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Introduction. The forcing axioms MA, PFA and SPFA are
known to be relatively consistent (from ZFC in the first case and
modulo large cardinals in the other two) by means of forcing
iterations which fall in the same class Γ being considered. So,
this kind of construction depends on certain preservation
criteria.

One of them is the central theorem of Shelah stating that if Pα

is a countable support forcing iteration of {Q̇β : β < α} such
that every Q̇β is a proper forcing notion in V Pα↾β, then Pα is
proper (in particular, Pα does not collapse ω1). Another one,
also due to Shelah, holds in the context of revised countable
support forcing iterations and semiproper forcings.



On the other hand, there is no such preservation result for
stationary set preserving posets and the classical argument for
the consistency of MM goes in a slightly different way: it passes
by showing that SPFA implies that every stationary set
preserving notion of forcing is semiproper, which in turn implies
the equivalence between SPFA and MM.



Let us denote by PFA(ω1) and MM(ω1) the respective
restrictions of PFA and MM to posets of cardinality ω1.

It is well-known that ZFC and ZFC + PFA(ω1) are
equiconsistent, which follows from the fact that under CH,
forcings of size ω1 can be iterated with countable support up to
length ω2 with an ω2-c.c. forcing iteration.



In the 80’s Shelah proved that ZFC+ “there exists a strongly
inaccessible cardinal” implies the consistency of
ZFC + MM(ω1). The main theorem of this talk states that
Shelah’s inaccessible can be taken away from this consistency
statement.

Theorem
Assume CH and 2ω1 = ω2. Then there is a countable support
forcing iteration Pω2 of {Q̇β : β < ω2} with the following
properties:

1 Every Q̇β is, in V Pω2 ↾β, a proper poset;
2 Pω2 is proper and has the ω2-chain condition;
3 Pω2 forces MM(ω1).

Consequently, the theories ZFC and ZFC + MM(ω1) are
equiconsistent.
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The iteration described in the above theorem will involve forcing
two types of posets:

(1) proper posets of size ω1, bookkeeping so that all such
posets in the final model will have been considered ω2-many
times in the iteration, and

(2) forcing notions which destroy posets which are stationary
set preserving but not proper.

In order to prove that the iteration is ω2-c.c., we will use a
property introduced by Shelah.
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Definition
A poset R satisfies the ω2-properness isomorphism condition
(ω2-p.i.c. for short) if and only if for every large enough regular
cardinal θ, for every well-ordering < of Hθ and for all ordinals
α < β < ω2 the following holds: if Nα and Nβ are countable
elementary submodels of (Hθ,∈, <,R) such that α ∈ Nα,
β ∈ Nβ, Nα ∩ ω2 ⊂ β, Nα ∩ α = Nβ ∩ β, p ∈ Nα ∩ R and
π : Nα → Nβ is an isomorphism satisfying π(α) = β and
π↾(Nα ∩ Nβ) = id , then there exists a master condition q for Nα,
extending p and π(p), such that

q ⊩R π“(Ġ ∩ Ňα) = Ġ ∩ Ňβ.



Every proper poset of size ω1 has the ω2-p.i.c., and if CH holds,
then every ω2-p.i.c. poset satisfies the ω2-chain condition.

Shelah proved that, under the assumption of CH, if Pω2 is a
countable support forcing iteration of {Q̇β : β < ω2} such that
every that every Q̇β has the ω2-p.i.c. in V Pω2↾β, then Pω2 has the
ω2-chain condition.

Therefore, CH implies that Pω2 does not collapse cardinals. In
the context of our specific iteration, we will apply this result by
taking each Q̇β to be either a name for a proper poset of size
ω1 or a name for a poset Q as described in the next theorem.



Theorem
There exists a proper countably distributive poset Q of
cardinality 2ω1 with the ω2-p.i.c. satisfying that for every poset P
of cardinality ω1, if P is not proper, then

⊩Q P̌ does not preserve stationary subsets of ω1.

With this new ingredient, and assuming CH together with
2ω1 = ω2, the construction of a countable support forcing
iteration Pω2 witnessing our main result is very natural. Since
2ω1 = ω2, we can fix a function Φ : ω2 → Hω2 with the property
that {β ∈ ω2 : Φ(β) = x} is unbounded in ω2 for each x ∈ Hω2 .
At stage β < ω2, if Φ(β) is a Pω2↾β-name for a proper poset of
cardinality ω1, then let Q̇β = Φ(β). Otherwise, let Q̇β be a
Pω2↾β-name for a poset Q as above.

In what follows we will prove the existence of such a poset Q.



Definition
In an ω1-preserving forcing extension V [G], a continuous
V-reflection sequence is a sequence ⟨M̄α : α ∈ C⟩ such that:

1 C ⊂ ω1 is a closed unbounded set;
2 for each α ∈ C, M̄α is the transitive collapse of some

elementary submodel of (HV
ω2
,∈) such that α = ωM̄α

1 ;
3 (continuity) for every α ∈ C and every function x : α<ω → α

in the model M̄α there is γ ∈ α such that for every ordinal
δ ∈ C between γ and α, x↾δ<ω ∈ M̄δ (which implies by (2)
above that δ is closed under x);

4 (reflection) for every stationary set S ⊂ [HV
ω2
]ω in V , the set

{α ∈ C : M̄α is the transitive collapse of some element of
S} ⊂ ω1 is stationary.

Q is defined then as the poset for adding a continuous
V -reflection sequence by means of countable approximations.



Definition
Q is the set of all pairs q = ⟨aq,bq⟩ where

1 aq is a function whose domain is a closed countable
subset of ω1 called the support of q, supp(q);

2 for every ordinal α ∈ supp(q), writing M = aq(α), we have
that M is the transitive collapse of a countable elementary
submodel of (HV

ω2
,∈) such that ωM

1 = α;
3 (continuity) for every α ∈ supp (q) and every function

x : α<ω → α in the model aq(α), there is γ ∈ α such that for
every ordinal δ ∈ supp(q) between γ and α, x↾δ<ω ∈ aq(δ);

4 bq is a countable set of functions from ω<ω
1 to ω1.

We say that r ≤ q if supp(r) is an end-extension of supp(q),
aq ⊂ ar , bq ⊂ br , and for every ordinal α ∈ supp(r) \ supp(q)
and every function x ∈ bq, x↾α<ω ∈ ar (α).
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Definition
Let M be a countable elementary submodel of H(κ), for a large
enough regular cardinal κ. Let g ⊂ M be a filter meeting all
open dense subsets of Q in M.

1 Let a =
⋃

s∈g as ∪ {⟨M ∩ ω1, M̄⟩}, where M̄ is the transitive
collapse of the model M ∩ Hω2 ;

2 let b be the set of all functions from ω<ω
1 to ω1 belonging to

the model M;
3 let r(M,g) = ⟨a,b⟩.

Proposition
r(M,g) is a condition in Q extending all conditions in g.
Proof. Write α = M ∩ ω1. Since g is a filter,

⋃
s∈g as is a

function, and its domain c is a subset of M ∩ ω1 which is closed
except perhaps at its supremum. A simple density argument
shows that in fact sup(c) = α. Thus, to verify that r(M,g) is a
condition, it is only necessary to check the continuity of a at α.



Let y : α<ω → α be any function in the model M̄, and let x ∈ M
be the function whose collapse is y . By a density argument,
there must be a condition s ∈ g such that x ∈ bs. The definition
of the ordering on Q then shows that the ordinal
γ = max supp (s) witnesses the continuity condition for α and x .

To verify that for every condition s ∈ g, r(M,g) ≤ s holds, it is
enough to verify that for every ordinal δ ∈ dom (a) \ supp (s)
and every x ∈ bs, it is the case that x↾δ<ω ∈ a(δ). For δ ∈ α this
is immediately clear from the assumption that g is a filter. If
δ = α, then x ∈ M since x ∈ bs and s ∈ M; by the elementarity
of M we conclude again that x↾δ<ω belongs to a(α), since it is
the transitive collapse image of the function x .



Corollary
The poset Q satisfies the following properties:

1 proper;
2 countably distributive;
3 ω2-p.i.c.

Proof.
For (1), let q ∈ Q and let M be a countable elementary
submodel of H(κ), for a large enough regular cardinal κ, such
that q and Q are in M. Construct a filter g ⊂ M ∩ Q containing
the condition q and meeting all dense open subsets of Q which
belong to the model M. It is immediate that r(M,g) is a master
condition for the model M below q.

For (2), if in addition {Dn : n ∈ ω} is a countable collection of
open dense subsets of Q and M is selected in such a way that
each Dn is in M, then r(M,g) is a condition below q in the
intersection

⋂
n Dn.



For (3), suppose that M,N are two isomorphic countable
elementary submodels. By the Mostowski collapse lemma, the
isomorphism is unique, and we denote it by π : M → N. Let
q ∈ M ∩ Q be an arbitrary condition and let g ⊂ M ∩ Q be a
filter having q as an element and meeting all open dense
subsets of Q which belong to the model M. It will be enough to
show that there is a condition r extending all the elements of
the set g ∪ π′′g. To find r , write r(M,g) = ⟨aM ,bM⟩ and
r(N, π′′g) = ⟨aN ,bN⟩, and observe that aM = aN since the
isomorphism π fixes M ∩ ω1 = N ∩ ω1 and because the two
models M and N have the same transitive collapse. So, r(M,g)
and r(N, π′′g) are compatible as witnessed by the common
extension r = ⟨aM ,bM ∪ bN⟩ and r works as desired.



Corollary
Let G ⊂ Q be a generic filter. In the model V [G], let
F =

⋃
{a : ∃r ∈ G a = ar}. Then F is a continuous V-reflection

sequence.

Proof.
It is clear that dom (F ) is a club subset of ω1 and that F
satisfies the continuity property. Thus, it will be enough to verify
the reflection property. For this, return to the ground model, let
q ∈ Q and let S ⊂ [Hω2 ]

ω be a stationary set. Let also Ė be a
Q-name for a club subset of ω1. It will be enough to find a
condition r ≤ q and an ordinal α ∈ supp (r) such that ar (α) is
the transitive collapse of a model in S and r ⊩ α̌ ∈ Ė .



To this end, use the stationarity of the set S to find a countable
elementary submodel M of H(κ) for some large enough regular
cardinal κ, containing both q and Ė such that M ∩ Hω2 ∈ S.
Find a filter g ⊂ Q ∩ M generic over M containing the condition
q, and let r = r(M,g) and α = M ∩ ω1. It is clear that r ≤ q,
r ⊩ α̌ ∈ Ė since r is a master condition for M, and ar (α) is a
model isomorphic to M ∩ Hω2 ∈ S.



Proposition
Let V [G] be an ω1-preserving forcing extension in which there
exists a continuous V-reflection sequence ⟨M̄α : α ∈ C⟩.
In V , let P be a forcing of cardinality ω1 which is not proper.
Then V [G] |= P does not preserve stationary subsets of ω1.
Proof.

Claim
For every function x : ω<ω

1 → ω1 in V , for all but countably many
α ∈ C, x↾α<ω ∈ M̄α holds.

Proof.
By the reflection property, S = {α ∈ C : x↾α<ω ∈ M̄α} is stat.

Use the continuity prop. to find a regressive f : S → ω1 s. t. for
every α ∈ S and every δ ∈ C between f (α) and α, x↾δ<ω ∈ M̄δ.

By Fodor, there is γ ∈ ω1 such that {α ∈ S : f (α) = γ} is stat.
So, if δ ∈ C is above γ, x↾δ<ω ∈ M̄δ.



Now, let P be a poset of cardinality ω1 which is not proper,
which we may assume has underlying set ω1. If P collapses ω1,
then it also collapses ω1 in V [G], and hence is not stationary
set preserving. So assume that P preserves ω1. Note that P
can be coded in (HV

ω2
,∈) by a function x : ω<ω

1 → ω1 in V (for
example, by the characteristic function of its partial ordering).

By the claim, we may assume that for every α ∈ C, P↾α ∈ M̄α.
Now, return to V and observe that since P is not proper, by a
pigeonhole argument there must be p ∈ P and a stationary set
S ⊂ [Hω2 ]

ω s. t. no model in S has a master condition below p.

Move to V [G] and use the reflection prop. to conclude that
T = {α ∈ C : M̄α is the transitive collapse of some model in S}
is stationary. Let Ė be the P-name for the set
{α ∈ C : the P-generic filter has nonempty intersection with
every maximal antichain of P↾α in the model M̄α}.
So, in V [G], p ⊩P Ė ∩ Ť = ∅



Finally, to prove that T does not remain stat. after forcing with P
in V [G] , it is enough to verify the following

Claim
⊩P Ė is a club , where Ė is a P-name for
{α ∈ C : the P-generic filter has nonempty intersection with
every maximal antichain of P↾α in the model M̄α}.

Proof. For the closure, suppose that q ∈ P forces α ∈ C to be
a lim. point of Ė . To show that q ⊩ α̌ ∈ Ė , let A ∈ M̄α be a max.
antichain of P↾α in the model M̄α and let r ≤ q; we must find a
condition in A ∩ α compatible with r . To do this, apply continuity
to a suitable function to find γ ∈ α such that for every δ ∈ C
between γ and α, A ∩ δ is a max. antichain of P↾δ in M̄δ.

Since r forces that α is a limit point of Ė , find a condition s ≤ r
and δ ∈ C between γ and α such that s ⊩ δ̌ ∈ Ė . So, there is an
elem. of A ∩ δ compatible with s, and hence with r .
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Intermezzo prior to the unboundedness
Fix q ∈ P and γ ∈ ω1. Back in V , consider the set U ⊂ [Hω2 ]

ω of
all models which contain γ and have a master cond. below q.
Let us prove that U is stationary.

Let f : H<ω
ω2

→ Hω2 . To find M ∈ U closed under f , let θ be a
large enough regular cardinal and let X = ⟨Nα : α ∈ ω1⟩ be a
continuous increasing tower of ctble. elem. submodels of Hθ

containing f as an element, and let N =
⋃

α Nα. Let H ⊂ P be a
generic filter containing q, and consider the models Nα[H] for
α ∈ ω1 and N[H]. Since P is a subset of N, N[H] ∩ V = N.

The models ⟨Nα[H] : α ∈ ω1⟩ form a continuous increasing seq.
of ctble. subsets of N[H], so Y = ⟨Nα[H] ∩ V : α ∈ ω1⟩ is a
continuous increasing seq. of ctble. subsets of N[H] ∩ V = N.

Since ω1 is preserved passing to V [H], the seq. X and Y must
intersect at some point.
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That is, there must be α ∈ ω1 such that Nα[H] ∩ V = Nα. Fix
r ≤ q in H such that r ⊩V

P Nα[Ḣ] ∩ V = Nα. Then r is a master
condition for Nα ∩ Hω2 , and Nα ∩ Hω2 is a model in the set U
closed under f .

For the verification of unboundedness of Ė , fix again q ∈ P and
γ ∈ ω1. We proved that, back in V , the set U ⊂ [Hω2 ]

ω of all
models which contain γ and have a master cond. below q is
stationary.

In V [G] again, use the reflection property to find an ordinal
α ∈ C which is greater than γ and such that M̄α is the transitive
collapse of some model M in U. By the definition of U, fix a
master condition r ≤ q for M. So, r forces that α̌ ∈ Ė .



That is, there must be α ∈ ω1 such that Nα[H] ∩ V = Nα. Fix
r ≤ q in H such that r ⊩V
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One open question

Given that the forcing notion Q (destroying posets which are
stationary set preserving but not proper) is proper but it has
cardinality 2ω1 , it is natural to ask whether or not PFA(ω1)
implies MM(ω1).
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