Generating Ultrafilters

Tom Benhamou

Department of Mathematics, Rutgers University

This research was supported by the National Science Foundation under Grant No. DMS-2346680

February 24, 2025

・ロト ・日下・ ・ ヨト・

Theorem 1 (Kunen)

It is consistent that there is a non-principal ultrafilter U on ω which is generated by fewer than c-many sets.

To do that, Kunen iterated the *Mathias forcing relative to an ultrafilter U*, denoted by \mathbb{M}_U :

Definition 2

Conditions of \mathbb{M}_U are pairs $(a, A) \in [\omega]^{<\omega} \times U$. The order is defined by $(a, A) \leq (b, B)$ is $b \sqsubseteq a$, $a \setminus b \subseteq B$ and $A \subseteq B$.

 \mathbb{M}_U is a ccc forcing which adds a set x which \subseteq^* -generates U.

Question (Kunen)

Is it consistent to have a uniform ultrafilter on \aleph_1 which is generated by fewer than 2^{\aleph_1} -many sets?

イロト イヨト イヨト イヨ

Question

Is it consistent to have a measurable cardinal κ , carrying a uniform κ -complete ultrafilter which is generated by fewer than 2^{κ} -many sets?

In an unpublished work, Carlson gave a positive answer from a supercompact.

Definition 3 (Generalized Mathias forcing (aka long Prikry))

Let U be a κ -complete ultrafilter over κ . Conditions are pairs $(a, A) \in [\kappa]^{<\kappa} \times U$, the order is similar to the countable case.

This forcing is κ -closed and κ^+ -cc. It adds a set x which \subseteq^* -generates U, but the proof that the iteration works has extra layers of complications.

Question

What is the consistency strength of having a uniform κ -complete ultrafilter over $\kappa > \omega$ which is generated by fewer than 2^{κ} -many sets? Is it more exactly $o(\kappa) = \kappa^{++}$?

イロト イヨト イヨト イヨ

The Tukey order

メロト スピト メヨト メヨト

Definition 4 (Tukey [5] '40)

Let $(P, \leq_P), (Q, \leq_Q)$ be two partially ordered (directed) sets. Define

 $(P, \leq_P) \leq_T (Q, \leq_Q)$ iff \exists a Tukey map $f : P \to Q$.

Where Tukey means $\forall B \subseteq P$ unbounded, $f[B] \subseteq Q$ is unbounded. Define

 $(P,\leq_P)\equiv_T (Q,\leq_Q) \text{ iff } (P,\leq_P)\leq_T (Q,\leq_Q) \text{ and } (Q,\leq_Q)\leq_T (P,\leq_P).$

- \Rightarrow We focus on the posets $(U, \supseteq), (U, \supseteq^*)$, where U is an ultrafilter.
- \Rightarrow Throughout this talk, assume that U is a uniform ult over a regular κ .
- ⇒ $(U, \supseteq) \leq_{T} (V, \supseteq)$ iff there is a monotone map $f : V \to U$ such that Im(f) is cofinal in U (i.e. $\forall X \in U \exists Y \in V f(Y) \subseteq X$).
- $\Rightarrow U \leq_{RK} V \Rightarrow (U, \supseteq) \leq_T (V, \supseteq) \text{ (same with } \supseteq^*\text{)}.$
- \Rightarrow Studied mostly for ultrafilters on ω .

Definition 5 (The Tukey Spectrum (aka the Point Spectrum))

$$Sp_T(U) = \{\lambda \in Reg \mid \lambda \leq_T U\}.$$

Definition 6 (Cohesive Ultrafilters (aka Galvin's Property))

An ultrafilter U is (λ, μ) -cohesive iff $\forall \mathcal{A} \in [U]^{\lambda} \exists \mathcal{B} \in [\mathcal{A}]^{\mu}, \ \bigcap \mathcal{B} \in U.$

Theorem 7

Suppose that either $\lambda = \mu = cf(\mu)$ or $\lambda^{<\mu} = \lambda$. TFAE for any ultrafilter U:

● (U, \supseteq) is \leq_T -above every μ -directed set of cardinality $\leq \lambda$.

$$([\lambda]^{<\mu},\subseteq)\leq_T (U,\supseteq).$$

3 U is not (λ, μ) -cohesive.

Corollary 8

$$Sp_T(U) = \{\lambda \in Reg \mid U \text{ is not } (\lambda, \lambda)\text{-cohesive.}$$

Theorem 9

() Assume $\kappa^{<\kappa} = \kappa$, $\forall U$ normal on κ is (κ^+, κ) -cohesive. [Galvin 73']

3 Assume $2^{\kappa} = \kappa^+$, $\forall U$ uniform on κ is not (κ^+, κ^+) -cohesive. [Kanamori 78']

Gained renewed interest due to their relevance to Prikry-type forcing.

Question (Kanamori)

Is it consistent to have a κ -complete ultrafilter U over a measurable cardinal κ which is (κ^+, κ^+) -cohesive?

Question (Kanamori-Reformulated)

Is it consistent to have a κ -complete ultrafilter U over a measurable cardinal κ such that $\kappa^+ \notin Sp_T(U)$?

The results in the next few slides appear in:

Benhamou, T., On Ultrapowers and Cohesive Ultrafilters, arXiv:2410.06275 (2024)

A D F A A F F A

Theorem 10

Let U be an ultrafilter and $\lambda \neq \kappa$ be a regular cardinal. TFAE:

- **●** $\lambda \in Sp_T(U)$ (i.e. (U, \supseteq) is not (λ, λ) -cohesive).
- Output: (U, ⊇*) is not (λ, λ)-cohesive, i.e. ∃⟨A_α | α < λ⟩ ⊆ U such that ∀I ∈ [λ]^λ, {A_i | i ∈ I} has no pseudo intersection in U.
- There is $X \in M_U$ such that $M_U \models j''_U \lambda \subseteq X$ and for any set I of size λ , $M_U \models j_U(I) \not\subseteq X$.

^aMore precisely, for all $i < \lambda$, $M_U \models j_U(i) \in X$.

Corollary 11

$$Sp_T(U) = Sp_T(U, \supseteq^*) \cup \{\kappa\}.$$

イロト イヨト イヨト イ

The higher part of the spectrum

The character of an ultrafilter U is $\mathfrak{ch}(U) = \min\{|\mathcal{B}| \mid \mathcal{B} \text{ is cofinal in } (U, \supseteq^*)\}.$

Theorem 12

 $\mathfrak{ch}(U)$ is an upper bound for $Sp_T(U)$.

Theorem 13

 $cf(\mathfrak{ch}(U)) \in Sp_T(U)$. Namely U is not $(cf(\mathfrak{ch}(U)), cf(\mathfrak{ch}(U)))$ -cohesive.

This improves Kanamori's theorem to the case where $2^{\kappa} \ge \kappa^+$.

Corollary 14

If $\mathfrak{ch}(U)$ is regular then $\mathfrak{ch}(U) = \max(Sp_T(U))$.

Question

Is it ZFC provable that $\mathfrak{ch}(U) = \sup(Sp_T(U))$?

A positive answer would give a nice characterization of $\mathfrak{ch}(U)$ via ultrapowers.

Benhamou, T. Rutgers

The depth spectrum and the lower part

A *U*-tower of length λ is a seq. $\langle X_i \mid i < \lambda \rangle$ which is \subseteq^* -decreasing and there is no $A \in U$ such that $\forall i < \lambda, A \subseteq^* X_i$. Such A is called a *U*-large pseudo-intersection

Definition 15

 $Sp_{Dp}(U) = \{\lambda \in Reg \mid \exists U \text{-tower of length } \lambda\}.$

Proposition 1

 $Sp_{Dp}(U) \subseteq Sp_T(U)$

Let $\mathfrak{t}(U) = \min(Sp_{Dp}(U))$ $\mathfrak{p}(U) = \min\{\lambda \mid \exists A \in [U]^{\lambda} \text{ with no } U\text{-large pseudo intersection}\}.$

Theorem 16

Let U be a uniform ultrafilter over κ then:

•
$$\min(Sp_T(U)) = crit(j_U) = the completeness degree of U.$$

$$one min(Sp_T(U,\subseteq^*)) = \mathfrak{p}(U) = \mathfrak{t}(U)$$

$$(\textit{Recall } \mathsf{Sp}_{\mathsf{T}}(\mathsf{U}) = \mathsf{Sp}_{\mathsf{T}}(\mathsf{U}, \supseteq^*) \cup \{\kappa\})$$

Examples

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Tukey top ultrafilters

Definition 17

A κ -complete non- $(\kappa, 2^{\kappa})$ -cohesive ultrafilter over κ is called κ -Tukey-top.

 ω -Tukey-top is just Tukey-top. Such ultrafilters are maximal in the Tukey order among all κ -complete ultrafilters, and therefore have maximal complexity.

Proposition 2

If U is κ -Tukey-top then $Sp_T(\kappa) = [\kappa, 2^{\kappa}] \cap Reg$.

Question

Do κ -Tukey top ultrafilters even exist?

- \Rightarrow There exists a Tukey-top ultrafilter on ω . (Isbell [3] '65, Juhász [4])
- \Rightarrow Consistently yes on a measurable (B.-Gitik [2] '22)
- \Rightarrow Consistently no on a measurable, L[U] (B.-Gitik [1] '21)
- \Rightarrow What about $Sp_{dp}(U)$?

< □ > < □ > < □ > < □ > < □ >

In a Cohen model

・ロト・日本・モト・モー ショー ショル

Theorem 18

Assume GCH and let κ be λ -strong for some regular $\lambda > \kappa$ and let V[G] be the usual generic extension for adding λ -many cohen functions to κ (with preparation). Then in V[G], $2^{\kappa} = \lambda$, and for any uniform κ -complete ultrafilter U over κ :

•
$$Sp_T(U) = [\kappa, \lambda] \cap Reg$$

$$I Sp_{Dp}(U) \subseteq \{\kappa, \kappa^+\}.$$

In particular, we see that the Depth and Tukey spectrum are different. In a joint work with Gitik, we showed that this model has a κ -Tukey-top ultrafilter.

Question

What about ultrafilters in the κ -Sacks model? The κ -Miller model?

Question

Can the spectrum be non-convex?

・ロト ・日下・ ・ ヨト・

An ultrafilter U over κ is a P_{λ} -point if (U, \supseteq^*) is λ -directed. Equivalently, if $\mathfrak{p}(U) \geq \lambda$. For a regular λ , a simple P_{λ} -point is an ultrafilter U with a generating set of the form $\langle X_i | i < \lambda \rangle$ which is \subseteq^* -decreasing.

Corollary 19

U is a simple P_{λ} -point if and only if $\mathfrak{p}(U) = \lambda = \mathfrak{ch}(U)$ if and only if $Sp_{\mathcal{T}}(U) \setminus \{\kappa\} = \{\lambda\}.$

Theorem 20 (B.-Goldberg 25+)

For κ regular uncountable, if there is a simple P_{λ} -point then $\lambda = \mathfrak{b}_{\kappa} = \mathfrak{d}_{\kappa} = \mathfrak{s}_{\kappa} = \mathfrak{n}_{\kappa}$

In particular, there is only one λ such that there is a simple P_{λ} -point. This is in sharp contrast to ω , where it was recently proven by Brüninger–Mildenberger that it is consistent to have a simple- P_{\aleph_1} and a simple- P_{\aleph_2} -point.

イロト イヨト イヨト イヨト

Theorem 21

Let $\lambda > \kappa$ be regular. The following are equiconsistenct:

- There is a κ -complete ultrafilter U such that $\min(Sp_T(U) \setminus \{\kappa\}) \ge \lambda$.
- **2** There is a P_{λ} -point.
- **③** There is a simple P_{λ} -point.

Corollary 22

Starting from a supercompact cardinal, it is consistent to have a κ -complete U such that $\kappa^+ \notin Sp_T(U)$ (A positive answer to Kanamori's question).

A D F A A F F A

Theorem 23 (B.-Goldberg 25+)

If there is a P_{λ} -point for $\lambda \ge \kappa^{++}$ then there is an inner model with a 2-strong cardinal.

Theorem 24 (B.-Goldberg 25+)

If V[G] is a generic extension of V where κ is measurable and there is a V-generic set for \mathbb{M}_U , $U \in V$ being a κ -complete ultrafilter, then there is an inner model with a μ -measurable.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem 25 (25+)

Assume that κ is indestructible supercompact or $\kappa = \omega$. Then for any $\lambda_1 < \lambda_2$ regular, there is a cofinality preserving generic extension admitting an ultrafilter U generated by a set \mathcal{B} such that $(\mathcal{B}, \supseteq^*) \simeq \lambda_1 \times \lambda_2$. In particular $Sp_T(U) \setminus \{\kappa\} = Sp_{Dp}(U) = \{\lambda_1, \lambda_2\}$.

A D > A B > A B > A

Theorem 25 (25+)

Assume that κ is indestructible supercompact or $\kappa = \omega$. Then for any $\lambda_1 < \lambda_2$ regular, there is a cofinality preserving generic extension admitting an ultrafilter U generated by a set \mathcal{B} such that $(\mathcal{B}, \supseteq^*) \simeq \lambda_1 \times \lambda_2$. In particular $Sp_T(U) \setminus \{\kappa\} = Sp_{Dp}(U) = \{\lambda_1, \lambda_2\}$.

Following the AIM forcing,

• • • • • • • • • • •

Theorem 25 (25+)

Assume that κ is indestructible supercompact or $\kappa = \omega$. Then for any $\lambda_1 < \lambda_2$ regular, there is a cofinality preserving generic extension admitting an ultrafilter U generated by a set \mathcal{B} such that $(\mathcal{B}, \supseteq^*) \simeq \lambda_1 \times \lambda_2$. In particular $Sp_T(U) \setminus \{\kappa\} = Sp_{Dp}(U) = \{\lambda_1, \lambda_2\}$.

Following the AIM forcing, we call such an ultrafilter a simple AIM ultrafilter.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem 25 (25+)

Assume that κ is indestructible supercompact or $\kappa = \omega$. Then for any $\lambda_1 < \lambda_2$ regular, there is a cofinality preserving generic extension admitting an ultrafilter U generated by a set \mathcal{B} such that $(\mathcal{B}, \supseteq^*) \simeq \lambda_1 \times \lambda_2$. In particular $Sp_T(U) \setminus \{\kappa\} = Sp_{Dp}(U) = \{\lambda_1, \lambda_2\}$.

Following the AIM forcing, we call such an ultrafilter a simple AIM ultrafilter.

Corollary 26

The spectrum can be a non-convex set.

< □ > < □ > < □ > < □ > < □ >

Force a matrix/rectangular iteration of Mathias forcing, that is, $\langle \mathbb{P}_{<(\alpha,\beta)}, \dot{Q}_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3 \rangle$. Such that for each α, β ,

- $\mathbb{P}_{<(\alpha,\beta)}$ consists of all finitely supported functions p such that $dom(p) \subseteq \alpha + 1 \times \beta + 1 \setminus \{(\alpha,\beta)\}$, and
- $\textbf{ or each } (\alpha',\beta') < (\alpha,\beta), \Vdash_{\mathbb{P}_{<(\alpha',\beta')}} p(\alpha',\beta') \in \dot{Q}_{\alpha,\beta}.$

3
$$\dot{Q}_{lpha,eta}$$
 is a $\mathbb{P}_{<(lpha,eta)}$ -name for $\mathbb{M}_{\dot{U}_{lpha,eta}}$

*U*_{α,β} is a ℙ_{α,β}-name for a carefully chosen ultrafilter containing x_{α',β'}- the Mathias real added by M<sub>U_{α',β'} for all (α', β') < (α, β).

</sub>

< □ > < 同 > < 回 > < Ξ > < Ξ

・ロト ・日下・ ・ ヨト・

Showing that
$$\bigcup_{(\alpha,\beta)} U_{\alpha,\beta} =: U$$
 is an ultrafilter on ω .

メロト メポト メヨト メヨ

Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)

メロト メロト メヨトメ

Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)

メロト メロト メヨトメ

- Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)
- **2** $\mathcal{B} = \{x_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3\}$ generates U. (easy using chain condition)

Image: A math the second se

- Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)
- $S = \{ x_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3 \} \text{ generates } U. \text{ (easy using chain condition)}$
- **③** Showing $(\mathcal{B}, \supseteq^*) \simeq \omega_1 \times \omega_3$

A D > A B > A B > A

- Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)
- **2** $\mathcal{B} = \{x_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3\}$ generates U. (easy using chain condition)
- Showing $(\mathcal{B}, \supseteq^*) \simeq \omega_1 \times \omega_3$ (believable, follows from "mutual genericity").

Image: A math the second se

- Showing that U_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)
- **2** $\mathcal{B} = \{x_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3\}$ generates U. (easy using chain condition)
- Showing $(\mathcal{B}, \supseteq^*) \simeq \omega_1 \times \omega_3$ (believable, follows from "mutual genericity").
- The difficulty: at stage (α, β), when we choose the ultrafilter U_{α,β}, how to guarantee that the x_{α',β'}'s have the finite intersection property?

イロト イボト イヨト イヨ

- Showing that ⋃_(α,β) U_{α,β} =: U is an ultrafilter on ω. (easy using chain condition)
- **2** $\mathcal{B} = \{x_{\alpha,\beta} \mid \alpha < \omega_1, \beta < \omega_3\}$ generates U. (easy using chain condition)
- Showing $(\mathcal{B}, \supseteq^*) \simeq \omega_1 \times \omega_3$ (believable, follows from "mutual genericity").
- The difficulty: at stage (α, β), when we choose the ultrafilter U_{α,β}, how to guarantee that the x_{α',β'}'s have the finite intersection property?

To see item 4 (and more!) look for our upcoming preprint on arXiv!

イロト イヨト イヨト

Thank you for your attention!

メロト スピト メヨト メヨト

- Tom Benhamou and Moti Gitik, *Intermediate models of Magidor-Radin forcing-II*, Annals of Pure and Applied Logic **173** (2022), 103107.
- , On Cohen and Prikry forcing notions, The Journal of Symbolic Logic (2023), 1–47.
- John R. Isbell, *The category of cofinal types. II*, Transactions of the American Mathematical Society **116** (1965), 394–416.
- Istvan Juhász, *Remarks on a theorem of B. Pospíšil*, General Topology and its Relations to Modern Analysis and Algebra, Academia Publishing House of the Czechoslovak Academy of Sciences, Praha, 1967, pp. 205–206.
- John W. Tukey, *Convergence and uniformity in topology*, Princeton University Press, 1940.

*ロト *個ト * ヨト * ヨ