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The tree property

> A higher analogue of Konig's infinity lemma;
P It holds at large cardinals and has large cardinal strength;
» Can be forced at successor cardinals;

» General motivation: how much compactness can be obtained
in the universe? What is compactness? An instance where if a
property holds for all substructures of a given object, then it
holds for the object itself.

» Making small cardinals behave like large cardinals.

Theorem

(Cummings-Hayut-Magidor-Neeman-S.-Unger, the pandemic years)
From large cardinals, we can force the tree property simultaneously
at every regular cardinal in the interval [No, R 2. ,].
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Konig: Every infinite, finitely branching tree has an infinite branch.
The tree property generalizes that fact to higher cardinals.
(T, <) is a tree if for each node o € T, the predecessors of o,
pred(c) = {7 € T | 7 < o} is a well-ordered set i.e. a linear order
with no infinite descending sequences.
» for each o € T, there is a unique ordinal «, such that
(pred(o), <T) is isomorphic to (a, <).
» the order type of pred(o), denoted o.t.(¢), is this unique a.
» the height of T is sup{o.t.(c) |oc € T}.

» for each o < height(T), the a-th level of T is
Ta={o]ot.(0) =a}.

Definition
The tree property at « states that every tree of height x and
levels of size less than x has an unbounded branch.
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> At N it fails: there is an Aronszajn tree. (elements are some
increasing bounded sequences of rationals)

What about at N»?
» CH implies the tree property fails at N,.

» (Mitchell, 1972) The tree property can be forced at Xy, from
large cardinals.
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» The tree property at w holds by Konig's lemma.
> At N it fails: there is an Aronszajn tree. (elements are some
increasing bounded sequences of rationals)
What about at N»?
» CH implies the tree property fails at N,.
» (Mitchell, 1972) The tree property can be forced at Xy, from
large cardinals.
The tree property fails at singular cardinals. E.g. at N,,.

A long-standing question (1972): Can the tree property be
obtained for all regular cardinals greater than N1 simultaneously?

Here: do it at [N, N 2, 5] with X 2 strong limit.
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Q: Can we get the tree property for all regular x > Ny
simultaneously?

» (Abraham 1983) Can force the tree property at Ny and N3
simultaneously.

» (Cummings-Foreman, 1998) Can force the tree property at X,
for all n > 1 simultaneously.

» (Magidor-Shelah, 1996) Can force the tree property at R, 11.

» (Neeman, 2009) Can force the tree property at R, for all
n > 1 and at W41 simultaneously.

Above, SCH holds. To add N, > with X, strong limit, need SCH
to fail at N,.

Question (Woodin): Can we get the tree property at N, 11 with
not SCH at N,,?
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TP and cardinal arithmetic.

» Recall: CH implies the tree property fails at N.
> (Specker) More generally, u<* = 1 implies the tree property
fails at pu™.
» So, setting u = kT, if 28 = kT, then the tree property fails at
kT
Consequences at singulars:
the Singular Cardinal Hypothesis (SCH):
If k is singular strong limit (i.e. 7 <k — 27 < k), then 2" =&
(a parallel of CH for singulars).
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TP and cardinal arithmetic.

» Recall: CH implies the tree property fails at N.

> (Specker) More generally, u<* = 1 implies the tree property
fails at pu™.

» So, setting u = kT, if 28 = kT, then the tree property fails at
k.

Consequences at singulars:

the Singular Cardinal Hypothesis (SCH):

If x is singular strong limit (i.e. 7 < k — 27 < k), then 27 = g
(a parallel of CH for singulars).

By Specker, if k is a singular strong limit, the failure of SCH at »
is necessary for the tree property at k1.
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Woodin: Can we get the tree property at 8,11 with not SCH at
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Partial progress throughout the years:
» (Neeman, 2009) Can force the tree property at k™ together
with failure of SCH at k.
> (S. 2012) Can force the tree property at X 2, together with
failure of SCH at N ..
» (S. 2015) Can force the tree property at k™ and k™1 for a
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The tree property

Woodin: Can we get the tree property at 8,11 with not SCH at
N,?
Partial progress throughout the years:

» (Neeman, 2009) Can force the tree property at k™ together
with failure of SCH at &.

> (S. 2012) Can force the tree property at X 2, together with
failure of SCH at R ..

» (S. 2015) Can force the tree property at k™ and k™1 for a
singular strong limit k.

» (S.-Unger, 2018) Can force the tree property at N 2, and
N2, o simultaneously.
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Moral of the story so far:

To get the tree property everywhere (or at least at long intervals),
» need many failures of GCH and SCH;
P> need large cardinals hypothesis.

» need Prikry type forcing.

Dima Sinapova The tree property



The tree property and large cardinals

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

i(%)

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

i(%)

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

i(%)

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

—= -

Dima Sinapova The tree property



The tree property and large cardinals

Fact: If x is measurable, then the tree property holds at .

—= -

Dima Sinapova The tree property



Forcing the tree property at N,

Mitchell forcing M.

Dima Sinapova The tree property



Forcing the tree property at N,

Mitchell forcing M.
Start with a weakly compact A.

Note that the tree property holds at .
TODO for M:

Dima Sinapova The tree property



Forcing the tree property at N,

Mitchell forcing M.

Start with a weakly compact A.
Note that the tree property holds at .
TODO for M:

1. Make X = Rj by collapsing cardinals in (w1, A) to ws.
2. Add A-many subsets to w to get not CH.

Dima Sinapova The tree property



Forcing the tree property at N,

Mitchell forcing M.

Start with a weakly compact A.
Note that the tree property holds at .
TODO for M:

1. Make X = Rj by collapsing cardinals in (w1, A) to ws.
2. Add A-many subsets to w to get not CH.
Prove the tree property still holds at A in the generic extension.
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The proof of the tree property:

1. Let j: V — M an elementary embedding with critical point A.

2. Lift j to j: V[G] — M; j € V[G][H].

3. Find a branch as before. But this time the branch is in the
outer model V[G][H].

4. Branch preservation lemma to show the branch is in V[G]
where it belongs.

General strategy for proving the tree property: lift an elementary
embedding; find a branch in the outer model; pull back the branch.
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Branch lemmas

A branch preservation lemma says that a certain poset cannot add
a branch.

branch preservation for closed forcing

(Silver) Let 2<7 < < 27. Then 77 closed forcing does not add
branches to a tree of height x and levels of size < k.

branch preservation for cc forcing
1. k-Knaster forcing does not add branches to a tree of height «.
2. (Unger) If P x P is k c.c., then P does not add branches to a
tree of height x.

branch preservation for formerly closed forcing

(Unger) Suppose that there is 7 < k with 27 > k; W is a k-c.c.
extension of V, P € V is k-closed. Then if T € W is a tree of
height ™ and levels of size < x, P does not add new branches
through T.
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At successors of singulars

Let (kn | N < w) be increasing supercompact cardinals with limit «.
(Magidor-Shelah) The tree property holds at x™.

At smaller cardinals:

Thm: Let C =[], Col(kn, < knt1) with full support, and for

p < ko, let L(p) := Col(w, p) x Col(p™, < ko). Then there is

p < Ko, such that in V[C][L(p)] the tree property holds at x*.
l.e. the tree property holds at N,41.

The above generalizes for many other “nice” posets in place of C
and L(p). In particular, can arrange to add reals and add Cohen
subsets of pt.

(Neeman) From w-many supercompact cardinals, can force the
tree property at each N, n > 2 and and XN, 1 simultaneously.
Idea: Use a theorem like the above; but need more flexibility in the
definition of C and L(p) to add Cohen subsets of p* and add reals.
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At successors of singulars con't

All supercompacts below are indestructible. Suppose in V, 2 =0,
where 6 is generically indestructible supercompact.

Let A := \g be supercompact; set A\n41 to be the next
supercompact after \,, Ay = sup, An, Adwi1 = AL, Awint1 is the

next supercompact after A\,. Let C) :=

H Col(An, < Ant1) X Col(Ay+1, < Awr2) xXAdd(An, Ant ) X Add(A17, Aw+2)-
n

For p < 6, let Ly(p) := Col(w, p) x Col(p™, A\1).

Thm 7: There is p < 6, such that the tree property A\ 41 holds in

VI[CAI[LA(p)]-
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At successors of singulars con't

Thm t: There is p < 6, such that the tree property A,+1 holds in
VICAIILA(p)]-

p above reflects A, below 6; it is a limit of w many inaccessible
cardinals in Vg, and an w-successor cardinal in V.

Remarks:

» By the pigeon hole principle, can fix a single p to work for all
supercompact \'s.

» C, projects to and AUS construction.
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Branch lemmas, again.

Sometimes, esp. at successors of singulars, we read the branch in a
models before we have the tree.

Need a notion of “pre-tree” or a system.

Suppose cf(v) = w, u=vt. D C p unbounded, T < v.

Def. (R;|i€ ) is a system on D x 7 iff
» each R; is a transitive order on dom(R;) C D x 7;
» if 9Rioc and T9Rio, then 1y, 71 are Ri-comparable;

» and for a < 8 both in D, there is i, d, n, such that
<Oé, 5>R| <5>77>

Def. Above, a system of branches is (b | j € J) is s.t. each b; is

a branch through R; for some i, and for all (o, n) € D x 7, there is
j with (a,n) €.
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Branch lemmas, again.

(bj | j € J) is system of branches through a system (R;|i € I) on
D x 7 if each b;j is a branch through R; for some i, and for all
(a,m) € D x 7, there is j with (a,n) € .
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Branch lemmas, again.

(bj | j € J) is system of branches through a system (R;|i € I) on
D x 7 if each b;j is a branch through R; for some i, and for all
(a,m) € D x 7, there is j with (a,n) € .

Lemma
(roughly). Suppose a formerly closed forcing adds a system of
branches through a system. Then there is already a branch in V.
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SCH at R 2.
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Violating SCH

To get the tree property at N 2,, with X 2 strong limit, need not
SCH at X, 2. A warm up:

» Suppose (kn | N < w) are increasing supercompact cardinals,
Kk = ko, = (sup, kn)", 28 = u™.

» Let U be a normal measure on Py (p). For each n, let U, be
the projection to Py(kn).

» Define P to have conditions (xg, ..., Xn—1, An, Ant1, -..), Where:

1. the stem (xg,...,xn—1) IS an <-increasing sequence;
2. An,€ Up, Anpr € Uy, ... are measure one sets.

» P adds a generic sequence (x, | n < w) with |J, Xn = sup,, £n,
and so in V[P,

1. k is singular strong limit; setting 7, := x, N x, we have
K = Sup, T,
2. kT =pu, 28 = ut. So SCH at & fails.

» (Neeman, 2009) In V[P], the tree property holds at x*.
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forcing combined with many AUS constructions,
both in the preparation and interleaved with the Prikry.
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Key points:

> prepare the ground model, to arrange the tree property at
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For our model: use diagonal Gitik-Sharon-Neeman style Prikry
forcing combined with many AUS constructions,

both in the preparation and interleaved with the Prikry.

Start with K < A\* < AP supercompacts; A3 < AP,

Key points:

> prepare the ground model, to arrange the tree property at
[X25,AD), the B-block;

> use normal measures on P,(A2), n < w for the diagonal
Prikry;

> make k = V., >‘2+1 =K, /\2+2 =Tt 26 = /\2+3 = gT3:

> interleave AUS constructions in between any two successive
Prikry points below x for the reflections of the the A-block,;

» use the AUS construction from the preparation to get the tree
property below x for the B-block.
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Successors of regulars below N,

For “the B-block”: Use the AUS construction from the
preparation.
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Successors of regulars below N,

For “the B-block”: Use the AUS construction from the
preparation.

For “the A-block”: Use the AUS construction from the interleaved
components in the Prikry forcing.
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Successors of singulars below X,

Recall, using T we fixed p < 0, so that the tree property at Ayt1
holds V[C,][LLa(p)] for all X; 6 is the future Ry, pT the future ¥;.
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Successors of singulars below X,

Recall, using T we fixed p < 0, so that the tree property at Ayt1
holds V[C,][LLa(p)] for all X; 6 is the future Ry, pT the future ¥;.
Let 7 be a Prikry point below k:

> For the tree property at A2, ; use 7 for A = Ag;
» For the tree property at >‘5+1 use t for A = A%;

In both cases we show that C) projects to the relevant part of our
posets in a branch preserving quotient.
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Further Directions

The next steps:
1. The uncountable case;

2. Reflection i.e. how do we pick p to also work for the
uncountable case. .
Test question: can we ge the tree property at R, ;1 and N»
simultaneously?

3. Test question: can we get the tree property at N,,, 11 with the
failure of SCH at X,,,?

THANK YOU
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