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The tree property

I A higher analogue of König’s infinity lemma;

I It holds at large cardinals and has large cardinal strength;

I Can be forced at successor cardinals;

I General motivation: how much compactness can be obtained
in the universe? What is compactness? An instance where if a
property holds for all substructures of a given object, then it
holds for the object itself.

I Making small cardinals behave like large cardinals.

Theorem
(Cummings-Hayut-Magidor-Neeman-S.-Unger, the pandemic years)
From large cardinals, we can force the tree property simultaneously
at every regular cardinal in the interval [ℵ2,ℵω2+2].
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The tree property

König: Every infinite, finitely branching tree has an infinite branch.

The tree property generalizes that fact to higher cardinals.
(T, <) is a tree if for each node σ ∈ T, the predecessors of σ,
pred(σ) = {τ ∈ T | τ < σ} is a well-ordered set i.e. a linear order
with no infinite descending sequences.

I for each σ ∈ T, there is a unique ordinal α, such that
(pred(σ), <T) is isomorphic to (α,<).

I the order type of pred(σ), denoted o.t.(σ), is this unique α.

I the height of T is sup{o.t.(σ) | σ ∈ T}.
I for each α < height(T), the α-th level of T is

Tα = {σ | o.t.(σ) = α}.

Definition
The tree property at κ states that every tree of height κ and
levels of size less than κ has an unbounded branch.
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The tree property

I The tree property at ω holds by König’s lemma.

I At ℵ1 it fails: there is an Aronszajn tree. (elements are some
increasing bounded sequences of rationals)

What about at ℵ2?
I CH implies the tree property fails at ℵ2.
I (Mitchell, 1972) The tree property can be forced at ℵ2, from

large cardinals.

The tree property fails at singular cardinals. E.g. at ℵω.

o.t ℵn

o.t ℵ2

o.t ℵ1

o.t ℵ0

•

. .
.

. .
.
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The tree property

Q: Can we get the tree property for all regular κ > ℵ1
simultaneously?

I (Abraham 1983) Can force the tree property at ℵ2 and ℵ3
simultaneously.

I (Cummings-Foreman, 1998) Can force the tree property at ℵn
for all n > 1 simultaneously.

I (Magidor-Shelah, 1996) Can force the tree property at ℵω+1.

I (Neeman, 2009) Can force the tree property at ℵn for all
n > 1 and at ℵω+1 simultaneously.

Above, SCH holds. To add ℵω+2 with ℵω strong limit, need SCH
to fail at ℵω.

Question (Woodin): Can we get the tree property at ℵω+1 with
not SCH at ℵω?
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TP and cardinal arithmetic.

I Recall: CH implies the tree property fails at ℵ2.

I (Specker) More generally, µ<µ = µ implies the tree property
fails at µ+.

I So, setting µ = κ+, if 2κ = κ+, then the tree property fails at
κ++.

Consequences at singulars:
the Singular Cardinal Hypothesis (SCH):
If κ is singular strong limit (i.e. τ < κ→ 2τ < κ), then 2κ = κ+

(a parallel of CH for singulars).

By Specker, if κ is a singular strong limit, the failure of SCH at κ
is necessary for the tree property at κ++.
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The tree property

Woodin: Can we get the tree property at ℵω+1 with not SCH at
ℵω?

Partial progress throughout the years:

I (Neeman, 2009) Can force the tree property at κ+ together
with failure of SCH at κ.

I (S. 2012) Can force the tree property at ℵω2+1 together with
failure of SCH at ℵω2 .

I (S. 2015) Can force the tree property at κ+ and κ++ for a
singular strong limit κ.

I (S.-Unger, 2018) Can force the tree property at ℵω2+1 and
ℵω2+2 simultaneously.
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Moral of the story so far:

To get the tree property everywhere (or at least at long intervals),

I need many failures of GCH and SCH;

I need large cardinals hypothesis.

I need Prikry type forcing.
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The tree property and large cardinals

Fact: If κ is measurable, then the tree property holds at κ.

•κ

•
j(κ)

j

T

j(T)
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Forcing the tree property at ℵ2

Mitchell forcing M.

Start with a weakly compact λ.
Note that the tree property holds at λ.
TODO for M:

1. Make λ = ℵ2 by collapsing cardinals in (ω1, λ) to ω1.

2. Add λ-many subsets to ω to get not CH.

Prove the tree property still holds at λ in the generic extension.
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The proof of the tree property:

1. Let j : V→ M an elementary embedding with critical point λ.

2. Lift j to j : V[G]→ M; j ∈ V[G][H].

3. Find a branch as before. But this time the branch is in the
outer model V[G][H].

4. Branch preservation lemma to show the branch is in V[G]
where it belongs.

General strategy for proving the tree property: lift an elementary
embedding; find a branch in the outer model; pull back the branch.
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Branch lemmas

A branch preservation lemma says that a certain poset cannot add
a branch.
branch preservation for closed forcing
(Silver) Let 2<τ < κ ≤ 2τ . Then τ+ closed forcing does not add
branches to a tree of height κ and levels of size < κ.

branch preservation for cc forcing

1. κ-Knaster forcing does not add branches to a tree of height κ.

2. (Unger) If P× P is κ c.c., then P does not add branches to a
tree of height κ.

branch preservation for formerly closed forcing
(Unger) Suppose that there is τ < κ with 2τ > κ; W is a κ-c.c.
extension of V, P ∈ V is κ-closed. Then if T ∈W is a tree of
height κ+ and levels of size ≤ κ, P does not add new branches
through T.
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The tree property at ω many successive cardinals

Iterate Mitchell forcing.
Main difficultly: interference between the successive cardinals; need
supercompacts.
The “AUS construction” for an ω-block of cardinals:
Let 〈κn | 2 ≤ n < ω〉 be increasing, κn is s.c. for n ≥ 2;
Force to get the tree property at each κn, n ≥ 2.
TODO of the AUS:

1. The A-part adds Cohen subsets to make 2κn = κn+2 for all n;

2. The U-part ensures we can lift the right elementary
embedding for the proof of the tree property.

3. The S-part collapses cardinals and make κn+1 = κ+n for n > 0.
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At successors of singulars

Let 〈κn | n < ω〉 be increasing supercompact cardinals with limit κ.

(Magidor-Shelah) The tree property holds at κ+.

At smaller cardinals:

Thm: Let C =
∏

n Col(κn, < κn+1) with full support, and for
ρ < κ0, let L(ρ) := Col(ω, ρ)× Col(ρ+, < κ0). Then there is
ρ < κ0, such that in V[C][L(ρ)] the tree property holds at κ+.
I.e. the tree property holds at ℵω+1.

The above generalizes for many other “nice” posets in place of C
and L(ρ). In particular, can arrange to add reals and add Cohen
subsets of ρ+.

(Neeman) From ω-many supercompact cardinals, can force the
tree property at each ℵn, n ≥ 2 and and ℵω+1 simultaneously.
Idea: Use a theorem like the above; but need more flexibility in the
definition of C and L(ρ) to add Cohen subsets of ρ+ and add reals.
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At successors of singulars con’t

All supercompacts below are indestructible. Suppose in V, 2ω = θ,
where θ is generically indestructible supercompact.

Let λ := λ0 be supercompact; set λn+1 to be the next
supercompact after λn, λω = supn λn, λω+1 = λ+ω , λω+n+1 is the
next supercompact after λn. Let Cλ :=∏
n

Col(λn, < λn+1)×Col(λω+1, < λω+2)×Add(λn, λn+)×Add(λ17, λω+2).

For ρ < θ, let Lλ(ρ) := Col(ω, ρ)× Col(ρ+, λ1).

Thm †: There is ρ < θ, such that the tree property λω+1 holds in
V[Cλ][Lλ(ρ)].
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At successors of singulars con’t

Thm †: There is ρ < θ, such that the tree property λω+1 holds in
V[Cλ][Lλ(ρ)].

ρ above reflects λω below θ; it is a limit of ω many inaccessible
cardinals in V0, and an ω-successor cardinal in V.

Remarks:

I By the pigeon hole principle, can fix a single ρ to work for all
supercompact λ’s.

I Cλ projects to and AUS construction.
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Branch lemmas, again.

Sometimes, esp. at successors of singulars, we read the branch in a
models before we have the tree.

Need a notion of “pre-tree” or a system.
Suppose cf(ν) = ω, µ = ν+. D ⊂ µ unbounded, τ ≤ ν.

Def. 〈Ri | i ∈ I〉 is a system on D× τ iff

I each Ri is a transitive order on dom(Ri) ⊂ D× τ ;

I if τ0Riσ and τ0Riσ, then τ0, τ1 are Ri-comparable;

I and for α < β both in D, there is i, δ, η, such that
〈α, δ〉Ri〈β, η〉.

Def. Above, a system of branches is 〈bj | j ∈ J〉 is s.t. each bj is
a branch through Ri for some i, and for all 〈α, η〉 ∈ D× τ , there is
j with 〈α, η〉 ∈ j.
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Branch lemmas, again.

〈bj | j ∈ J〉 is system of branches through a system 〈Ri | i ∈ I〉 on
D× τ if each bj is a branch through Ri for some i, and for all
〈α, η〉 ∈ D× τ , there is j with 〈α, η〉 ∈ j.

Lemma
(roughly). Suppose a formerly closed forcing adds a system of
branches through a system. Then there is already a branch in V.
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Violating SCH

To get the tree property at ℵω2+2 with ℵω2 strong limit, need not
SCH at ℵω2 .

A warm up:

I Suppose 〈κn | n < ω〉 are increasing supercompact cardinals,
κ = κ0, µ = (supn κn)+, 2κ = µ+.

I Let U be a normal measure on Pκ(µ). For each n, let Un be
the projection to Pκ(κn).

I Define P to have conditions 〈x0, ..., xn−1,An,An+1, ...〉, where:

1. the stem 〈x0, ..., xn−1〉 is an ≺-increasing sequence;
2. An,∈ Un,An+1 ∈ Un+1, ... are measure one sets.

I P adds a generic sequence 〈xn | n < ω〉 with
⋃

n xn = supn κn,
and so in V[P],

1. κ is singular strong limit; setting τn := xn ∩ κ, we have
κ = supn τn,

2. κ+ = µ, 2κ = µ+. So SCH at κ fails.

I (Neeman, 2009) In V[P], the tree property holds at κ+.
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For our model: use diagonal Gitik-Sharon-Neeman style Prikry
forcing combined with many AUS constructions,
both in the preparation and interleaved with the Prikry.

Start with κ < λa < λb supercompacts; λaω+3 < λb.
Key points:

I prepare the ground model, to arrange the tree property at
[λaω+2, λ

b
ω), the B-block;

I use normal measures on Pκ(λbn), n < ω for the diagonal
Prikry;

I make κ = ℵω2 , λbω+1 = κ+, λbω+2 = κ++, 2κ = λbω+3 = κ+3;

I interleave AUS constructions in between any two successive
Prikry points below κ for the reflections of the the A-block;

I use the AUS construction from the preparation to get the tree
property below κ for the B-block.
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Successors of regulars below ℵω2

For “the B-block”: Use the AUS construction from the
preparation.

For “the A-block”: Use the AUS construction from the interleaved
components in the Prikry forcing.
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Successors of singulars below ℵω2

Recall, using † we fixed ρ < θ, so that the tree property at λω+1

holds V[Cλ][Lλ(ρ)] for all λ; θ is the future ℵ2, ρ+ the future ℵ1.

Let τ be a Prikry point below κ:

I For the tree property at λaω+1 use † for λ = λa0;

I For the tree property at λbω+1 use † for λ = λb0;

In both cases we show that Cλ projects to the relevant part of our
posets in a branch preserving quotient.
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Further Directions

The next steps:

1. The uncountable case;

2. Reflection i.e. how do we pick ρ to also work for the
uncountable case. .
Test question: can we ge the tree property at ℵω1+1 and ℵ2
simultaneously?

3. Test question: can we get the tree property at ℵω1+1 with the
failure of SCH at ℵω1?

THANK YOU
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