Beyond the reach of forcing ¹

W. Hugh Woodin

Harvard University

2302:2023

(23February:2023)

¹Joint work with Peter Koellner

Categorical models of Set Theory

Suppose $\mathcal{M} = (M, E)$ is a model of ZFC.

 \blacktriangleright The model ${\cal M}$ is wellfounded if there is no infinite sequence

 a_1,\ldots,a_n,\ldots

of elements of M such that $a_{i+1} E a_i$ for all i.

• The logic for wellfounded models of ZFC is β -logic.

Definition

Suppose φ is a sentence in the language $\mathcal{L}_{\rm ST}$ of Set Theory.

- 1. ZFC + φ is β -satisfiable if there is a wellfounded model \mathcal{M} such that $\mathcal{M} \models \varphi$.
- 2. $\operatorname{ZFC} + \varphi \models_{\beta} \psi$ if for all wellfounded models $\mathcal{M} \models \operatorname{ZFC}$, if $\mathcal{M} \models \varphi$ then $\mathcal{M} \models \psi$.

• This is **logical implication** in β -logic

▶ for models of ZFC.

3. ZFC + φ is β -categorical if for all wellfounded models \mathcal{M}, \mathcal{N} of ZFC + φ ,

$$\mathcal{M}\cong\mathcal{N}.$$

An easy example

Theorem (Gödel)

Suppose N is a transitive set and that

$$N \models \text{ZFC}.$$

Let $\alpha = \text{Ord}^N = N \cap \text{Ord}.$ Then
1. $L_{\alpha} \subseteq N$ and $L_{\alpha} \models \text{ZFC}.$
2. $N \models "V = L"$ if and only if $N = L_{\alpha}.$

Let φ_L be the sentence of $\mathcal{L}_{\scriptscriptstyle\mathrm{ST}}$ which expresses

$$\blacktriangleright$$
 $V = L$

 \triangleright ZFC is not β -satisfiable.

Corollary

Suppose that ZFC is β -satisfiable. Then ZFC + φ_L is β -satisfiable and β -categorical.

• The unique transitive model of $ZFC + \varphi_L$ is L_{α} where α is the least ordinal such that $L_{\alpha} \models ZFC$.

An interesting question

Question

Suppose that ${\rm ZFC}+\varphi$ is $\beta\text{-satisfiable}$ and $\beta\text{-categorical}.$

Must
$$ZFC + \varphi \models_{\beta} "V = L"?$$

Theorem (Stanley:1984)

Assume ZFC is β -satisfiable. Then there is a Π_2^1 -formula $\psi(x_0)$ and $x \in \mathbb{R}$ such that the following hold where α is the least ordinal such that $L_{\alpha} \models \text{ZFC}$.

- 1. $L_{\alpha}(x) \models \text{ZFC} + \psi[x].$
- 2. Suppose $y \in \mathbb{R}$, $x \neq y$, and that $L_{\alpha}(y) \models \operatorname{ZFC} + \psi[y]$.

• Then $L_{\alpha}(x, y) \not\models \text{ZFC}$.

- ▶ (2) implies that $\operatorname{ZFC} + \varphi \not\models_{\beta} "V = L"$, where $\varphi = (\exists x_0 \psi)$.
- Stanley's Theorem answers the question but only with a weak form of ZFC + φ is β-categorical.
 - Stanley's proof using the machinery of class forcing.

Theorem (after Vopěnka)

Suppose M is a countable transitive set such that

 $M \models \operatorname{ZFC} + \varphi$.

Then one of the following hold.

- 1. $M \models "V = HOD"$.
- 2. There is an uncountable set of countable transitive sets N such that

$$\blacktriangleright N \models \operatorname{ZFC} + \varphi \text{ and } \operatorname{Ord}^{N} = \operatorname{Ord}^{M}.$$

Theorem (after H. Friedman)

Suppose M is a countable transitive set such that

$$M \models \text{ZFC} + \varphi.$$

Then one of the following hold.

- 1. $M \models "0^{\#}$ does not exist".
- 2. There is an uncountable set of countable transitive sets N such that

$$\blacktriangleright N \models \operatorname{ZFC} + \varphi \text{ and } \operatorname{Ord}^{N} = \operatorname{Ord}^{M}$$

Corollary

Suppose $ZFC + \varphi$ is β -categorical.

• Then
$$\operatorname{ZFC} + \varphi \models_{\beta} "V = \operatorname{HOD}"$$
.

Corollary

Suppose $ZFC + \varphi$ is β -categorical.

• Then
$$\operatorname{ZFC} + \varphi \models_{\beta}$$
 "0[#] does not exist".

Assume V = L. Then V = HOD and $0^{\#}$ does not exist.

• These are each fundamental consequences of V = L.

This suggests that if ${\rm ZFC}+\varphi$ is β -satisfiable and β -categorical then

$$\operatorname{ZFC} + \varphi \models_{\beta} "V = L".$$

 $\mathcal{L}_{_{\rm ST}}(c)$: Expanding the formal language $\mathcal{L}_{_{\rm ST}}$ of Set Theory with a constant

Suppose φ ∈ L_{ST}(c) and M is a transitive model such that M ⊨ ZFC + φ. Then c_M is the interpretation of c.

So in essence *M* is a transitive set with a distinguished element.

Definition

Suppose $\varphi \in \mathcal{L}_{ST}(c)$. Then $ZFC + \varphi$ is β -categorical if for all transitive models N, M of $ZFC + \varphi$,

• if
$$c_N = c_M$$

then N = M.

This is really just β-categorical modulo interpretation of c.

Strong hypotheses in Set Theory

Definition

A set $A \subset \mathbb{R}$ is a Σ_2^1 set if the set A can be defined in the structure $ig(V_{\omega+1},\inig)$

by a Σ_2 -formula without parameters.

Definition

 Σ_2^1 -Determinacy is the axiom which asserts that every Σ_2^1 set $A \subseteq \mathbb{R}$ is determined.

Theorem (Martin, Steel:1985)

Assume that there is a Woodin cardinal with a measurable cardinal above. Then Σ_2^1 -Determinacy holds.

Thus if there is a Woodin cardinal with a measurable cardinal above, then the following holds.

• Σ_2^1 -Determinacy + $x^{\#}$ exists for all $x \in \mathbb{R}$. This is the hypothesis which we will use.

Theorem (Σ_2^1 -Determinacy + $x^{\#}$ exists for all $x \in \mathbb{R}$)

There exists a sentence $\varphi \in \mathcal{L}_{_{\mathrm{ST}}}(c)$ such that the following hold.

1. ZFC + φ is β -satisfiable and β -categorical.

2. ZFC +
$$\varphi \models_{\beta} "V \neq L(c)$$
"

3. For a Turing cone of $x \in \mathbb{R}$, there is transitive model

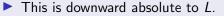
$$M \models \text{ZFC} + \varphi$$

such that $c_M = x$.

- ▶ The conclusions (1) and (2) are absolute to *L*.
- The conclusion (3) is not absolute to L.

Question

Is there a sentence $\varphi \in \mathcal{L}_{\scriptscriptstyle{\mathrm{ST}}}(c)$ such that (1)–(3) hold but for all $x \in \mathbb{R}$?



How about more models? Does this change anything?

Definition

Suppose $\varphi \in \mathcal{L}_{ST}$. Then $ZFC + \varphi$ is β -categorical in height if for all countable transitive sets N, M, if

•
$$M \models \operatorname{ZFC} + \varphi$$
 and $N \models \operatorname{ZFC} + \varphi$,

•
$$\operatorname{Ord}^N = \operatorname{Ord}^M;$$

Then M = N.

Lemma

Suppose $\varphi \in \mathcal{L}_{ST}$. Then the following are equivalent.

- 1. ZFC + φ is β -categorical in height.
- 2. $V[G] \models$ "ZFC + φ is β -categorical in height", for every generic extension V[G] of V.

Generalizing the basic question

Lemma

Suppose $\operatorname{ZFC} + \varphi$ is β -categorical in height. Then for every transitive model

 $M \models \operatorname{ZFC} + \varphi$,

necessarily $M \in L$.

Corollary

Suppose $ZFC + \varphi$ is β -categorical in height and that M is an uncountable transitive model of $ZFC + \varphi$.

• Then
$$M \models "\mathbb{R} \subset L"$$
.

Question

Suppose that $ZFC + \varphi$ is β -categorical in height and that there is a proper class of transitive models of $ZFC + \varphi$. Must there exist a transitive model M of $ZFC + \varphi$ such that

 $M \models "V = L"?$

eta-categorical in height for $\mathcal{L}_{_{\mathrm{ST}}}(c)$

Definition

Suppose $\varphi \in \mathcal{L}_{\scriptscriptstyle{\mathrm{ST}}}(c)$. Then

• $ZFC + \varphi$ is β -categorical in height

if for all countable transitive models N, M, if

•
$$M \models \operatorname{ZFC} + \varphi$$
 and $N \models \operatorname{ZFC} + \varphi$,

•
$$(c_N, \operatorname{Ord}^N) = (c_M, \operatorname{Ord}^M);$$

Then M = N.

Lemma

Suppose $\varphi \in \mathcal{L}_{ST}(c)$. Then the following are equivalent.

- 1. ZFC + φ is β -categorical in height.
- 2. $V[G] \models$ "ZFC + φ is β -categorical in height", for every generic extension V[G] of V.

Theorem $(\Sigma_2^1$ -Determinacy $+ x^{\#}$ exists for all $x \in \mathbb{R})$

There exists $\varphi \in \mathcal{L}_{_{\mathrm{ST}}}(c)$ such that the following hold.

- 1. ZFC + φ is β -satisfiable and ZFC + φ is β -categorical in height.
- 2. ZFC + $\varphi \models_{\beta} "V \neq L(c)$ ".
- 3. For a Turing cone of $x \in \mathbb{R}$, there is a proper class of transitive models

$$\mathbf{M} \models \mathrm{ZFC} + \varphi$$

such that $c_M = x$.

Question

Is there a sentence $\varphi \in \mathcal{L}_{\text{ST}}(c)$ such that (1)–(3) hold but for all $x \in \mathbb{R}$?

What is the maximum possibility on heights?

Definition

Suppose that α is an ordinal and that $L_{\alpha} \models \text{ZFC}$. Then α is **fragile** if α is collapsed in L_{η} where η is the least admissible ordinal above α .

Theorem (after H. Friedman)

Suppose M is a countable transitive set such that

$$M \models \text{ZFC} + \varphi + "V \neq L".$$

Then one of the following hold.

- 1. Ord^M is fragile.
- There is an uncountable set of countable transitive sets N such that N ⊨ ZFC + φ and such that Ord^N = Ord^M.

Corollary

Suppose $\operatorname{ZFC} + \varphi$ is β -categorical in height and that M is a transitive model of $\operatorname{ZFC} + \varphi + "V \neq L"$. Then Ord^{M} is fragile.

Complicated fragility

Suppose γ is a cardinal and that $L_{\gamma} \models \text{ZFC}$.

γ is not fragile.

Fix an ordinal η such that $\gamma << \eta < \xi$ where ξ is the least admissible ordinal above $\gamma.$

• Let X be the set of all $p \in L_\eta$ such that p is definable in $(L_\eta, \in).$

Then $L_{\alpha} \models \text{ZFC}$ and α is fragile, where α is the ordertype of $X \cap \gamma$.

- But α is not collapsed in L_{η̄} where L_{η̄} is the Mostowski collapse of X.
- There are very complicated examples of fragile ordinals α where one cannot determine if α is fragile by any simple inspection of even the entire first order theory of L_α with parameters.

The necessary weakening of β -categorical in height

- The existence of complicated examples of fragile ordinals α makes finding a sentence φ such that
 - $\operatorname{ZFC} + \varphi$ is categorical in height

and has a model of height α for such α , which is not L_{α} , look very challenging.

But there is another more serious obstruction.

Lemma (Overspill)

Suppose $ZFC + \varphi$ has a transitive model of height α for every countable ordinal α such that $L_{\alpha} \models ZFC$ and such that α is fragile.

- Then ZFC + φ has a model of height α for every countable ordinal α such that L_α |= ZFC.
- Thus to find examples φ such that ZFC + φ has a unique model of every possible ordinal height, we must weaken the notion that ZFC + φ is β-categorical in height.

$\mathcal{L}_{_{\mathrm{ST}}}(c,d)$: Expanding $\mathcal{L}_{_{\mathrm{ST}}}$ with two constants

Suppose φ ∈ L_{ST}(c, d) and M is a transitive model such that M ⊨ ZFC + φ. Then c_M is the interpretation of c and d_M is the interpretation of d.

Definition

Suppose $M \models \text{ZFC} + \varphi$ and that M is transitive. Then:

► The model *M* is **categorical in height for** $ZFC + \varphi$, if for all transitive models $N \models ZFC + \varphi$, if

$$\blacktriangleright (c_M, d_M, \mathrm{Ord}^M) = (c_N, d_N, \mathrm{Ord}^N)$$

then N = M (and if M is uncountable, then this must hold after collapsing M to be countable).

ZFC + φ is β-categorical in height if and only if every transitive model of ZFC + φ is categorical in height for ZFC + φ.

Relativizing fragility

Definition

Suppose $x \in \mathbb{R}$, α is an ordinal, and that $L_{\alpha}(x) \models \text{ZFC}$.

Then α is x-fragile if α is collapsed in L_η(x) where η > α is the least ordinal which is x-admissible.

Theorem

Suppose $\varphi \in \mathcal{L}_{ST}(c, d)$, $x \in \mathbb{R}$, and that M is a transitive model of $ZFC + \varphi$ such that the following hold.

• *M* is categorical in height for $ZFC + \varphi$.

•
$$c_M = x$$
 and $d_M < \operatorname{Ord}^M$.

•
$$M \models "V \neq L(c)$$
".

Then Ord^M is x-fragile and $M \in L[x]$.

The main theorem

Theorem (Σ_2^1 -Determinacy + $x^{\#}$ exists for all $x \in \mathbb{R}$)

There exists $\varphi \in \mathcal{L}_{_{\mathrm{ST}}}(c,d)$ such that the following hold.

- 1. ZFC + φ is β -satisfiable.
- 2. ZFC + $\varphi \models_{\beta} "V \neq L(c)$ ".
- 3. For a Turing cone of $x \in \mathbb{R}$, for all ordinals α , if
 - $L_{\alpha}(x) \models \text{ZFC}$ and α is x-fragile, then there is a transitive model $M \models \text{ZFC} + \varphi$ of height α such that $c_M = x$, $d_M < \text{Ord}^M$, and such that
 - *M* is categorical in height for $ZFC + \varphi$.
- ▶ The conclusions (1) and (2) are absolute to *L*.
- Conclusion (3) is not absolute to L.

(Technical aside)

For a Turing cone of x: ZFC + φ actually has a model of height α for all α such that $L_{\alpha}(x) \models$ ZFC. Does this follow from (1)–(3)?

The proof of the main theorem uses methods from the Inner Model Program.

Mitchell-Steel inner models and $\mathbb{M}_1^{\#}$

Theorem (Scott:1961)

Assume V = L. Then there are no measurable cardinals.

- The Inner Model Program seeks to construct enlargements of L in which large cardinals can exist.
 - These enlargements are **core models**.
 - The stronger the large cardinal notion the harder the problem.
- The solution at the level of one Woodin cardinal is given by the Mitchell-Steel core models for exactly one Woodin cardinal.
 - These inner models are of the form L(E) where $E \subset \text{Ord.}$
 - But unlike the inner model L, these inner models are not unique.
 - The main theorem of Mitchell and Steel, et al, is that at the level of exactly one Woodin cardinal:
 - If L(E) and L(F) are *iterable* Michell-Steel models for the existence of one Woodin cardinal then

$$L(E)^{\#} \equiv L(F)^{\#}$$

• This defines $\mathbb{M}_1^{\#}$ which is a real number (just like $0^{\#}$).

A convergence of strong hypotheses

Theorem

The following are equivalent.

- 1. Σ_2^1 -Determinacy + $Z^{\#}$ exists for all $Z \subset \text{Ord.}$
- 2. For all $Z \subset \mathrm{Ord}, \, Z^{\#}$ exists, and there is an inner model N such that
 - ▶ Ord $\subset N$
 - ▶ $N \models \text{ZFC} + \text{``There is a Woodin cardinal''}.$
- 3. There is an iterable inner model N such that
 - ▶ Ord $\subset N$
 - ▶ $N \models \text{ZFC} +$ "There is a Woodin cardinal".
- 4. $\mathbb{M}_1^{\#}$ exists.

To simplify things, we focus on the hypothesis:

•
$$\Sigma_2^1$$
-Determinacy + $Z^{\#}$ exists for all $Z \subset \text{Ord.}$

\mathbb{M}_1 -like models

Theorem (Jensen,Steel:2004)

Suppose that for all sets $E \subset \operatorname{Ord}$,

 $L(E) \models$ "There is no Woodin cardinal"

Then there is a maximal approximation $\mathbb K$ to $\mathbb M_1$ and $\mathbb K$ is iterable.

• Assume $\mathbb{M}_1^{\#}$ exists. Let δ be the Woodin cardinal of \mathbb{M}_1 .

For all sets $E \in \mathbb{M}_1$, if $E \subset \delta$ and $\sup(E) < \delta$ then

• $\mathbb{M}_1 \cap V_{\delta} \models \operatorname{ZFC} +$ "There are no Woodin cardinals in L(E)".

• (Jensen, Steel) $\mathbb{M}_1 \cap V_{\delta} \models "V = \mathbb{K}"$.

Definition

Suppose that M is a transitive set, $\delta \in M$, and

•
$$M \models \operatorname{ZFC} + ``\delta$$
 is a Woodin cardinal".

Then M is an \mathbb{M}_1 -like model if

$$\blacktriangleright M \models "V = L(V_{\delta})"$$

$$\blacktriangleright M \cap V_{\delta} \models "V = \mathbb{K}".$$

Iterable \mathbb{M}_1 -like models and genericity

Theorem (Genericity Theorem)

Suppose that M is an iterable \mathbb{M}_1 -like model and that δ is the Woodin cardinal of M. Then there is an iteration tree T_M on M of length δ with limit model N_T such that the following hold.

- 1. T_M is definable in M.
- 2. N_T is an \mathbb{M}_1 -like model.
- 3. $N_T \subset M$ and M is a generic extension of N_T .
- 4. δ is the Woodin cardinal of N_T.

• The formula which defines T_M is independent of M.

Since M is iterable, T_M has a cofinal wellfounded branch b which yields an elementary embedding

$$j_b: M \to N_T$$

The branch b cannot be in M since M is a generic extension of N_T .

The extender algebra and genericity iterations

Theorem

Suppose that M is an \mathbb{M}_1 -like model, δ is the Woodin cardinal of M, and that M is iterable. Then there is a Boolean \mathbb{B}_M such that the following hold.

- 1. $M \models "\mathbb{B}_M$ is a complete Boolean algebra".
- 2. $M \models "\mathbb{B}_M$ satisfies the δ chain condition".
- 3. $|\mathbb{B}_M|^M = \delta$.
- 4. For each $Z \subset \text{Ord}$, there is an iteration embedding

 $j: M \to M_Z$

such that Z is M_Z -generic for $j(\mathbb{B}_M)$.

 $\blacktriangleright M_Z \in L(Z,M).$

But $Z \in M$ does not in general imply $M_Z \subseteq M$.

 \triangleright \mathbb{B}_M is the *extender algebra* of M.

The view within $L_{lpha}(x)$ and the key formula $\Psi_{\mathbb{M}_1}$

Theorem (Σ_2^1 -Determinacy + $Z^{\#}$ exists for all $Z \subset \text{Ord}$)

Suppose $x \in \mathbb{R}$, $\mathbb{M}_1^{\#}$ is recursive in x, and that $L_{\alpha}(x) \models \operatorname{ZFC}$.

- Then for every uncountable limit cardinal γ of L_α(x) there exists an M₁-like model M_γ such that the following hold.
 - 1. $M_{\gamma} \subset L_{\alpha}(x)$ and $\alpha = \operatorname{Ord}^{M_{\gamma}}$.
 - 2. The Woodin cardinal of M_{γ} is $(\gamma^+)^{L_{\alpha}(x)}$.
 - 3. Every $y \in L_{\alpha}(x) \cap \mathbb{R}$ is M_{γ} -generic for $\mathbb{B}_{M_{\gamma}}$.
 - 4. M_{γ} is uniformly definable in $L_{\alpha}(x)$ from γ by the formula $\Psi_{\mathbb{M}_{1}}(x_{0}, x_{1})$.
 - More precisely for all x, α, γ , and for all $N \in L_{\alpha}[x]$,

 $L_{\alpha}[x] \models \Psi_{\mathbb{M}_{1}}[\gamma, N]$

if and only if $N = M_{\gamma}$.

5. M_{γ} is iterable.

- The conditions (1)–(4) are first order conditions in $L_{\alpha}(x)$.
- The condition (5) is **not** a first order condition in $L_{\alpha}(x)$.

How the formula $\Psi_{\mathbb{M}_1}$ works

- Fix $x \in \mathbb{R}$ such that $\mathbb{M}_1^{\#}$ is recursive in x.
- Fix an ordinal α such that $L_{\alpha}(x) \models \text{ZFC}$.
- Fix an uncountable limit cardinal γ of $L_{\alpha}(x)$.
- Let $\mathcal M$ be the set of all $\mathbb M_1\text{-like}$ models M such that
 - $M \subset L_{\alpha}(x)$ and $\operatorname{Ord}^{M} = \alpha$.
 - $\delta < \gamma$ where δ is the Woodin cardinal of *M*.

(Key points)

1.
$$|\mathcal{M}| = \gamma$$
 in $L_{\alpha}(x)$.

2. There are iterable \mathbb{M}_1 -like models in \mathcal{M} .

▶ since $\mathbb{M}_1^{\#}$ is recursive in *x*.

The model M_{γ} is obtained in two steps of simultaneous iterations. Step I: Jointly compare all the models in \mathcal{M} .

This produces an M₁-like model M̂ which must be iterable.
 The Woodin cardinal of M̂ must be above γ (it is γ⁺).
 Step II: Iterate M̂ to make y generic for the extender algebra, for every y ∈ ℝ ∩ L_α[x]. This produces M_γ.

The first technical theorem (about the formula $\Psi_{\mathbb{M}_1}$)

Theorem (Σ_2^1 -Determinacy + $Z^{\#}$ exists for all $Z \subset \text{Ord}$)

Suppose $x \in \mathbb{R}$ and that $\mathbb{M}_1^{\#}$ is recursive in x. Suppose α is an ordinal and that

 $L_{\alpha}(x) \models \text{ZFC}.$

Then all sufficiently large $\gamma < \alpha$, there is a cofinal wellfounded branch b of $T_{M_{\gamma}}$ such that the following hold where δ is the Woodin cardinal of M_{γ} and where M_{γ} is as defined in $L_{\alpha}(x)$.

1. δ is a Woodin cardinal in $M_{\gamma}[b]$,

2. For all $\eta < \delta$, $\mathcal{P}(\eta) \cap M_{\gamma} = \mathcal{P}(\eta) \cap M_{\gamma}[b]$.

- Key point: By (1) and (2), it follows that B_{M_γ} is a complete Boolean algebra in M_γ[b].
 - Therefore x is M_γ[b]-generic for B_{M_γ}, since x is M_γ-generic for B_{M_γ}, and so

• $L_{\alpha}(x, b) \models \text{ZFC}.$

The sentence φ

(What the sentence φ asserts)

- $c \in \mathbb{R}$ and in L(c), M_{γ} exists for all uncountable cardinals γ .
 - More precisely, the definition Ψ_{M1} works within L(c) at all γ
 to achieve (1)-(4).
- d is an uncountable limit cardinal of L(c).
- There is a cofinal wellfounded branch b of T_{M_γ} where γ = d and M_γ is as defined in L(x) where x = c, such that

$$\blacktriangleright$$
 V = L(c, b)

and such that the following hold where δ is the Woodin cardinal of $M_{\gamma}.$

- 1. δ is a Woodin cardinal in $M_{\gamma}[b]$,
- 2. For all $\eta < \delta$, $\mathcal{P}(\eta) \cap M_{\gamma} = \mathcal{P}(\eta) \cap M_{\gamma}[b]$
- If b₁ and b₂ are distinct wellfounded branches of T_{M_γ} then
 L_α(x, b₁, b₂) ⊭ ZFC.
 But this does not imply ZFC + φ has at most one model of

height α . (Just as in Stanley's theorem).

The second technical theorem (about the formula $\Psi_{\mathbb{M}_1}$)

Theorem (Σ_2^1 -Determinacy + $Z^{\#}$ exists for all $Z \subset \text{Ord}$)

Suppose $x \in \mathbb{R}$ and that $\mathbb{M}_1^{\#}$ is recursive in x. Then the following are equivalent for all ordinals α such that

 $L_{\alpha}(x) \models \operatorname{ZFC}$

and such that α is countable.

- 1. α is x-fragile.
- 2. For all sufficiently large $\gamma < \alpha$, there is at most one cofinal wellfounded branch of $T_{M_{\gamma}}$ where M_{γ} is as defined in $L_{\alpha}(x)$.
- (2) is best possible. More precisely, there exist x, α, and γ such that the following hold.
 - $\mathbb{M}_1^{\#}$ is recursive in *x*.
 - α is x-fragile and γ is an uncountable limit cardinal of $L_{\alpha}(x)$.
 - There are uncountably many cofinal wellfounded branches of T_{M_γ} where M_γ is as defined in L_α(x).

This is why for the main theorem we need the second constant d.

Open questions

- 1. Is there a sentence φ of $\mathcal{L}_{ST}(c)$ for which the main theorem holds? (i.e.; Can one eliminate the second constant d?)
- 2. Is there a sentence φ of $\mathcal{L}_{ST}(c, d)$ for which the main theorem holds but for all $x \in \mathbb{R}$?

Downward absolute to L.

3. Is there a sentence φ of $\mathcal{L}_{ST}(c)$ for which the main theorem holds but for all $x \in \mathbb{R}$?

Downward absolute to L.

Suppose that $\varphi \in \mathcal{L}_{ST}(c)$, $ZFC + \varphi$ is β -satisfiable, and that $ZFC + \varphi$ is β -categorical.

• Must $ZFC + \varphi \models_{\beta}$ "If $c \in \mathbb{R}$ then CH holds"?

Back to the original question

Question

Suppose that $\mathrm{ZFC} + \varphi$ is β -satisfiable and β -categorical.

• Must
$$\operatorname{ZFC} \models_{\beta} V = L?$$

Fixing x ∈ ℝ and adding a constant for x, the answer is no, for a Turing cone of x.

Thus if the answer is yes, then the proof **cannot** relativize to a real.

There is no known nontrivial example of this.

On the other hand, if the answer is no, then a completely new method for building transitive models of $\rm ZFC$ is needed.

- A technique which is:
 - Beyond forcing.
 - Beyond methods from the Inner Model Program.