(Short) memory iterations and side conditions

David Asperó

University of East Anglia

Arctic Set Theory Workshop 7 Kilpisjärvi, February 2025

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Strong classical forcing axioms imply $2^{\aleph_0} = \aleph_2.$ For example PFA implies this.

On the other hand, Martin's Axiom is of course compatible with arbitrarily large continuum.

Certain forcing axioms in-between PFA and MA are known to be compatible with large continuum. More specifically:

(日) (日) (日) (日) (日) (日) (日)

Definition

(A.–Mota) A partial order \mathcal{Q} has the $\aleph_{1.5}$ –c.c. iff for every large enough cardinal θ there is a club $D \subseteq [H(\theta)]^{\aleph_0}$ such that for every finite $\mathcal{N} \subseteq D$, if $q \in \mathcal{Q} \cap N$ for some $N \in \mathcal{N}$ of minimal height δ_N within \mathcal{N} , then there is some $q^* \leq_{\mathcal{Q}} q$ such that q^* is (M, \mathcal{Q}) –generic for each $M \in \mathcal{N}$.

(日) (日) (日) (日) (日) (日) (日)

(The height of a model *N* is $\delta_N := N \cap \omega_1$.)

Fact

Every poset with the $\aleph_{1.5}$ -c.c. is proper and has the \aleph_2 -c.c.

Proof.

Properness is trivial (apply definition with $\mathcal{N} = \{N\}$).

ℵ₂-c.c.: Suppose $A = \{q_i : i < \lambda\}$ max. antichain, $\lambda \ge \omega_2$. For each *i* let N_i be model with A, $q_i \in N_i$. Since $\lambda \ge \omega_2$, there are $i_0 \neq i_1$ such that $\delta_{N_{i_0}} = \delta_{N_{i_1}}$ and $q_{i_0} \notin N_{i_1}$. Hence there is $q \le_{\mathcal{P}} q_{i_0}$ which is (N_{i_0}, \mathcal{Q}) -generic and (N_{i_1}, \mathcal{Q}) -generic. But qcannot be (N_{i_1}, \mathcal{Q}) -generic since $A \in N_{i_1}$ and $q_{i_0} \notin N_{i_1}$. Contradiction.

So we have that for each κ :

 $FA(\{Q : Q \text{ is proper and has the } \aleph_2\text{-c.c.}\})_{\kappa} \Rightarrow MA_{\kappa}^{1.5} \Rightarrow MA_{\kappa}.$

(日) (日) (日) (日) (日) (日) (日)

Definition Given a cardinal κ , MA^{1.5}_{κ} is the forcing axiom FA_{κ}(\aleph _{1.5}-c.c.).

Theorem (*A*.–*Mota*) (*GCH*) Given any infinite cardinal κ , there is a proper and \aleph_2 -c.c. forcing notion which forces $MA_{\kappa}^{1.5}$.

◆□ → ◆□ → ◆三 → ◆□ → ◆○ ◆

The forcing notion witnessing this theorem is a "finite-support" iteration ($\mathcal{P}_{\alpha} : \alpha \leq \kappa$) with symmetric systems of models with markers (N, ρ) as side conditions.

A condition p in \mathcal{P}_{α} is of the form $p = (F_p, \Delta_p)$.

- *F_p* is the *working part*; it is a finite function with dom(*F_p*) ⊆ α.
- Δ_p is the *side condition*.

 Δ_{ρ} is a set of models with markers (N, ρ) , where $N \preccurlyeq H(\kappa)$ is countable, $\rho \in N \cap (\alpha + 1)$, and

dom
$$(\Delta_{\rho}) = \{ N : (N, \rho) \in \Delta_{\rho} \text{ for some } \rho \}$$

is a symmetric system.

The set of ρ such that $(N, \rho + 1) \in \Delta_{\rho}$ is the set of stages at which *N* is to be seen as 'active'; any working part at any such ρ has to be forced to be $(N[\dot{G}_{\rho}], \dot{Q}_{\rho})$ -generic, for the relevant \dot{Q}_{ρ} .

The proof of properness of \mathcal{P}_{α} proceeds by induction, so we naturally require that

(1) If $(N, \rho) \in \Delta_{\rho}$ and $\bar{\rho} \in N \cap \rho$, then also $(N, \bar{\rho}) \in \Delta_{\rho}$.

At the limit stage α of the proof of properness for a relevant model N, and for a high enough stage $\alpha_0 \in N \cap \alpha$, working inside $N[\dot{G}_{\alpha_0}]$, we reflect the outside condition p and find a condition $\bar{p} \in N$. \bar{p} will typically have new points $\gamma > \alpha_0$ in its support, and we can easily arrange that $\gamma \notin M$ for any model $M \in N$ coming from Δ_p .

The amalgamating condition will need to provide a condition in \dot{Q}_{γ} which is $(N[\dot{G}_{\gamma}], \dot{Q}_{\gamma})$ -generic (since of course $(N, \gamma + 1) \in \Delta_{\rho}$), but also $(N'[\dot{G}_{\gamma}], \dot{Q}_{\gamma})$ -generic for all other $(N', \gamma + 1) \in \Delta_{\rho}$.

By the definition of $\aleph_{1.5}$ -c.c., this is in fact possible and the proof goes through.

On PFA(ω_1) and large continuum

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a cardinal κ , let PFA_{κ}(ω_1) be

 $\mathsf{FA}_{\kappa}(\{\mathcal{Q} \, : \, \mathcal{Q} \text{ proper}, \, |\mathcal{Q}| = \aleph_1\})$

Let also $PFA(\omega_1)$ be $PFA_{\omega_1}(\omega_1)$.

PFA(ω_1) can be easily forced over any model of GCH by a countable-support iteration of length ω_2 .

Question: Is PFA(ω_1) compatible with $2^{\aleph_0} > \aleph_2$?

Note: If we want to force $PFA(\omega_1)$, the construction with models with markers as side conditions we just sketched does not seem to work. The problem is precisely at the limit stage of the inductive proof of properness:

We may have more than one model N' of height δ_N such that $(N', \gamma + 1) \in \Delta_p$. Even if $N' \cong N$, which is part of the definition of symmetric system, it may be that $N'[\dot{G}_{\gamma}]$ and $N[\dot{G}_{\gamma}]$ are forced to be non-isomorphic, and even that

$$\{A \cap \delta_{N'} : A \in \mathcal{P}(\omega_1)^{N'[G_{\gamma}]}\}$$

and

$$\{A \cap \delta_N : A \in \mathcal{P}(\omega_1)^{N[\dot{G}_{\gamma}]}\}$$

are forced to be different. It may then not be possible to extend $\nu \in \delta_N$ to a condition which is $(N[\dot{G}_{\gamma}], \dot{Q}_{\gamma})$ -generic **and** $(N'[\dot{G}_{\gamma}], \dot{Q}_{\gamma})$ -generic.

Theorem (*A*.–Golshani) (GCH) For every given κ , there is a proper and \aleph_2 -c.c. poset forcing PFA_{κ}(ω_1).

The construction is again a finite-support iteration with systems of models with markers as side conditions, this time combined with the idea of Shelah's "memory iterations".

(日) (日) (日) (日) (日) (日) (日)

We circumvent the obstacle I pointed out by performing (0), $(1)^*$, and (2) below.

- (0) Given a stage α < κ, our book-keeping function φ : κ → H(κ) may feed us a sequence ⟨A_i : i < ω₁⟩ of antichains of P_α, each of size ≤ ℵ₁, such that U_{i<ω1}{i} × A_i is an object of interest (a suitable proper forcing on ω₁). We then associate to α sets U^α, U^α ∈ [α]^{≤ℵ1} given by
 - $\overline{\mathcal{U}}^{\alpha} = \bigcup \{ \operatorname{dom}(F_{\rho}) : p \in A_{i}^{\alpha}, i < \omega_{1} \} \cup \bigcup \{ N \cap \rho : (N, \rho) \in \Delta_{\rho}, p \in A_{i}^{\alpha}, i < \omega_{1} \} \text{ and }$

•
$$\mathcal{U}^{\alpha} = \overline{\mathcal{U}}^{\alpha} \cup \bigcup \{ \mathcal{U}^{\beta} : \beta \in \overline{\mathcal{U}}^{\alpha} \}.$$

(1)* We drop the requirement (1). [This was: If $(N, \rho) \in \Delta_{\rho}$ and $\bar{\rho} \in N \cap \rho$, then also $(N, \bar{\rho}) \in \Delta_{\rho}$.]

(日) (日) (日) (日) (日) (日) (日)

However, we insist that for any $(N, \alpha + 1) \in \Delta_p$, $(N, \rho) \in \Delta_p$ for every $\rho \in \mathcal{U}^{\alpha} \cap N$.

- (2) Given α, we define P_α ↾ U^α as the suborder of P_α consisting of those p ∈ P_α such that
 - dom $(F_p) \subseteq \mathcal{U}^{\alpha}$ and
 - $\rho \in \mathcal{U}^{\alpha}$ for all $(N, \rho) \in \Delta_{\rho}$.

(This is a complete suborder of \mathcal{P}_{α} .)

We then require that

 $\boldsymbol{\rho} \upharpoonright \mathcal{U}^{\alpha} = (\boldsymbol{F_{\rho}} \upharpoonright \mathcal{U}^{\alpha}, \{(\boldsymbol{M}, \rho) \in \Delta_{\rho}, \rho \in \mathcal{U}^{\alpha}\}) \in \mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}$

forces, in $\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}$, that $F_{p}(\nu)$ is $(N[\dot{G}_{\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}}], \dot{\mathcal{Q}}_{\alpha})$ -generic for all $(N, \alpha + 1) \in \Delta_{p}$.

 $[\dot{\mathcal{Q}}_{\alpha} \text{ is the forcing coded by } \bigcup_{i < \omega_1} \{i\} \times A_i, \text{ and is in fact a } \mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}\text{-name.}]$

< □ > < 圖 > < 直 > < 直 > 三 = の < ⊙

The crucial symmetry fact: If $(N_0, \alpha + 1)$, $(N_1, \alpha + 1) \in \Delta_p$, $\delta_{N_0} = \delta_{N_1}$, $s \in (\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}) \cap N_0$, and $p \upharpoonright \mathcal{U}^{\alpha} \leq_{\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}} s$, then

$$p \upharpoonright \mathcal{U}^{lpha} \Vdash_{\mathcal{P}_{lpha} \upharpoonright \mathcal{U}^{lpha}} \Psi_{\mathcal{N}_0,\mathcal{N}_1}(s) \in \dot{G}_{\mathcal{P}_{lpha} \upharpoonright \mathcal{U}^{lpha}}$$

(where $\Psi_{N_0,N_1}: N_0 \longrightarrow N_1$ is the isomorphism between these models).

As a result, $p \upharpoonright U^{\alpha}$ forces that

$$\{\boldsymbol{A} \cap \delta_{N_0} : \boldsymbol{A} \in \mathcal{P}(\omega_1)^{N_0[\boldsymbol{G}_{\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}}]}\} =$$

$$\{\boldsymbol{A} \cap \delta_{\boldsymbol{N}_1} : \boldsymbol{A} \in \mathcal{P}(\omega_1)^{\boldsymbol{N}_1[\boldsymbol{G}_{\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}}]}\}$$

and so $p \upharpoonright U^{\alpha}$ forces that if a condition is $(N_0[\dot{G}_{\mathcal{P}_{\alpha}\upharpoonright U^{\alpha}}], \dot{\mathcal{Q}}_{\alpha})$ -generic, then it is also $(N_1[\dot{G}_{\mathcal{P}_{\alpha}\upharpoonright U^{\alpha}}], \dot{\mathcal{Q}}_{\alpha})$ -generic. \Box

Incidentally:

A standard argument using the above property shows that $\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}$ forces CH:

Suppose \dot{r}_{ξ} are $\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}$ -names for reals, $\xi < \omega_2$, and $p \Vdash_{\mathcal{P}_{\alpha} \upharpoonright \mathcal{U}^{\alpha}} \dot{r}_{\xi_0} \neq \dot{r}_{\xi_1}$ for all $\xi_0 \neq \xi_1$. Find suitable models N_{ξ} containing p, \dot{r}_{ξ} .

By CH, find $\xi_0 \neq \xi_1$ such that

$$(N_{\xi_0}; \in, \dot{r}_{\xi_0}, \ldots) \cong (N_{\xi_1}; \in, \dot{r}_{\xi_1}, \ldots)$$

and the isomorphism fixes $N_{\xi_0} \cap N_{\xi_1}$.

Extend the side condition Δ_p of p by adding (N_{ξ_0}, ρ_0) and (N_{ξ_1}, ρ_1) for all $\rho_0 \in N_{\xi_0} \cap \mathcal{U}^{\alpha}$ and $\rho_1 \in N_{\xi_1} \cap \mathcal{U}^{\alpha}$.

The resulting condition then forces $\dot{r}_{\xi_0} = \dot{r}_{\xi_1}$ by the crucial symmetry fact. Contradiction.

An extension for Prikry-type proper forcing

Let us say that Q is a *Prikry-type* partial order in case there is a set Res(Q) such that:

- Q is a partial order with conditions being ordered pairs (s, A) with A ∈ Res(Q);
- (2) for all A_0 , $A_1 \in \text{Res}(\mathcal{Q})$, $A_0 \cap A_1 \in \text{Res}(\mathcal{Q})$;
- (3) for every $(s, A_0) \in Q$ and every $A_1 \in \text{Res}(Q)$, if $A_1 \subseteq A_0$, then (s, A_1) is a condition in Q extending (s, A_0) .

In the above situation we will sometimes refer to *s* as the *stem* of (s, A) and to *A* as its *reservoir*. Given a set *X*, we will say that a Prikry-type partial order Q has *stems in X* if for all $(s, A) \in Q, s \in X$.

- Prikry forcing on a measurable cardinal κ is isomorphic to a Prikry-type forcing with stems in κ.
- Mathias forcing is not isomorphic to a Prikry-type forcing with stems in ω (the reservoirs are not closed under intersections).
- The natural forcing *Q* for shooting a club diagonalising the club filter is isomorphic to a Prikry-type forcing with stems in 2^{ℵ0}: *Q* is the partial order of pairs (*x*, *C*), where

(日) (日) (日) (日) (日) (日) (日)

(a) x is a closed countable subset of ω_1 and

(b) C is a club of ω_1 ,

and where (x_1, C_1) extends (x_0, C_0) if

(i) x_1 is an end-extension of x_0 ,

(ii)
$$C_1 \subseteq C_0$$
, and

(iii)
$$x_1 \setminus x_0 \subseteq C_0$$
.

A forcing axiom-like principle: ω_1 -Prikry-type BPFA⁺⁺ from NS_{ω_1}-correct ground models of CH

An inner model *M* is NS_{ω_1} -correct iff for every $S \in \mathcal{P}(\omega_1)^M$, if $M \models S$ is stationary, then *S* is stationary.

Local⁺⁺ CH: Every set in $H(\omega_2)$ is in some NS_{ω_1}-correct ground model satisfying CH.

Note: Local⁺⁺ CH fails if NS_{ω_1} is \aleph_1 -dense. (Thanks to Andreas Lietz for pointing this out.)

(日) (日) (日) (日) (日) (日) (日)

Definition

 ω_1 -Prikry-type BPFA⁺⁺ from NS $_{\omega_1}$ -correct ground models of CH, CH-Pr $_{\omega_1}$ -BPFA⁺⁺, is the conjunction of the following two statements.

- (1) Local⁺⁺ CH
- (2) Suppose φ(x, y) is a Σ₀ formula in the language of set theory with a unary predicate. Suppose for every a ∈ H(ω₂) and every NS_{ω1}-correct ground model M such that M ⊨ CH, if a ∈ M, then in M it holds that there is a proper Prikry-type forcing notion Q with stems in ω₁ such that Q forces (H(ω₂); ∈, NS_{ω1}) ⊨ ∃yφ(a, y).

(日) (日) (日) (日) (日) (日) (日)

Then $(H(\omega_2); \in, NS_{\omega_1}) \models \forall x \exists y \varphi(x, y).$

A variant of the construction for the first theorem yields the following:

Theorem

(A.–Golshani) Assume GCH. Let $\kappa \geq \aleph_2$ be a regular cardinal. Then there is a proper partial order \mathcal{P} with the \aleph_2 -c.c. and forcing the following statements.

- (1) $2^{\aleph_0} = \kappa$
- (2) $PFA(\aleph_1)_{<\kappa}$
- (3) CH- Pr_{ω_1} -BPFA⁺⁺

This variant incorporates decorations at every stage α . This makes sure that for every $\alpha < \kappa$,

$$\{\delta_{\mathcal{M}}\,:\,(\mathcal{M},lpha+1)\in\Delta_{\mathcal{P}} ext{ for some }\mathcal{P}\in\dot{\mathcal{G}}\}$$

is forced to be a club of ω_1 . This ensures that every stationary subset in any relevant intermediate inner model of CH is NS_{ω_1} -correct.

Consequences of CH-Pr_{ω_1}-BPFA⁺⁺

- (1) Baumgartner's Axiom for \aleph_1 -dense sets of reals
- (2) OCA(ℵ₁) (i.e., Todorčević's Open Colouring Axiom for sets of reals of size ℵ₁)
- (3) Measuring
- (4) The P-ideal Dichotomy for \aleph_1 -generated ideals on ω_1
- (5) OCA_{ARS}

Hence, all these statements are simultaneously compatible with arbitrarily large continuum.

Gilton-Neeman build a model of OCA_{ARS} in which $2^{\aleph_0} = \aleph_3$. Their method doesn't work to yield models of $2^{\aleph_0} > \aleph_3$ and they ask for the consistency of OCA_{ARS} + $2^{\aleph_0} > \aleph_3$. Our results answer their question. All these statements follow in fact from the weaker form of CH-Pr_{ω_1}-BPFA⁺⁺ (call it CH-Pr_{ω_1}-BPFA) in which we

- wave the requirement that the relevant ground models be $\mathrm{NS}_{\omega_1}\text{-}\mathrm{correct}$ and

• replace $(H(\omega_2); \in, NS_{\omega_1})$ with $(H(\omega_2); \in)$.

Theorem

(Dobrinen-Krueger-Marun-Mota-Zapletal) There is a proper poset forcing $MM(\omega_1)$ (= Martin's Maximum for posets of size \aleph_1).

In their paper, DKMMZ ask if $MM(\omega_1)$ is consistent with large continuum.

Fact *CH*-Pr_{ω_1}-*BPFA*⁺⁺ *implies MM*(ω_1).

Hence, by our second theorem, the answer to the DKMMZ question is Yes.

(日) (日) (日) (日) (日) (日) (日)

Recall: For all κ , FA({ $\mathcal{Q} : \mathcal{Q}$ is proper and has the \aleph_2 -c.c.}) $_{\kappa} \Rightarrow MA^{1.5}_{\kappa} \Longrightarrow MA_{\kappa}$.

A natural question at this point:

Question: Is FA({Q : Q is proper and has the \aleph_2 -c.c.}) $_{\aleph_1}$ compatible with $2^{\aleph_0} > \aleph_2$? Is FA({Q : Q is proper and has the \aleph_2 -c.c.}) $_{\aleph_2}$ consistent?

These questions are still open. On the other hand:

Let $MM_{\aleph_2}(\aleph_2\text{-c.c.})$ denote FA({ $\mathcal{Q} : \mathcal{Q}$ stationary set preserving and $\aleph_2\text{-c.c.}$ })_{\aleph_2}.

Theorem

(A.-Tananimit) $MM_{\aleph_2}(\aleph_2$ -c.c.) is false.

This theorem improves an earlier theorem of Shelah showing that there is no naive high analogue of MM:

For every regular cardinal $\kappa \ge \omega_2$, FA({ $\mathcal{Q} : \mathcal{Q}$ preserves all stat. subsets of all uncountable regular $\mu \le \kappa$ })_{κ} is false.

Structure of the proof:

- We prove that a certain consistent strengthening MA^{1,5}_{ℵ2}(stratified) of MA^{1,5}_{ℵ2} implies □_{ω1,ω1}.
- (2) Assuming MM_{ℵ2}(ℵ₂-c.c.), and using the fact that □_{ω1,ω1} holds by (1), we show that a certain form of uniformization holds which in turn implies CH. This is a contradiction since 2^{ℵ0} ≥ ℵ₃.

Let $MM_{\aleph_2}(\aleph_2\text{-c.c.})$ denote FA({ $\mathcal{Q} : \mathcal{Q}$ stationary set preserving and $\aleph_2\text{-c.c.}$ })_{\aleph_2}.

Theorem

(A.-Tananimit) $MM_{\aleph_2}(\aleph_2$ -c.c.) is false.

This theorem improves an earlier theorem of Shelah showing that there is no naive high analogue of MM:

For every regular cardinal $\kappa \ge \omega_2$, FA({ $\mathcal{Q} : \mathcal{Q}$ preserves all stat. subsets of all uncountable regular $\mu \le \kappa$ })_{κ} is false.

Structure of the proof:

- We prove that a certain consistent strengthening MA^{1.5}_{ℵ₂}(stratified) of MA^{1.5}_{ℵ₂} implies □_{ω1,ω1}.
- (2) Assuming MM_{ℵ2}(ℵ₂-c.c.), and using the fact that □_{ω1,ω1} holds by (1), we show that a certain form of uniformization holds which in turn implies CH. This is a contradiction since 2^{ℵ0} ≥ ℵ₃.

Definition

A family \mathcal{N} of countable elementary submodels is *stratified* if $ot(N_0 \cap Ord) < \delta_{N_1}$ for all $N_0, N_1 \in \mathcal{N}$ such that $\delta_{N_0} < \delta_{N_1}$.

Fact

Every poset with the $\aleph_{1.5}$ -c.c. with respect to finite stratified families is proper and has the \aleph_2 -c.c.

Proof.

Same as for the $\aleph_{1.5}$ -c.c.

So we have: For all κ ,

 $\begin{aligned} \mathsf{FA}(\{\mathbb{P} \,:\, \mathbb{P} \text{ is proper and has the }\aleph_2\text{-c.c.}\})_{\kappa} \Rightarrow \\ \mathsf{MA}^{1.5}_{\kappa}(\text{stratified}) \Rightarrow \mathsf{MA}^{1.5}_{\kappa} \Longrightarrow \mathsf{MA}_{\kappa}. \end{aligned}$

Theorem (essentially A.–Mota) (GCH) Given any infinite cardinal κ , there is a proper and \aleph_2 -c.c. forcing notion which forces $MA_{\kappa}^{1.5}$ (stratified).

$MA^{1.5}_{\aleph_2}$ (stratified) and \Box_{ω_1,ω_1}

Recall: $(C_{\alpha} : \alpha \in Lim(\omega_2))$ is a \Box_{ω_1,ω_1} -sequence iff for all $\alpha \in Lim(\omega_2)$,

- C_α is a set of clubs of α of order type at most ω₁,
- $|\mathcal{C}_{\alpha}| \leq \aleph_1$, and
- for every $C \in C_{\alpha}$ and every limit point β of C, $C_{\alpha} \cap \beta \in C_{\beta}$.

Theorem (A.–Tananimit) $MA^{1.5}_{\aleph_2}(stratified)$ implies \Box_{ω_1,ω_1} .

Proof sketch of Theorem: Apply axiom to the forcing consisting of pairs $p = (h^p, \mathcal{N}^p)$, where:

- (1) h^{ρ} is a finite approximation to a \Box_{ω_1,ω_1} -sequence $\langle (C_{\nu}^{\alpha})_{\nu < \omega_1} : \alpha \in \operatorname{Lim}(\omega_2) \rangle$ together with an index function i^{ρ} specifying, for $\alpha \in \operatorname{Lim}(\omega_2), \nu < \omega_1$, and $\beta \in \operatorname{Lim}(C_{\nu}^{\alpha})$, some $\bar{\nu} \in \omega_1$ such that $C_{\nu}^{\alpha} \cap \beta = C_{\bar{\nu}}^{\beta}$;
- (2) N^p is a finite stratified family of countable
 N ≤ (H(ω₂); ∈, e) for some fixed sequence
 e = (e_α : α < ω₂), where e_α : |α| → α is a surjection for all α. (All countable N ≤ H(ω₂) being considered are sufficiently closed in this sense.)
- (3) For every N ∈ N^p and every α ∈ dom(h^p) ∈ [Lim(ω₂)]^{<ω} such that α ∈ N,
 - (a) *N* is closed under the approximating functions h^p_{α} from h^p ,
 - (b) if $cf(\alpha) = \omega_1$, then $\delta_N \in dom(h^p_\alpha)$ and $h^p_\alpha(\delta_N) = sup(N \cap \alpha)$, and
 - (c) N is closed under the index function at α .

A consistent uniformization principle implying CH

Theorem

(Shelah) Suppose for every $F : S_{\omega_1}^{\omega_2} \longrightarrow 2$ there is a function $G : \omega_2 \longrightarrow 2$ and clubs $D_{\alpha} \subseteq \alpha$ (for $\alpha \in S_{\omega_1}^{\omega_2}$) such that for every $\alpha \in S_{\omega_1}^{\omega_2}$ and every $\xi \in D_{\alpha}$, $G(\xi) = F(\alpha)$. Then CH holds.

 $(S_{\omega_1}^{\omega_2} = \{ \alpha < \omega_2 : \operatorname{cf}(\alpha) = \omega_1 \}.)$

Proof: The hypothesis clearly implies the following stronger statement:

For every $F: S_{\omega_1}^{\omega_2} \longrightarrow {}^{\omega}2$ there is a function $G: \omega_2 \longrightarrow {}^{\omega}2$ and clubs $D_{\alpha} \subseteq \alpha$ (for $\alpha \in S_{\omega_1}^{\omega_2}$) such that for every $\alpha \in S_{\omega_1}^{\omega_2}$ and every $\xi \in D_{\alpha}$, $G(\xi) = F(\alpha)$.

Hence, if $2^{\aleph_0} \ge \aleph_2$, the following also holds:

For every $F : S_{\omega_1}^{\omega_2} \longrightarrow \omega_2$ there is a function $G : \omega_2 \longrightarrow \omega_2$ and clubs $D_{\alpha} \subseteq \alpha$ (for $\alpha \in S_{\omega_1}^{\omega_2}$) such that for every $\alpha \in S_{\omega_1}^{\omega_2}$ and every $\xi \in D_{\alpha}$, $G(\xi) = F(\alpha)$.

Now let *F* be the identity on $S_{\omega_1}^{\omega_2}$. Apply the hypothesis and get uniformizing function *G*. Let $\alpha \in S_{\omega_1}^{\omega_2}$ be such that $G^{*}\alpha \subseteq \alpha$. But then there is no club $D_{\alpha} \subseteq \alpha$ such that $G(\xi) = \alpha$ for all $\xi \in D_{\alpha}$. Contradiction. \Box

Proof sketch of the inconsistency of $MM_{\aleph_2}(\aleph_2\text{-c.c.})$

Assume $MM_{\aleph_2}(\aleph_2\text{-c.c.})$. Then $2^{\aleph_0} \ge \aleph_3$ and so there is a function $F: S_{\omega_1}^{\omega_2} \longrightarrow 2$ which cannot be club-uniformized; i.e., there is no $G: \omega_2 \longrightarrow 2$, together with clubs $D_\alpha \subseteq \alpha$ (for $\alpha \in S_{\omega_1}^{\omega_2}$), such that for every $\alpha \in S_{\omega_1}^{\omega_2}$ and every $\xi \in D_\alpha$, $G(\xi) = F(\alpha)$. We will show that there is such a *G* after all, which is a contradiction.

By
$$MA^{1.5}_{\aleph_2}$$
(stratified), there is a \Box_{ω_1,ω_1} -sequence $\vec{C} = \langle C_{\alpha} : \alpha \in Lim(\omega_2) \rangle.$

Let $\mathcal{K}_{\vec{\mathcal{C}}}^{\vec{e}}$ be the class of countable models N such that $N \cap \omega_2 = \bigcup_{\gamma \in C} e_{\gamma} \text{ "} \delta_N$ for some $C \in \mathcal{C}_{\alpha}$, where $\alpha = \sup(N \cap \omega_2)$ (for some fixed sequence $\vec{e} = (e_{\gamma} : \gamma < \omega_2, \gamma \neq 0)$ of surjections $e_{\gamma} : \omega_1 \longrightarrow \gamma$).

For every cardinal $\theta > \omega_1$, $\mathcal{K}_{\vec{\mathcal{C}}}^{\vec{e}} \cap H(\theta)$ is a projective stationary subset of $[H(\theta)]^{\aleph_0}$.

Hence, we can define a natural stationary set preserving poset \mathcal{Q} , using side conditions from $\mathcal{K}_{\vec{\mathcal{C}}}^{\vec{e}}$, for adding a uniformizing function for *F*. The coherence of $\vec{\mathcal{C}}$ and the fact that the models in the side condition come from $\mathcal{K}_{\vec{\mathcal{C}}}^{\vec{e}}$ is used in the proof of \aleph_2 -c.c.

・ロト・日本・日本・日本・日本・日本

A conjecture

Conjecture: BFA({ $\mathcal{Q} : \mathcal{Q} \omega$ -proper}) implies $2^{\aleph_0} = \aleph_2$.

