Question (Kanamori)

Is it consistent to have a κ-complete ultrafilter U over a measurable cardinal κ
which is (κ+, κ+)-cohesive?

Question (Kanamori-Reformulated)

Is it consistent to have a κ-complete ultrafilter U over a measurable cardinal κ
such that κ+ /∈ SpT (U)?

The results in the next few slides appear in:

Benhamou, T., On Ultrapowers and Cohesive Ultrafilters, arXiv:2410.06275 (2024)
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The Tukey Spectrum of an ultrafilter

Theorem 10
Let U be an ultrafilter and λ 6= κ be a regular cardinal. TFAE:

1 λ ∈ SpT (U) (i.e. (U,⊇) is not (λ, λ)-cohesive).

2 (U,⊇∗) is not (λ, λ)-cohesive, i.e. ∃〈Aα | α < λ〉 ⊆ U such that ∀I ∈ [λ]λ,
{Ai | i ∈ I} has no pseudo intersection in U.

3 There is X ∈ MU such thata MU |= j ′′Uλ ⊆ X and for any set I of size λ,
MU |= jU(I ) 6⊆ X .

aMore precisely, for all i < λ, MU |= jU(i) ∈ X .

Corollary 11

SpT (U) = SpT (U,⊇∗) ∪ {κ}.
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The higher part of the spectrum

The character of an ultrafilter U is ch(U) = min{|B| | B is cofinal in (U,⊇∗)}.

Theorem 12

ch(U) is an upper bound for SpT (U).

Theorem 13

cf (ch(U)) ∈ SpT (U). Namely U is not (cf (ch(U)), cf (ch(U)))-cohesive.

This improves Kanamori’s theorem to the case where 2κ ≥ κ+.

Corollary 14

If ch(U) is regular then ch(U) = max(SpT (U)).

Question

Is it ZFC provable that ch(U) = sup(SpT (U))?

A positive answer would give a nice characterization of ch(U) via ultrapowers.
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The depth spectrum and the lower part

A U-tower of length λ is a seq. 〈Xi | i < λ〉 which is ⊆∗-decreasing and there is no
A ∈ U such that ∀i < λ,A ⊆∗ Xi . Such A is called a U-large pseudo-intersection

Definition 15

SpDp(U) = {λ ∈ Reg | ∃U-tower of length λ}.

Proposition 1

SpDp(U) ⊆ SpT (U)

Let t(U) = min(SpDp(U))
p(U) = min{λ | ∃A ∈ [U]λ with no U-large pseudo intersection}.

Theorem 16
Let U be a uniform ultrafilter over κ then:

1 min(SpT (U)) = crit(jU)=the completeness degree of U.

2 min(SpT (U,⊆∗)) = p(U) = t(U)

(Recall SpT (U) = SpT (U,⊇∗) ∪ {κ})

Benhamou, T. Rutgers Arctic Set Theory Workshop, Feb 2025 February 24, 2025 10 / 21



Examples
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Tukey top ultrafilters

Definition 17

A κ-complete non-(κ, 2κ)-cohesive ultrafilter over κ is called κ-Tukey-top.

ω-Tukey-top is just Tukey-top. Such ultrafilters are maximal in the Tukey order
among all κ-complete ultrafilters, and therefore have maximal complexity.

Proposition 2

If U is κ-Tukey-top then SpT (κ) = [κ, 2κ] ∩ Reg .

Question
Do κ-Tukey top ultrafilters even exist?

⇒ There exists a Tukey-top ultrafilter on ω. (Isbell [3] ’65, Juhász [4])

⇒ Consistently yes on a measurable (B.-Gitik [2] ’22)

⇒ Consistently no on a measurable, L[U] (B.-Gitik [1] ’21)

⇒ What about Spdp(U)?
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In a Cohen model

and friends (Easton, Woodin...)

Theorem 18

Assume GCH and let κ be λ-strong for some regular λ > κ and let V [G ] be the
usual generic extension for adding λ-many cohen functions to κ (with preparation).
Then in V [G ], 2κ = λ, and for any uniform κ-complete ultrafilter U over κ:

1 SpT (U) = [κ, λ] ∩ Reg

2 SpDp(U) ⊆ {κ, κ+}.

In particular, we see that the Depth and Tukey spectrum are different. In a joint
work with Gitik, we showed that this model has a κ-Tukey-top ultrafilter.

Question
What about ultrafilters in the κ-Sacks model? The κ-Miller model?

Question
Can the spectrum be non-convex?
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Simple Pλ-points

An ultrafilter U over κ is a Pλ-point if (U,⊇∗) is λ-directed. Equivalently, if
p(U) ≥ λ. For a regular λ, a simple Pλ-point is an ultrafilter U with a generating
set of the form 〈Xi | i < λ〉 which is ⊆∗-decreasing.

Corollary 19

U is a simple Pλ-point if and only if p(U) = λ = ch(U) if and only if
SpT (U) \ {κ} = {λ}.

Theorem 20 (B.-Goldberg 25+)

For κ regular uncountable, if there is a simple Pλ-point then
λ = bκ = dκ = sκ = rκ = uκ

In particular, there is only one λ such that there is a simple Pλ-point. This is in
sharp contrast to ω, where it was recently proven by Brüninger–Mildenberger that
it is consistent to have a simple-Pℵ1 and a simple-Pℵ2 -point.

Benhamou, T. Rutgers Arctic Set Theory Workshop, Feb 2025 February 24, 2025 14 / 21



Back to the Mathias forcing

Theorem 21
Let λ > κ be regular. The following are equiconsistenct:

1 There is a κ-complete ultrafilter U such that min(SpT (U) \ {κ}) ≥ λ.

2 There is a Pλ-point.

3 There is a simple Pλ-point.

Corollary 22

Starting from a supercompact cardinal, it is consistent to have a κ-complete U
such that κ+ /∈ SpT (U) (A positive answer to Kanamori’s question).
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Consistency strength

Theorem 23 (B.-Goldberg 25+)

If there is a Pλ-point for λ ≥ κ++ then there is an inner model with a 2-strong
cardinal.

Theorem 24 (B.-Goldberg 25+)

If V [G ] is a generic extension of V where κ is measurable and there is a
V -generic set for MU , U ∈ V being a κ-complete ultrafilter, then there is an inner
model with a µ-measurable.
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Rectangular Mathias

The following result is joint with Cummings, Goldberg, Hayut and Poveda:

Theorem 25 (25+)

Assume that κ is indestructible supercompact or κ = ω. Then for any λ1 < λ2
regular, there is a cofinality preserving generic extension admitting an ultrafilter U
generated by a set B such that (B,⊇∗) ' λ1 × λ2. In particular
SpT (U) \ {κ} = SpDp(U) = {λ1, λ2}.

Following the AIM forcing, we call such an ultrafilter a simple AIM ultrafilter.

Corollary 26

The spectrum can be a non-convex set.
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Proof idea

Force a matrix/rectangular iteration of Mathias forcing, that is,
〈P<(α,β), Q̇α,β | α < ω1, β < ω3〉. Such that for each α, β,

1 P<(α,β) consists of all finitely supported functions p such that
dom(p) ⊆ α + 1× β + 1 \ {(α, β)}, and

2 for each (α′, β′) < (α, β), P<(α′,β′) p(α′, β′) ∈ Q̇α,β .

3 Q̇α,β is a P<(α,β)-name for MU̇α,β
.

4 U̇α,β is a Pα,β-name for a carefully chosen ultrafilter containing xα′,β′ - the
Mathias real added by MUα′,β′ for all (α′, β′) < (α, β).
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Crucial steps of the proof:

1 Showing that
⋃

(α,β) Uα,β =: U is an ultrafilter on ω. (easy using chain

condition)

2 B = {xα,β | α < ω1, β < ω3} generates U. (easy using chain condition)

3 Showing (B,⊇∗) ' ω1 × ω3 (believable, follows from ”mutual genericity”).

4 The difficulty: at stage (α, β), when we choose the ultrafilter Uα,β , how to
guarantee that the xα′,β′ ’s have the finite intersection property?

To see item 4 (and more!) look for our upcoming preprint on arXiv!
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Thank you for your attention!
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