Dima Sinapova

Rutgers University Arctic 2023

February, 2023

A higher analogue of König's infinity lemma;

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;
- General motivation: how much *compactness* can be obtained in the universe? What is compactness?

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;
- General motivation: how much compactness can be obtained in the universe? What is compactness? An instance where if a property holds for all substructures of a given object,

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;
- General motivation: how much compactness can be obtained in the universe? What is compactness? An instance where if a property holds for all substructures of a given object, then it holds for the object itself.

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;
- General motivation: how much compactness can be obtained in the universe? What is compactness? An instance where if a property holds for all substructures of a given object, then it holds for the object itself.
- Making small cardinals behave like large cardinals.

- A higher analogue of König's infinity lemma;
- It holds at large cardinals and has large cardinal strength;
- Can be forced at successor cardinals;
- General motivation: how much compactness can be obtained in the universe? What is compactness? An instance where if a property holds for all substructures of a given object, then it holds for the object itself.
- Making small cardinals behave like large cardinals.

Theorem

(Cummings-Hayut-Magidor-Neeman-S.-Unger, the pandemic years) From large cardinals, we can force the tree property simultaneously at every regular cardinal in the interval $[\aleph_2, \aleph_{\omega^2+2}]$.

König: Every infinite, finitely branching tree has an infinite branch.

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals.

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

for each σ ∈ T, there is a unique ordinal α, such that (pred(σ), <_T) is isomorphic to (α, <).</p>

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

- for each σ ∈ T, there is a unique ordinal α, such that (pred(σ), <_T) is isomorphic to (α, <).</p>
- the order type of pred(σ), denoted o.t.(σ), is this unique α .

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

- For each σ ∈ T, there is a unique ordinal α, such that (pred(σ), <_T) is isomorphic to (α, <).</p>
- the order type of pred(σ), denoted o.t.(σ), is this unique α .
- the height of T is sup{o.t.(σ) | $\sigma \in T$ }.

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

- For each σ ∈ T, there is a unique ordinal α, such that (pred(σ), <_T) is isomorphic to (α, <).</p>
- the order type of pred(σ), denoted o.t.(σ), is this unique α .
- the height of T is $\sup\{o.t.(\sigma) \mid \sigma \in T\}$.
- for each α < height(T), the α -th level of T is $T_{\alpha} = \{ \sigma \mid o.t.(\sigma) = \alpha \}.$

König: Every infinite, finitely branching tree has an infinite branch. The tree property generalizes that fact to higher cardinals. (T, <) is a **tree** if for each node $\sigma \in T$, the predecessors of σ , $pred(\sigma) = \{\tau \in T \mid \tau < \sigma\}$ is a well-ordered set i.e. a linear order with no infinite descending sequences.

- For each σ ∈ T, there is a unique ordinal α, such that (pred(σ), <_T) is isomorphic to (α, <).</p>
- the order type of pred(σ), denoted o.t.(σ), is this unique α .
- the height of T is $\sup\{o.t.(\sigma) \mid \sigma \in T\}$.
- For each α < height(T), the α-th level of T is T_α = {σ | o.t.(σ) = α}.

Definition

The **tree property** at κ states that every tree of height κ and levels of size less than κ has an unbounded branch.

• The tree property at ω holds by König's lemma.

- The tree property at ω holds by König's lemma.
- At \aleph_1 it fails:

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)
- What about at \aleph_2 ?
 - CH implies the tree property fails at \aleph_2 .

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- ► (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- ► (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

The tree property fails at singular cardinals.

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- ► (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

The tree property fails at singular cardinals. E.g. at \aleph_{ω} .

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- ► (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

The tree property fails at singular cardinals. E.g. at \aleph_{ω} .

- The tree property at ω holds by König's lemma.
- At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

The tree property fails at singular cardinals. E.g. at \aleph_{ω} .

A long-standing question (1972): Can the tree property be obtained for all regular cardinals greater than \aleph_1 simultaneously?

- The tree property at ω holds by König's lemma.
- ► At ℵ₁ it fails: there is an Aronszajn tree. (elements are some increasing bounded sequences of rationals)

What about at \aleph_2 ?

- CH implies the tree property fails at \aleph_2 .
- (Mitchell, 1972) The tree property can be forced at ℵ₂, from large cardinals.

The tree property fails at singular cardinals. E.g. at \aleph_{ω} .

A long-standing question (1972): Can the tree property be obtained for all regular cardinals greater than \aleph_1 simultaneously?

Here: do it at $[\aleph_2, \aleph_{\omega^2+2}]$ with \aleph_{ω^2} strong limit.

▶ (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.

- ► (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.
- Cummings-Foreman, 1998) Can force the tree property at ℵ_n for all n > 1 simultaneously.

- ► (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.
- ▶ (Cummings-Foreman, 1998) Can force the tree property at ℵ_n for all n > 1 simultaneously.
- (Magidor-Shelah, 1996) Can force the tree property at $\aleph_{\omega+1}$.

- ► (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.
- ▶ (Cummings-Foreman, 1998) Can force the tree property at ℵ_n for all n > 1 simultaneously.
- (Magidor-Shelah, 1996) Can force the tree property at $\aleph_{\omega+1}$.
- (Neeman, 2009) Can force the tree property at ℵ_n for all n > 1 and at ℵ_{ω+1} simultaneously.

- ► (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.
- ▶ (Cummings-Foreman, 1998) Can force the tree property at ℵ_n for all n > 1 simultaneously.
- (Magidor-Shelah, 1996) Can force the tree property at $\aleph_{\omega+1}$.
- (Neeman, 2009) Can force the tree property at ℵ_n for all n > 1 and at ℵ_{ω+1} simultaneously.

Above, SCH holds. To add $\aleph_{\omega+2}$ with \aleph_{ω} strong limit, need SCH to fail at \aleph_{ω} .
Q: Can we get the tree property for all regular $\kappa > \aleph_1$ simultaneously?

- ► (Abraham 1983) Can force the tree property at ℵ₂ and ℵ₃ simultaneously.
- ▶ (Cummings-Foreman, 1998) Can force the tree property at ℵ_n for all n > 1 simultaneously.
- (Magidor-Shelah, 1996) Can force the tree property at $\aleph_{\omega+1}$.
- (Neeman, 2009) Can force the tree property at ℵ_n for all n > 1 and at ℵ_{ω+1} simultaneously.

Above, SCH holds. To add $\aleph_{\omega+2}$ with \aleph_{ω} strong limit, need SCH to fail at \aleph_{ω} .

Question (Woodin): Can we get the tree property at $\aleph_{\omega+1}$ with not SCH at \aleph_{ω} ?

TP and cardinal arithmetic.

▶ Recall: CH implies the tree property fails at \aleph_2 .

- ▶ Recall: CH implies the tree property fails at \aleph_2 .
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .

TP and cardinal arithmetic.

- ► Recall: CH implies the tree property fails at ℵ₂.
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .
- So, setting $\mu = \kappa^+$, if $2^{\kappa} = \kappa^+$, then the tree property fails at κ^{++} .

- ► Recall: CH implies the tree property fails at ℵ₂.
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .
- So, setting $\mu = \kappa^+$, if $2^{\kappa} = \kappa^+$, then the tree property fails at κ^{++} .

- ► Recall: CH implies the tree property fails at ℵ₂.
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .
- So, setting $\mu = \kappa^+$, if $2^{\kappa} = \kappa^+$, then the tree property fails at κ^{++} .

the Singular Cardinal Hypothesis (SCH):

If κ is singular strong limit (i.e. $\tau < \kappa \rightarrow 2^{\tau} < \kappa$),

- ► Recall: CH implies the tree property fails at ℵ₂.
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .
- So, setting $\mu = \kappa^+$, if $2^{\kappa} = \kappa^+$, then the tree property fails at κ^{++} .

the Singular Cardinal Hypothesis (SCH):

If κ is singular strong limit (i.e. $\tau < \kappa \rightarrow 2^{\tau} < \kappa$), then $2^{\kappa} = \kappa^+$ (a parallel of CH for singulars).

- Recall: CH implies the tree property fails at \aleph_2 .
- (Specker) More generally, $\mu^{<\mu} = \mu$ implies the tree property fails at μ^+ .
- So, setting $\mu = \kappa^+$, if $2^{\kappa} = \kappa^+$, then the tree property fails at κ^{++} .

the Singular Cardinal Hypothesis (SCH):

If κ is singular strong limit (i.e. $\tau < \kappa \rightarrow 2^{\tau} < \kappa$), then $2^{\kappa} = \kappa^+$ (a parallel of CH for singulars).

By Specker, if κ is a singular strong limit, the failure of SCH at κ is necessary for the tree property at κ^{++} .

Partial progress throughout the years:

 (Neeman, 2009) Can force the tree property at κ⁺ together with failure of SCH at κ.

Partial progress throughout the years:

- (Neeman, 2009) Can force the tree property at κ⁺ together with failure of SCH at κ.
- (S. 2012) Can force the tree property at ℵ_{ω²+1} together with failure of SCH at ℵ_{ω²}.

Partial progress throughout the years:

- (Neeman, 2009) Can force the tree property at κ⁺ together with failure of SCH at κ.
- ► (S. 2012) Can force the tree property at ℵ_{ω²+1} together with failure of SCH at ℵ_{ω²}.
- (S. 2015) Can force the tree property at κ⁺ and κ⁺⁺ for a singular strong limit κ.

Partial progress throughout the years:

- (Neeman, 2009) Can force the tree property at κ⁺ together with failure of SCH at κ.
- ► (S. 2012) Can force the tree property at ℵ_{ω²+1} together with failure of SCH at ℵ_{ω²}.
- (S. 2015) Can force the tree property at κ⁺ and κ⁺⁺ for a singular strong limit κ.
- (S.-Unger, 2018) Can force the tree property at \aleph_{ω^2+1} and \aleph_{ω^2+2} simultaneously.

Moral of the story so far:

Moral of the story so far:

To get the tree property everywhere (or at least at long intervals),

- need many failures of GCH and SCH;
- need large cardinals hypothesis.
- need Prikry type forcing.

The tree property and large cardinals

 ${\sf Mitchell} \ {\sf forcing} \ {\mathbb M}.$

Mitchell forcing \mathbb{M} .

Start with a weakly compact λ . Note that the tree property holds at λ . TODO for \mathbb{M} : Mitchell forcing \mathbb{M} .

Start with a weakly compact λ . Note that the tree property holds at λ . TODO for \mathbb{M} :

- 1. Make $\lambda = \aleph_2$ by collapsing cardinals in (ω_1, λ) to ω_1 .
- 2. Add $\lambda\text{-many}$ subsets to ω to get not CH.

Mitchell forcing \mathbb{M} .

Start with a weakly compact λ . Note that the tree property holds at λ . TODO for \mathbb{M} :

- 1. Make $\lambda = \aleph_2$ by collapsing cardinals in (ω_1, λ) to ω_1 .
- 2. Add $\lambda\text{-many}$ subsets to ω to get not CH.

Prove the tree property still holds at λ in the generic extension.

1. Let $j:V\to M$ an elementary embedding with critical point $\lambda.$

- 1. Let $j:V\to M$ an elementary embedding with critical point $\lambda.$
- 2. Lift j to $j:V[G] \rightarrow M; \ j \in V[G][H].$
- Find a branch as before. But this time the branch is in the outer model V[G][H].

- 1. Let $j: V \to M$ an elementary embedding with critical point λ .
- 2. Lift j to $j:V[G] \rightarrow M; \ j \in V[G][H].$
- Find a branch as before. But this time the branch is in the outer model V[G][H].
- 4. Branch preservation lemma to show the branch is in $\mathsf{V}[\mathsf{G}]$ where it belongs.

- 1. Let $j: V \to M$ an elementary embedding with critical point λ .
- 2. Lift j to $j:V[G] \rightarrow M; \ j \in V[G][H].$
- Find a branch as before. But this time the branch is in the outer model V[G][H].
- 4. Branch preservation lemma to show the branch is in V[G] where it belongs.

General strategy for proving the tree property: lift an elementary embedding; find a branch in the outer model; pull back the branch.

Branch lemmas

A branch preservation lemma says that a certain poset cannot add a branch.

Branch lemmas

A branch preservation lemma says that a certain poset cannot add a branch.

branch preservation for closed forcing
Branch lemmas

A branch preservation lemma says that a certain poset cannot add a branch.

branch preservation for closed forcing (Silver) Let $2^{\leq \tau} \leq r \leq 2^{\tau}$. Then π^+ closed for

(Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

Branch lemmas

A branch preservation lemma says that a certain poset cannot add a branch.

branch preservation for closed forcing (Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

branch preservation for cc forcing

branch preservation for closed forcing (Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

branch preservation for cc forcing

1. κ -Knaster forcing does not add branches to a tree of height κ .

branch preservation for closed forcing (Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

branch preservation for cc forcing

- 1. κ -Knaster forcing does not add branches to a tree of height κ .
- 2. (Unger) If $\mathbb{P} \times \mathbb{P}$ is κ c.c., then \mathbb{P} does not add branches to a tree of height κ .

branch preservation for closed forcing (Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

branch preservation for cc forcing

- 1. κ -Knaster forcing does not add branches to a tree of height κ .
- 2. (Unger) If $\mathbb{P} \times \mathbb{P}$ is κ c.c., then \mathbb{P} does not add branches to a tree of height κ .

branch preservation for formerly closed forcing

branch preservation for closed forcing (Silver) Let $2^{<\tau} < \kappa \leq 2^{\tau}$. Then τ^+ closed forcing does not add branches to a tree of height κ and levels of size $< \kappa$.

branch preservation for cc forcing

- 1. κ -Knaster forcing does not add branches to a tree of height κ .
- 2. (Unger) If $\mathbb{P} \times \mathbb{P}$ is κ c.c., then \mathbb{P} does not add branches to a tree of height κ .

branch preservation for formerly closed forcing

(Unger) Suppose that there is $\tau < \kappa$ with $2^{\tau} > \kappa$; W is a κ -c.c. extension of V, $\mathbb{P} \in V$ is κ -closed. Then if $T \in W$ is a tree of height κ^+ and levels of size $\leq \kappa$, \mathbb{P} does not add new branches through T.

Iterate Mitchell forcing. Main difficultly: interference between the successive cardinals; need supercompacts.

Main difficultly: interference between the successive cardinals; need supercompacts.

The **"AUS construction"** for an ω -block of cardinals:

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

Let $\langle \kappa_n \mid 2 \leq n < \omega \rangle$ be increasing, κ_n is s.c. for $n \geq 2$;

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

Let $\langle \kappa_n \mid 2 \leq n < \omega \rangle$ be increasing, κ_n is s.c. for $n \geq 2$; Force to get the tree property at each κ_n , $n \geq 2$. TODO of the AUS:

1. The A-part adds Cohen subsets to make $2^{\kappa_n} = \kappa_{n+2}$ for all n;

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

- 1. The A-part adds Cohen subsets to make $2^{\kappa_n} = \kappa_{n+2}$ for all n;
- 2. The U-part ensures we can lift the right elementary embedding for the proof of the tree property.

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

- 1. The A-part adds Cohen subsets to make $2^{\kappa_n} = \kappa_{n+2}$ for all n;
- 2. The U-part ensures we can lift the right elementary embedding for the proof of the tree property.
- 3. The S-part collapses cardinals and make $\kappa_{n+1} = \kappa_n^+$ for n > 0.

Main difficultly: interference between the successive cardinals; need supercompacts.

The "AUS construction" for an ω -block of cardinals:

- 1. The A-part adds Cohen subsets to make $2^{\kappa_n} = \kappa_{n+2}$ for all n;
- 2. The U-part ensures we can lift the right elementary embedding for the proof of the tree property.
- 3. The S-part collapses cardinals and make $\kappa_{n+1} = \kappa_n^+$ for n > 0.

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ .

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Thm: Let $\mathbb{C} = \prod_{n} \operatorname{Col}(\kappa_{n}, < \kappa_{n+1})$ with full support, and for $\rho < \kappa_{0}$, let $\mathbb{L}(\rho) := \operatorname{Col}(\omega, \rho) \times \operatorname{Col}(\rho^{+}, < \kappa_{0})$.

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Thm: Let $\mathbb{C} = \prod_{n} \operatorname{Col}(\kappa_{n}, < \kappa_{n+1})$ with full support, and for $\rho < \kappa_{0}$, let $\mathbb{L}(\rho) := \operatorname{Col}(\omega, \rho) \times \operatorname{Col}(\rho^{+}, < \kappa_{0})$. Then there is $\rho < \kappa_{0}$, such that in $V[\mathbb{C}][\mathbb{L}(\rho)]$ the tree property holds at κ^{+} . I.e. the tree property holds at $\aleph_{\omega+1}$.

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Thm: Let $\mathbb{C} = \prod_{n} \operatorname{Col}(\kappa_{n}, < \kappa_{n+1})$ with full support, and for $\rho < \kappa_{0}$, let $\mathbb{L}(\rho) := \operatorname{Col}(\omega, \rho) \times \operatorname{Col}(\rho^{+}, < \kappa_{0})$. Then there is $\rho < \kappa_{0}$, such that in $V[\mathbb{C}][\mathbb{L}(\rho)]$ the tree property holds at κ^{+} . I.e. the tree property holds at $\aleph_{\omega+1}$.

The above generalizes for many other "nice" posets in place of $\mathbb C$ and $\mathbb L(\rho).$

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Thm: Let $\mathbb{C} = \prod_{n} \operatorname{Col}(\kappa_{n}, < \kappa_{n+1})$ with full support, and for $\rho < \kappa_{0}$, let $\mathbb{L}(\rho) := \operatorname{Col}(\omega, \rho) \times \operatorname{Col}(\rho^{+}, < \kappa_{0})$. Then there is $\rho < \kappa_{0}$, such that in $V[\mathbb{C}][\mathbb{L}(\rho)]$ the tree property holds at κ^{+} . I.e. the tree property holds at $\aleph_{\omega+1}$.

The above generalizes for many other "nice" posets in place of \mathbb{C} and $\mathbb{L}(\rho)$. In particular, can arrange to add reals and add Cohen subsets of ρ^+ .

(Neeman) From ω -many supercompact cardinals, can force the tree property at each \aleph_n , $n \ge 2$ and and $\aleph_{\omega+1}$ simultaneously.

Let $\langle \kappa_n \mid n < \omega \rangle$ be increasing supercompact cardinals with limit κ . (Magidor-Shelah) The tree property holds at κ^+ .

At smaller cardinals:

Thm: Let $\mathbb{C} = \prod_{n} \operatorname{Col}(\kappa_{n}, < \kappa_{n+1})$ with full support, and for $\rho < \kappa_{0}$, let $\mathbb{L}(\rho) := \operatorname{Col}(\omega, \rho) \times \operatorname{Col}(\rho^{+}, < \kappa_{0})$. Then there is $\rho < \kappa_{0}$, such that in $V[\mathbb{C}][\mathbb{L}(\rho)]$ the tree property holds at κ^{+} . I.e. the tree property holds at $\aleph_{\omega+1}$.

The above generalizes for many other "nice" posets in place of \mathbb{C} and $\mathbb{L}(\rho)$. In particular, can arrange to add reals and add Cohen subsets of ρ^+ .

(Neeman) From ω -many supercompact cardinals, can force the tree property at each \aleph_n , $n \geq 2$ and and $\aleph_{\omega+1}$ simultaneously. Idea: Use a theorem like the above; but need more flexibility in the definition of \mathbb{C} and $\mathbb{L}(\rho)$ to add Cohen subsets of ρ^+ and add reals. All supercompacts below are indestructible.

Let $\lambda := \lambda_0$ be supercompact; set λ_{n+1} to be the next supercompact after λ_n , $\lambda_\omega = \sup_n \lambda_n$, $\lambda_{\omega+1} = \lambda_\omega^+$, $\lambda_{\omega+n+1}$ is the next supercompact after λ_n .

Let $\lambda := \lambda_0$ be supercompact; set λ_{n+1} to be the next supercompact after λ_n , $\lambda_\omega = \sup_n \lambda_n$, $\lambda_{\omega+1} = \lambda_\omega^+$, $\lambda_{\omega+n+1}$ is the next supercompact after λ_n . Let $\mathbb{C}_{\lambda} :=$

$$\prod_{\mathsf{n}}\mathsf{Col}(\lambda_{\mathsf{n}},<\lambda_{\mathsf{n}+1})\times\mathsf{Col}(\lambda_{\omega+1},<\lambda_{\omega+2})\times\mathsf{Add}(\lambda_{\mathsf{n}},\lambda_{\mathsf{n}+})\times\mathsf{Add}(\lambda_{17},\lambda_{\omega+2}).$$

Let $\lambda := \lambda_0$ be supercompact; set λ_{n+1} to be the next supercompact after λ_n , $\lambda_\omega = \sup_n \lambda_n$, $\lambda_{\omega+1} = \lambda_\omega^+$, $\lambda_{\omega+n+1}$ is the next supercompact after λ_n . Let $\mathbb{C}_{\lambda} :=$

$$\prod_{\mathsf{n}}\mathsf{Col}(\lambda_{\mathsf{n}},<\lambda_{\mathsf{n}+1})\times\mathsf{Col}(\lambda_{\omega+1},<\lambda_{\omega+2})\times\mathsf{Add}(\lambda_{\mathsf{n}},\lambda_{\mathsf{n}+})\times\mathsf{Add}(\lambda_{17},\lambda_{\omega+2})\times$$

For $\rho < \theta$, let $\mathbb{L}_{\lambda}(\rho) := \mathsf{Col}(\omega, \rho) \times \mathsf{Col}(\rho^+, \lambda_1)$.

Let $\lambda := \lambda_0$ be supercompact; set λ_{n+1} to be the next supercompact after λ_n , $\lambda_\omega = \sup_n \lambda_n$, $\lambda_{\omega+1} = \lambda_\omega^+$, $\lambda_{\omega+n+1}$ is the next supercompact after λ_n . Let $\mathbb{C}_{\lambda} :=$

$$\prod_{\mathsf{n}}\mathsf{Col}(\lambda_{\mathsf{n}},<\lambda_{\mathsf{n}+1})\times\mathsf{Col}(\lambda_{\omega+1},<\lambda_{\omega+2})\times\mathsf{Add}(\lambda_{\mathsf{n}},\lambda_{\mathsf{n}+})\times\mathsf{Add}(\lambda_{17},\lambda_{\omega+2})\times$$

For $\rho < \theta$, let $\mathbb{L}_{\lambda}(\rho) := \mathsf{Col}(\omega, \rho) \times \mathsf{Col}(\rho^+, \lambda_1)$.

Thm †: There is $\rho < \theta$, such that the tree property $\lambda_{\omega+1}$ holds in $V[\mathbb{C}_{\lambda}][\mathbb{L}_{\lambda}(\rho)]$.

 ρ above *reflects* λ_{ω} below θ ; it is a limit of ω many inaccessible cardinals in V₀, and an ω -successor cardinal in V.

 ρ above *reflects* λ_{ω} below θ ; it is a limit of ω many inaccessible cardinals in V₀, and an ω -successor cardinal in V.

Remarks:

 ρ above *reflects* λ_{ω} below θ ; it is a limit of ω many inaccessible cardinals in V₀, and an ω -successor cardinal in V.

Remarks:

By the pigeon hole principle, can fix a single ρ to work for all supercompact λ's.

 ρ above *reflects* λ_{ω} below θ ; it is a limit of ω many inaccessible cardinals in V₀, and an ω -successor cardinal in V.

Remarks:

- By the pigeon hole principle, can fix a single ρ to work for all supercompact λ's.
- \mathbb{C}_{λ} projects to and AUS construction.
Sometimes, esp. at successors of singulars, we read the branch in a models before we have the tree.

Sometimes, esp. at successors of singulars, we read the branch in a models before we have the tree.

Need a notion of "pre-tree" or *a system*. Suppose $cf(\nu) = \omega$, $\mu = \nu^+$. $D \subset \mu$ unbounded, $\tau \leq \nu$.

Suppose $cf(\nu) = \omega$, $\mu = \nu^+$. $D \subset \mu$ unbounded, $\tau \leq \nu$.

Def. $\langle \mathcal{R}_i \mid i \in I \rangle$ is a **system** on $D \times \tau$ iff

Suppose $cf(\nu) = \omega$, $\mu = \nu^+$. $D \subset \mu$ unbounded, $\tau \leq \nu$.

Def. $\langle \mathcal{R}_i \mid i \in I \rangle$ is a **system** on $D \times \tau$ iff

- each \mathcal{R}_i is a transitive order on $\operatorname{dom}(\mathcal{R}_i) \subset \mathsf{D} \times \tau$;
- if $\tau_0 \mathcal{R}_i \sigma$ and $\tau_0 \mathcal{R}_i \sigma$, then τ_0, τ_1 are \mathcal{R}_i -comparable;
- and for $\alpha < \beta$ both in D, there is i, δ , η , such that $\langle \alpha, \delta \rangle \mathcal{R}_{i} \langle \beta, \eta \rangle$.

Suppose $cf(\nu) = \omega$, $\mu = \nu^+$. $D \subset \mu$ unbounded, $\tau \leq \nu$.

Def. $\langle \mathcal{R}_i \mid i \in I \rangle$ is a system on $D \times \tau$ iff

- each \mathcal{R}_i is a transitive order on $\operatorname{dom}(\mathcal{R}_i) \subset \mathsf{D} \times \tau$;
- if $\tau_0 \mathcal{R}_i \sigma$ and $\tau_0 \mathcal{R}_i \sigma$, then τ_0, τ_1 are \mathcal{R}_i -comparable;
- and for $\alpha < \beta$ both in D, there is i, δ , η , such that $\langle \alpha, \delta \rangle \mathcal{R}_{i} \langle \beta, \eta \rangle$.

Def. Above, a system of branches is $\langle b_j \mid j \in J \rangle$ is s.t.

Sometimes, esp. at successors of singulars, we read the branch in a models before we have the tree.

Need a notion of "pre-tree" or *a system*. Suppose $cf(\nu) = \omega$, $\mu = \nu^+$. $D \subset \mu$ unbounded, $\tau \leq \nu$.

Def. $\langle \mathcal{R}_i \mid i \in \mathsf{I} \rangle$ is a system on $\mathsf{D} \times \tau$ iff

- each \mathcal{R}_i is a transitive order on $\operatorname{dom}(\mathcal{R}_i) \subset \mathsf{D} \times \tau$;
- if $\tau_0 \mathcal{R}_i \sigma$ and $\tau_0 \mathcal{R}_i \sigma$, then τ_0, τ_1 are \mathcal{R}_i -comparable;
- and for $\alpha < \beta$ both in D, there is i, δ , η , such that $\langle \alpha, \delta \rangle \mathcal{R}_{i} \langle \beta, \eta \rangle$.

Def. Above, a system of branches is $\langle b_j \mid j \in J \rangle$ is s.t. each b_j is a branch through \mathcal{R}_i for some i, and for all $\langle \alpha, \eta \rangle \in D \times \tau$, there is j with $\langle \alpha, \eta \rangle \in j$.

 $\begin{array}{l} \langle b_j \mid j \in J \rangle \text{ is system of branches through a system } \langle \mathcal{R}_i \mid i \in I \rangle \text{ on } \\ \mathsf{D} \times \tau \text{ if each } b_j \text{ is a branch through } \mathcal{R}_i \text{ for some i, and for all } \\ \langle \alpha, \eta \rangle \in \mathsf{D} \times \tau, \text{ there is } j \text{ with } \langle \alpha, \eta \rangle \in j. \end{array}$

 $\begin{array}{l} \langle b_j \mid j \in J \rangle \text{ is system of branches through a system } \langle \mathcal{R}_i \mid i \in I \rangle \text{ on } \\ \mathsf{D} \times \tau \text{ if each } b_j \text{ is a branch through } \mathcal{R}_i \text{ for some i, and for all } \\ \langle \alpha, \eta \rangle \in \mathsf{D} \times \tau, \text{ there is } j \text{ with } \langle \alpha, \eta \rangle \in j. \end{array}$

Lemma

(roughly). Suppose a formerly closed forcing adds a system of branches through a system. Then there is already a branch in V.

To get the tree property at \aleph_{ω^2+2} with \aleph_{ω^2} strong limit, need not SCH at \aleph_{ω^2} . A warm up:

• Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- ▶ Define \mathbb{P} to have conditions $\langle x_0, ..., x_{n-1}, A_n, A_{n+1}, ... \rangle$, where:

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - 1. the stem $\langle x_0,...,x_{n-1}\rangle$ is an $\prec\text{-increasing sequence};$

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - $\begin{array}{ll} 1. \mbox{ the stem } \langle x_0,...,x_{n-1}\rangle \mbox{ is an }\prec\mbox{-increasing sequence;}\\ 2. \mbox{ } A_n,\in U_n,A_{n+1}\in U_{n+1},...\mbox{ are measure one sets.} \end{array}$

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - 1. the stem $\langle x_0,...,x_{n-1}\rangle$ is an $\prec\text{-increasing sequence};$
 - 2. $A_n, \in U_n, A_{n+1} \in U_{n+1}, ...$ are measure one sets.
- ▶ \mathbb{P} adds a generic sequence $\langle x_n | n < \omega \rangle$ with $\bigcup_n x_n = \sup_n \kappa_n$, and so in $V[\mathbb{P}]$,

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0, \ \mu = (\sup_n \kappa_n)^+, \ 2^{\kappa} = \mu^+.$
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - 1. the stem $\langle x_0,...,x_{n-1}\rangle$ is an $\prec\text{-increasing sequence;}$
 - 2. $A_n, \in U_n, A_{n+1} \in U_{n+1}, ...$ are measure one sets.
- ▶ \mathbb{P} adds a generic sequence $\langle x_n | n < \omega \rangle$ with $\bigcup_n x_n = \sup_n \kappa_n$, and so in V[\mathbb{P}],
 - 1. κ is singular strong limit; setting $\tau_{\rm n}:={\rm x_n}\cap\kappa,$ we have $\kappa=\sup_{\rm n}\tau_{\rm n},$

To get the tree property at \aleph_{ω^2+2} with \aleph_{ω^2} strong limit, need not SCH at \aleph_{ω^2} . A warm up:

- Suppose (κ_n | n < ω) are increasing supercompact cardinals, κ = κ₀, μ = (sup_n κ_n)⁺, 2^κ = μ⁺.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - 1. the stem $\langle x_0,...,x_{n-1}\rangle$ is an $\prec\text{-increasing sequence;}$
 - 2. $A_n, \in U_n, A_{n+1} \in U_{n+1}, ...$ are measure one sets.
- ▶ \mathbb{P} adds a generic sequence $\langle x_n | n < \omega \rangle$ with $\bigcup_n x_n = \sup_n \kappa_n$, and so in V[\mathbb{P}],
 - 1. κ is singular strong limit; setting $\tau_n := x_n \cap \kappa$, we have

$$\kappa = \sup_{\mathbf{n}} \tau_{\mathbf{n}}$$
,

2. $\kappa^+=\mu\text{, }2^\kappa=\mu^+\text{.}$ So SCH at κ fails.

To get the tree property at \aleph_{ω^2+2} with \aleph_{ω^2} strong limit, need not SCH at \aleph_{ω^2} . A warm up:

- Suppose $\langle \kappa_n | n < \omega \rangle$ are increasing supercompact cardinals, $\kappa = \kappa_0$, $\mu = (\sup_n \kappa_n)^+$, $2^{\kappa} = \mu^+$.
- Let U be a normal measure on P_κ(μ). For each n, let U_n be the projection to P_κ(κ_n).
- \blacktriangleright Define $\mathbb P$ to have conditions $\langle x_0,...,x_{n-1},A_n,A_{n+1},...\rangle$, where:
 - 1. the stem $\langle x_0,...,x_{n-1}\rangle$ is an $\prec\text{-increasing sequence;}$
 - 2. $A_n, \in U_n, A_{n+1} \in U_{n+1}, ...$ are measure one sets.
- ▶ \mathbb{P} adds a generic sequence $\langle x_n | n < \omega \rangle$ with $\bigcup_n x_n = \sup_n \kappa_n$, and so in V[\mathbb{P}],
 - 1. κ is singular strong limit; setting $\tau_{\mathsf{n}} := \mathsf{x}_{\mathsf{n}} \cap \kappa$, we have

$$\kappa = \sup_{\mathbf{n}} \tau_{\mathbf{n}}$$

2. $\kappa^+ = \mu$, $2^{\kappa} = \mu^+$. So SCH at κ fails.

▶ (Neeman, 2009) In V[\mathbb{P}], the tree property holds at κ^+ .

For our model: use diagonal Gitik-Sharon-Neeman style Prikry forcing combined with many AUS constructions, both in the preparation and interleaved with the Prikry.

> prepare the ground model, to arrange the tree property at $[\lambda_{\omega+2}^{a}, \lambda_{\omega}^{b})$,

- prepare the ground model, to arrange the tree property at $[\lambda_{\omega+2}^{a}, \lambda_{\omega}^{b})$, the B-block;
- use normal measures on P_κ(λ^b_n), n < ω for the diagonal Prikry;

- prepare the ground model, to arrange the tree property at $[\lambda_{\omega+2}^{a}, \lambda_{\omega}^{b})$, the B-block;
- use normal measures on P_κ(λ^b_n), n < ω for the diagonal Prikry;

$$\blacktriangleright \text{ make } \kappa = \aleph_{\omega^2}, \ \lambda^{\mathsf{b}}_{\omega+1} = \kappa^+, \ \lambda^{\mathsf{b}}_{\omega+2} = \kappa^{++}, \ 2^{\kappa} = \lambda^{\mathsf{b}}_{\omega+3} = \kappa^{+3};$$

- prepare the ground model, to arrange the tree property at $[\lambda_{\omega+2}^{a}, \lambda_{\omega}^{b})$, the B-block;
- use normal measures on P_κ(λ^b_n), n < ω for the diagonal Prikry;
- $\blacktriangleright \text{ make } \kappa = \aleph_{\omega^2}, \ \lambda^{\mathsf{b}}_{\omega+1} = \kappa^+, \ \lambda^{\mathsf{b}}_{\omega+2} = \kappa^{++}, \ 2^{\kappa} = \lambda^{\mathsf{b}}_{\omega+3} = \kappa^{+3};$
- interleave AUS constructions in between any two successive Prikry points below κ for the reflections of the *the A-block*;

- prepare the ground model, to arrange the tree property at $[\lambda_{\omega+2}^{a}, \lambda_{\omega}^{b})$, the B-block;
- use normal measures on P_κ(λ^b_n), n < ω for the diagonal Prikry;
- $\blacktriangleright \text{ make } \kappa = \aleph_{\omega^2}, \ \lambda^{\mathsf{b}}_{\omega+1} = \kappa^+, \ \lambda^{\mathsf{b}}_{\omega+2} = \kappa^{++}, \ 2^{\kappa} = \lambda^{\mathsf{b}}_{\omega+3} = \kappa^{+3};$
- interleave AUS constructions in between any two successive Prikry points below κ for the reflections of the *the A-block*;
- use the AUS construction from the preparation to get the tree property below κ for the B-block.

For "the B-block": Use the AUS construction from the preparation.

For "the B-block": Use the AUS construction from the preparation.

For "the A-block": Use the AUS construction from the interleaved components in the Prikry forcing.

For the tree property at λ^a_{ω+1} use † for λ = λ^a₀;

- For the tree property at λ^a_{ω+1} use † for λ = λ^a₀;
- For the tree property at $\lambda_{\omega+1}^{\mathbf{b}}$ use \dagger for $\lambda = \lambda_0^{\mathbf{b}}$;

For the tree property at $\lambda_{\omega+1}^{a}$ use \dagger for $\lambda = \lambda_{0}^{a}$;

For the tree property at $\lambda_{\omega+1}^{b}$ use \dagger for $\lambda = \lambda_{0}^{b}$;

In both cases we show that \mathbb{C}_{λ} projects to the relevant part of our posets in a branch preserving quotient.

The next steps:
1. The uncountable case;

- 1. The uncountable case;
- 2. Reflection i.e. how do we pick ρ to also work for the uncountable case.

- 1. The uncountable case;
- 2. Reflection i.e. how do we pick ρ to also work for the uncountable case. .

Test question: can we ge the tree property at \aleph_{ω_1+1} and \aleph_2 simultaneously?

- 1. The uncountable case;
- Reflection i.e. how do we pick ρ to also work for the uncountable case. . Test question: can we ge the tree property at ℵ_{ω1+1} and ℵ₂ simultaneously?
- 3. Test question: can we get the tree property at \aleph_{ω_1+1} with the failure of SCH at \aleph_{ω_1} ?

THANK YOU