The Gluing Property

Alejandro Poveda

Harvard University Center of Mathematical Sciences and Applications

Arctic Set Theory Meeting - February 2023

Joint work with Y. Hayut

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that \mathfrak{M} itself satisfies φ ?

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that $\mathfrak M$ itself satisfies $\varphi?$

Yes, if small means finite

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that \mathfrak{M} itself satisfies φ ?

Yes, if small means finite

• **De-Brujin & Erdős**: Let \mathcal{G} be a graph and suppose that all of its finite subgraphs $\overline{\mathcal{H} \subseteq \mathcal{G}}$ have chromatic number $\leq n$. Then \mathcal{G} has chromatic number $\leq n$.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that \mathfrak{M} itself satisfies φ ?

Yes, if small means finite

- **De-Brujin & Erdős**: Let \mathcal{G} be a graph and suppose that all of its finite subgraphs $\mathcal{H} \subseteq \mathcal{G}$ have chromatic number $\leq n$. Then \mathcal{G} has chromatic number $\leq n$.
- **② König:** Every \aleph_0 -tree has an infinite branch.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that \mathfrak{M} itself satisfies φ ?

Yes, if small means finite

- **De-Brujin & Erdős**: Let \mathcal{G} be a graph and suppose that all of its finite subgraphs $\overline{\mathcal{H} \subseteq \mathcal{G}}$ have chromatic number $\leq n$. Then \mathcal{G} has chromatic number $\leq n$.
- **② König:** Every \aleph_0 -tree has an infinite branch.
- **§** <u>**Gődel:**</u> Let Γ be an arbitrary collection of $\mathcal{L}_{\omega,\omega}$ -sentences all of whose finite subcollections have a model. Then Γ itself has a model.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that \mathfrak{M} itself satisfies φ ?

Yes, if small means finite

- **De-Brujin & Erdős**: Let \mathcal{G} be a graph and suppose that all of its finite subgraphs $\overline{\mathcal{H} \subseteq \mathcal{G}}$ have chromatic number $\leq n$. Then \mathcal{G} has chromatic number $\leq n$.
- **② König:** Every \aleph_0 -tree has an infinite branch.
- **§** <u>**Gődel:**</u> Let Γ be an arbitrary collection of $\mathcal{L}_{\omega,\omega}$ -sentences all of whose finite subcollections have a model. Then Γ itself has a model.

This phenomenon is called **compactness**.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that ${\mathfrak M}$ itself satisfies $\varphi?$

Question

How about if finite (i.e., cardinality $< \aleph_0$) is replaced by countable (i.e., $< \aleph_1$)?

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that ${\mathfrak M}$ itself satisfies $\varphi?$

Question

How about if finite (i.e., cardinality $< \aleph_0$) is replaced by countable (i.e., $< \aleph_1$)?

Typically no

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that ${\mathfrak M}$ itself satisfies $\varphi?$

Question

How about if finite (i.e., cardinality $<\aleph_0$) is replaced by countable (i.e., $<\aleph_1$)?

Typically no

• **Erdős & Hajnal**: Assume the CH. Then there is a graph \mathcal{G} with chromatic number \aleph_1 but all of its countable subgraphs \mathcal{H} have chromatic number $\leq \aleph_0$.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that ${\mathfrak M}$ itself satisfies $\varphi?$

Question

How about if finite (i.e., cardinality $<\aleph_0$) is replaced by countable (i.e., $<\aleph_1$)?

Typically no

- **Erdős & Hajnal**: Assume the CH. Then there is a graph \mathcal{G} with chromatic number \aleph_1 but all of its countable subgraphs \mathcal{H} have chromatic number $\leq \aleph_0$.
- **2** Aronszajn: There is an \aleph_1 -tree without cofinal branches.

Let \mathfrak{M} be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc). Assume that every *small* substructure $\mathfrak{N} \subseteq \mathfrak{M}$ satisfies a property φ .

Is it true that ${\mathfrak M}$ itself satisfies $\varphi?$

Question

How about if finite (i.e., cardinality $<\aleph_0$) is replaced by countable (i.e., $<\aleph_1$)?

Typically no

- **Erdős & Hajnal**: Assume the CH. Then there is a graph \mathcal{G} with chromatic number \aleph_1 but all of its countable subgraphs \mathcal{H} have chromatic number $\leq \aleph_0$.
- **2** Aronszajn: There is an \aleph_1 -tree without cofinal branches.

Item (1) yields a counter-example for the " \aleph_1 -analogue" of Gődel's Compactness Theorem.

 $\mathcal{L}_{\kappa,\kappa} \equiv$ Extension of $\mathcal{L}_{\omega,\omega}$ allowing conjunctions and quantifications over lists of size $<\kappa$. Question

For which cardinals $\kappa > \aleph_0$ does the logic $\mathcal{L}_{\kappa,\kappa}$ satisfy compactness?

 $\mathcal{L}_{\kappa,\kappa} \equiv \text{Extension of } \mathcal{L}_{\omega,\omega} \text{ allowing conjunctions and quantifications over lists of size } <\kappa.$

Question

For which cardinals $\kappa > \aleph_0$ does the logic $\mathcal{L}_{\kappa,\kappa}$ satisfy compactness?

Definition (Keisler & Tarski)

An uncountable cardinal κ is called **strongly compact** if every κ -complete filter extends to a κ -complete ultrafilter.

 $\mathcal{L}_{\kappa,\kappa} \equiv$ Extension of $\mathcal{L}_{\omega,\omega}$ allowing conjunctions and quantifications over lists of size $<\kappa$.

Question

For which cardinals $\kappa > \aleph_0$ does the logic $\mathcal{L}_{\kappa,\kappa}$ satisfy compactness?

Definition (Keisler & Tarski)

An uncountable cardinal κ is called **strongly compact** if every κ -complete filter extends to a κ -complete ultrafilter.

Theorem (Keisler & Tarski)

The following are equivalent for a cardinal $\kappa > \aleph_0$:

- **1** κ is strongly compact.
- 2 $\mathcal{L}_{\kappa,\kappa}$ is compact.

• For every $\lambda \geq \kappa$ there is an elementary embedding $j: V \to M$ such that $\operatorname{crit}(j) = \kappa$, ${}^{\kappa}M \subseteq M$, $j(\kappa) > \lambda$, and there is $s \in M$ such that $j"\lambda \subseteq s$ and $M \models "|s| < j(\kappa)"$.

There are natural weakenings of strong compactness:

Definition

An uncountable cardinal κ is said to have the λ -filter extension property (for $\lambda \ge \kappa$) if every κ -complete filter over λ extends to a κ -complete ultrafilter.

There are natural weakenings of strong compactness:

Definition

An uncountable cardinal κ is said to have the λ -filter extension property (for $\lambda \ge \kappa$) if every κ -complete filter over λ extends to a κ -complete ultrafilter.

When $\lambda = \kappa$ it is customary to say that κ is κ -compact.

There are natural weakenings of strong compactness:

Definition

An uncountable cardinal κ is said to have the λ -filter extension property (for $\lambda \geq \kappa$) if every κ -complete filter over λ extends to a κ -complete ultrafilter.

When $\lambda = \kappa$ it is customary to say that κ is κ -compact.

Question (Mitchell, 1978)

Suppose that κ is a κ -compact cardinal. Is it κ -compact in the inner model $L[\mathcal{U}]$?

Theorem (Gitik, 2016)

If κ is $\kappa\text{-compact}$ then there is an inner model with a Woodin cardinal.

Theorem (Gitik, 2016)

If κ is $\kappa\text{-compact}$ then there is an inner model with a Woodin cardinal.

A prequel of this theorem appeared in an older paper by Gitik:

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Theorem (Gitik, 2016)

If κ is $\kappa\text{-compact}$ then there is an inner model with a Woodin cardinal.

A prequel of this theorem appeared in an older paper by Gitik:

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

The proof hints a remarkable feature of κ -compactness - the ability to produce extenders.

Theorem (Gitik, 2016)

If κ is $\kappa\text{-compact}$ then there is an inner model with a Woodin cardinal.

A prequel of this theorem appeared in an older paper by Gitik:

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

The proof hints a remarkable feature of κ -compactness - the ability to produce extenders.

Theorem (Gitik, 2016)

Suppose that κ is κ -compact. Then, there is an Extender-Based Prikry forcing that is universal for the κ -distributive forcings of size κ .

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise.

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise. Then, the corresponding core model exists and the following is a set:

 $\mathcal{I} := \{i(\kappa) \mid i \colon V \to N, \, {}^{\omega_1}N \subseteq N, \, N \text{ transitive}\}.$

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise. Then, the corresponding core model exists and the following is a set:

$$\mathcal{I} := \{i(\kappa) \mid i \colon V \to N, \, {}^{\omega_1}N \subseteq N, \, N \text{ transitive}\}.$$

Let $\lambda > \sup \mathcal{I}$ be regular. Use the filter extension property of κ -compact cardinals to build a (κ, λ) -extender. This will yield a contradiction as $\lambda \notin \mathcal{I}$.

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise. Then, the corresponding core model exists and the following is a set:

$$\mathcal{I} := \{i(\kappa) \mid i \colon V \to N, \,^{\omega_1}N \subseteq N, \, N \text{ transitive}\}.$$

Let $\lambda > \sup \mathcal{I}$ be regular. Use the filter extension property of κ -compact cardinals to build a (κ, λ) -extender. This will yield a contradiction as $\lambda \notin \mathcal{I}$.

$$\langle U_{a_{\alpha}} \mid \alpha < \beta \rangle \Rightarrow \mathcal{F}_{\alpha} := \{ X \mid \exists \alpha < \beta \exists b \subseteq a_{\alpha} \cap a_{\beta} \exists Y \in U_{b} X = \pi_{a_{\beta}, b}^{-1}(Y) \} \Rightarrow U_{a_{\beta}}.$$

Theorem (Gitik, 1993)

If κ is $\kappa\text{-compact}$ then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise. Then, the corresponding core model exists and the following is a set:

$$\mathcal{I} := \{i(\kappa) \mid i \colon V \to N, \,^{\omega_1}N \subseteq N, \, N \text{ transitive}\}.$$

Let $\lambda > \sup \mathcal{I}$ be regular. Use the filter extension property of κ -compact cardinals to build a (κ, λ) -extender. This will yield a contradiction as $\lambda \notin \mathcal{I}$.

$$\langle U_{a_{\alpha}} \mid \alpha < \beta \rangle \Rightarrow \mathcal{F}_{\alpha} := \{ X \mid \exists \alpha < \beta \exists b \subseteq a_{\alpha} \cap a_{\beta} \exists Y \in U_{b} X = \pi_{a_{\beta}, b}^{-1}(Y) \} \Rightarrow U_{a_{\beta}}.$$

Subtle point: \mathcal{F}_{α} might not be κ -complete unless the $U_{a_{\alpha}}$'s are picked in a coherent way.

The Gluing property

Inspired by Gitik's argument we isolated the following compactness principle:

Definition (Hayut, P., 2021)

Let κ be a measurable cardinal. We say that κ has the λ -gluing property if for every sequence of κ -complete ultrafilters on κ , $\langle U_{\gamma} \mid \gamma < \lambda \rangle$, there is an elementary embedding $j \colon V \to M$, with $^{\kappa}M \subseteq M$, crit $j = \kappa$ and an increasing sequence of ordinals $\langle \eta_{\gamma} \mid \gamma < \lambda \rangle$ such that $U_{\gamma} = \{X \subseteq \kappa \mid \eta_{\gamma} \in j(X)\}.$

The Gluing property

Inspired by Gitik's argument we isolated the following compactness principle:

Definition (Hayut, P., 2021)

Let κ be a measurable cardinal. We say that κ has the λ -gluing property if for every sequence of κ -complete ultrafilters on κ , $\langle U_{\gamma} \mid \gamma < \lambda \rangle$, there is an elementary embedding $j \colon V \to M$, with $^{\kappa}M \subseteq M$, crit $j = \kappa$ and an increasing sequence of ordinals $\langle \eta_{\gamma} \mid \gamma < \lambda \rangle$ such that $U_{\gamma} = \{X \subseteq \kappa \mid \eta_{\gamma} \in j(X)\}.$

• The λ -gluing property is essentially saying that the κ -complete filter

$$\mathcal{F} := \{ X \subseteq {}^{\lambda}\kappa \mid \forall \gamma < \lambda \; \{ x(\gamma) \mid x \in X \} \in U_{\gamma} \}$$

can be extended to a κ -complete ultrafilter.

The Gluing property

Inspired by Gitik's argument we isolated the following compactness principle:

Definition (Hayut, P., 2021)

Let κ be a measurable cardinal. We say that κ has the λ -gluing property if for every sequence of κ -complete ultrafilters on κ , $\langle U_{\gamma} \mid \gamma < \lambda \rangle$, there is an elementary embedding $j \colon V \to M$, with $^{\kappa}M \subseteq M$, crit $j = \kappa$ and an increasing sequence of ordinals $\langle \eta_{\gamma} \mid \gamma < \lambda \rangle$ such that $U_{\gamma} = \{X \subseteq \kappa \mid \eta_{\gamma} \in j(X)\}.$

• The λ -gluing property is essentially saying that the κ -complete filter

$$\mathcal{F} := \{ X \subseteq {}^{\lambda}\kappa \mid \forall \gamma < \lambda \; \{ x(\gamma) \mid x \in X \} \in U_{\gamma} \}$$

can be extended to a κ -complete ultrafilter.

• Gitik's argument shows that if κ has the λ -gluing property for every cardinal λ then there is an inner model with a strong cardinal.

Strong compact cardinals have the $\lambda\text{-gluing property for every }\lambda$

Strong compact cardinals have the $\lambda\text{-gluing property for every }\lambda$

Let $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ be κ -complete ultrafilters over κ . Let $j: V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$ and $s \in M$ such that $M \models |s| < j(\kappa)$ and $j^{"}\lambda \cup j^{"}U_{\alpha} \subseteq s$ for all $\alpha < \lambda$.

Strong compact cardinals have the λ -gluing property for every λ

Let $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ be κ -complete ultrafilters over κ . Let $j \colon V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$ and $s \in M$ such that $M \models |s| < j(\kappa)$ and $j^{"}\lambda \cup j^{"}U_{\alpha} \subseteq s$ for all $\alpha < \lambda$. Recursively define (inside M) an increasing sequence $\langle \bar{\eta}_{\alpha} \mid \alpha \in s \rangle$ such that $\bar{\eta}_{\alpha} \in \bigcap j(U_{\alpha}) \cap s$. It is easy to show that j and $\langle \bar{\eta}_{j(\alpha)} \mid \alpha < \lambda \rangle$ can be used to glue $\langle U_{\alpha} \mid \alpha < \lambda \rangle$.

Strong compact cardinals have the λ -gluing property for every λ

Let $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ be κ -complete ultrafilters over κ . Let $j \colon V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$ and $s \in M$ such that $M \models |s| < j(\kappa)$ and $j^{"}\lambda \cup j^{"}U_{\alpha} \subseteq s$ for all $\alpha < \lambda$. Recursively define (inside M) an increasing sequence $\langle \bar{\eta}_{\alpha} \mid \alpha \in s \rangle$ such that $\bar{\eta}_{\alpha} \in \bigcap j(U_{\alpha}) \cap s$. It is easy to show that j and $\langle \bar{\eta}_{j(\alpha)} \mid \alpha < \lambda \rangle$ can be used to glue $\langle U_{\alpha} \mid \alpha < \lambda \rangle$.

Theorem (Hayut, P., 2021)

If κ has the λ -filter extension property then it has the (2^{λ}) -gluing property. In particular, every κ -compact cardinal has the (2^{κ}) -gluing property.

Strong compact cardinals have the λ -gluing property for every λ

Let $\langle U_{\alpha} \mid \alpha < \lambda \rangle$ be κ -complete ultrafilters over κ . Let $j \colon V \to M$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$ and $s \in M$ such that $M \models |s| < j(\kappa)$ and $j^{"}\lambda \cup j^{"}U_{\alpha} \subseteq s$ for all $\alpha < \lambda$. Recursively define (inside M) an increasing sequence $\langle \bar{\eta}_{\alpha} \mid \alpha \in s \rangle$ such that $\bar{\eta}_{\alpha} \in \bigcap j(U_{\alpha}) \cap s$. It is easy to show that j and $\langle \bar{\eta}_{j(\alpha)} \mid \alpha < \lambda \rangle$ can be used to glue $\langle U_{\alpha} \mid \alpha < \lambda \rangle$.

Theorem (Hayut, P., 2021)

If κ has the λ -filter extension property then it has the (2^{λ}) -gluing property. In particular, every κ -compact cardinal has the (2^{κ}) -gluing property.

Theorem (Hayut, P., 2021)

It is consistent to have a κ -compact cardinal without the $(2^{\kappa})^+$ -gluing-property.
Cardinals with the $\omega\text{-}\mathsf{Gluing}$ Property

- Strong compact cardinals.
- **2** Any level of Π^1_1 -subcompactness.
- **③** Any cardinal κ that is $(\kappa + 2)$ -extendible.
- κ -compact cardinals.

Cardinals with the $\omega\text{-}\mathsf{Gluing}$ Property

- Strong compact cardinals.
- **2** Any level of Π_1^1 -subcompactness.
- **③** Any cardinal κ that is $(\kappa + 2)$ -extendible.
- (a) κ -compact cardinals.

Cardinals without the ω -Gluing Property

If there is no inner model with a Woodin cardinal then **the first strong cardinal in the core model does not have the** ω -gluing property. This is because the ω -gluing property yields a singular strong generators.

Cardinals with the $\omega\text{-}\mathsf{Gluing}$ Property

- Strong compact cardinals.
- **2** Any level of Π^1_1 -subcompactness.
- **③** Any cardinal κ that is $(\kappa + 2)$ -extendible.
- (a) κ -compact cardinals.

Cardinals without the ω -Gluing Property

If there is no inner model with a Woodin cardinal then **the first strong cardinal in the core model does not have the** ω -gluing property. This is because the ω -gluing property yields a singular strong generators.

Question

What large cardinals have the ω -gluing property?

The ω -gluing property complies with the following delicate balance:

1 It is a compactness property.

The ω -gluing property complies with the following delicate balance:

- 1 It is a compactness property.
- **②** Seems not to hold at cardinals weaker than a "partial" strong compact.

The ω -gluing property complies with the following delicate balance:

- 1 It is a compactness property.
- **②** Seems not to hold at cardinals weaker than a "partial" strong compact.
- **③** It has low consistency strength.

Theorem (Hayut, P., 2022)

Suppose that κ has the ω -gluing property and that there is no inner model for " $\exists \alpha (o(\alpha) = \alpha)$ ". Then $o^{\mathcal{K}}(\kappa) \geq \omega_1$.

Theorem (Hayut, P., 2022)

Suppose that κ has the ω -gluing property and that there is no inner model for " $\exists \alpha (o(\alpha) = \alpha)$ ". Then $o^{\mathcal{K}}(\kappa) \geq \omega_1$.

Proof idea for the lower bound

Define a sequence $\langle \mathcal{V}_{\alpha} \mid \alpha < \omega_1 \rangle$ of \mathcal{K} -normal and κ -complete measures using the gluing property. The very nature of the gluing property will make the sequence $\langle \mathcal{V}_{\alpha} \cap \mathcal{K} \mid \alpha < \omega_1 \rangle$ to be \triangleleft -increasing. By maximality of \mathcal{K} , these latter measures belong to \mathcal{K} , which yields $o^{\mathcal{K}}(\kappa) \geq \omega_1$.

Theorem (Hayut, P., 2022)

Suppose that κ has the ω -gluing property and that there is no inner model for " $\exists \alpha (o(\alpha) = \alpha)$ ". Then $o^{\mathcal{K}}(\kappa) \geq \omega_1$.

Proof idea for the lower bound

Define a sequence $\langle \mathcal{V}_{\alpha} \mid \alpha < \omega_1 \rangle$ of \mathcal{K} -normal and κ -complete measures using the gluing property. The very nature of the gluing property will make the sequence $\langle \mathcal{V}_{\alpha} \cap \mathcal{K} \mid \alpha < \omega_1 \rangle$ to be \triangleleft -increasing. By maximality of \mathcal{K} , these latter measures belong to \mathcal{K} , which yields $o^{\mathcal{K}}(\kappa) \geq \omega_1$.

Theorem (Hayut, P., 2022) ($V = \mathcal{K}$)

Suppose that κ is a measurable cardinal with $o(\kappa) = \omega_1$ and that there are no other measurables λ with $o(\lambda) \ge \omega_1$. Then, there is a cardinal-preserving generic extension where κ has the ω -gluing property.

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah).

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case \dot{Q}_{α} is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$.

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case $\dot{\mathbb{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic and $\langle U_n \mid n < \omega \rangle$ a sequence of κ -complete measures in V[G].

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case $\dot{\mathbb{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic and $\langle U_n \mid n < \omega \rangle$ a sequence of κ -complete measures in V[G]. Let $j: V \to M$ be a $(\kappa + 2)$ -strong embedding such that $j(\ell)(\kappa) = \langle \dot{U}_n \mid n < \omega \rangle$.

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case $\dot{\mathbb{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic and $\langle U_n \mid n < \omega \rangle$ a sequence of κ -complete measures in V[G]. Let $j: V \to M$ be a $(\kappa + 2)$ -strong embedding such that $j(\ell)(\kappa) = \langle \dot{U}_n \mid n < \omega \rangle$. In V[G] define the following κ -complete measure on κ^{ω} :

$$X \in W \Leftrightarrow X \subseteq \kappa^{\omega} \land \exists p \in G \exists \dot{T} \in V^{\mathbb{P}_{\kappa}} \left(p \cup \{ \langle \varnothing, \dot{T} \rangle \} \cup r \Vdash_{\mathbb{P}_{\kappa}} \dot{b}_{\kappa} \in j(\dot{X}) \right).$$

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case $\dot{\mathbf{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic and $\langle U_n \mid n < \omega \rangle$ a sequence of κ -complete measures in V[G]. Let $j: V \to M$ be a $(\kappa + 2)$ -strong embedding such that $j(\ell)(\kappa) = \langle \dot{U}_n \mid n < \omega \rangle$. In V[G] define the following κ -complete measure on κ^{ω} :

$$X \in W \Leftrightarrow X \subseteq \kappa^{\omega} \land \exists p \in G \exists \dot{T} \in V^{\mathbb{P}_{\kappa}} (p \cup \{ \langle \emptyset, \dot{T} \rangle \} \cup r \Vdash_{\mathbb{P}_{\kappa}} \dot{b}_{\kappa} \in j(\dot{X})).$$

Show that $U_n \leq_{\mathrm{RK}} W$ as witnessed by the evaluation map $e_n \colon \vec{\eta} \mapsto \vec{\eta}(n)$. Once this is done, j_W and $[\mathrm{id}]_W$ witness that $\langle U_n \mid n < \omega \rangle$ can be glued.

Proof idea

Let $\ell: \kappa \to V_{\kappa}$ be a Laver function for κ (Gitik & Shelah). Define a Gitik iteration \mathbb{P}_{κ} of Prikry-type forcings as follows: The iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of α -complete measures on α ."

in which case $\dot{\mathbf{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect to the sequence $\ell(\alpha)$. Let $G \subseteq \mathbb{P}_{\kappa}$ be V-generic and $\langle U_n \mid n < \omega \rangle$ a sequence of κ -complete measures in V[G]. Let $j: V \to M$ be a $(\kappa + 2)$ -strong embedding such that $j(\ell)(\kappa) = \langle \dot{U}_n \mid n < \omega \rangle$. In V[G] define the following κ -complete measure on κ^{ω} :

$$X \in W \Leftrightarrow X \subseteq \kappa^{\omega} \land \exists p \in G \exists \dot{T} \in V^{\mathbb{P}_{\kappa}} (p \cup \{ \langle \emptyset, \dot{T} \rangle \} \cup r \Vdash_{\mathbb{P}_{\kappa}} \dot{b}_{\kappa} \in j(\dot{X})).$$

Show that $U_n \leq_{\mathrm{RK}} W$ as witnessed by the evaluation map $e_n \colon \vec{\eta} \mapsto \vec{\eta}(n)$. Once this is done, j_W and $[\mathrm{id}]_W$ witness that $\langle U_n \mid n < \omega \rangle$ can be glued.

Work under " $V = \mathcal{K}$ "+"There is no inner model for $\exists \kappa (o(\kappa) = \kappa^{++})$ ".

Work under " $V = \mathcal{K}$ "+"There is no inner model for $\exists \kappa (o(\kappa) = \kappa^{++})$ ".

First issue

We do not have a Laver function at κ .

Work under " $V = \mathcal{K}$ "+"There is no inner model for $\exists \kappa (o(\kappa) = \kappa^{++})$ ".

First issue

We do not have a Laver function at κ .

So let's force it, but without disrupting our control upon the κ -complete measures:

Non-stationary supported Fast Function Forcing

Let κ be an inaccessible cardinal. We denote by S be the poset consisting on partial functions $s\colon\kappa\to H(\kappa)$ such that

- $lom s \subseteq Inacc,$
- $(\operatorname{dom} s) \cap \beta \in \operatorname{NS}_{\beta} \text{ for all } \beta \in \operatorname{Inacc} \cap (\kappa + 1),$
- **(a)** and $s(\alpha) \in H(\alpha^+)$ for all $\alpha \in \operatorname{dom} s$.

The order of S is defined naturally as $s \leq t$ iff $s \supseteq t$.

Let $S\subseteq \mathbb{S}$ be a $\mathcal{K}\text{-generic filter.}$

Lemma

Let \mathcal{U} be a κ -complete ultrafilter over κ in $\mathcal{K}[S]$. Then, there are:

() A finite iteration $\iota \colon \mathcal{K} \to \bar{\mathcal{K}}$ using normal measures in \mathcal{K} with

$$\operatorname{crit}(i_{0,1}) = \kappa < \operatorname{crit}(\iota_{1,2}) = \mu_1 < \cdots < \operatorname{crit}(\iota_{k,k+1}) = \mu_k,$$

such that

$$\mathcal{U} = \{ \dot{X}_S \subseteq \kappa \mid \exists p \in S \left(\iota(p) \cup \{ \langle \mu_i, a_i \rangle \mid i \le k \} \Vdash_{\iota(\mathsf{S})} [\mathrm{id}]_{\mathcal{U}} \in \iota(\dot{X})_{\iota(S)}) \}.$$

Let $S \subseteq \mathbb{S}$ be a \mathcal{K} -generic filter.

Lemma

Let \mathcal{U} be a κ -complete ultrafilter over κ in $\mathcal{K}[S]$. Then, there are:

() A finite iteration $\iota \colon \mathcal{K} \to \bar{\mathcal{K}}$ using normal measures in \mathcal{K} with

$$\operatorname{crit}(i_{0,1}) = \kappa < \operatorname{crit}(\iota_{1,2}) = \mu_1 < \cdots < \operatorname{crit}(\iota_{k,k+1}) = \mu_k,$$

2 A function
$$f: \kappa^{k+1} \to \kappa$$
 in \mathcal{K} such that $[id]_{\mathcal{U}} = \iota_{k+1}(f)(\mu_0, \ldots, \mu_k)$,
3 and $\langle a_0, \ldots, a_k \rangle \in \prod_{i \leq k} H(\mu_i^+)^{\mathcal{K}}$

such that

$$\mathcal{U} = \{ \dot{X}_S \subseteq \kappa \mid \exists p \in S \left(\iota(p) \cup \{ \langle \mu_i, a_i \rangle \mid i \leq k \} \Vdash_{\iota(S)} [\mathrm{id}]_{\mathcal{U}} \in \iota(\dot{X})_{\iota(S)}) \}.$$

Any new measure is **coded** by S plus some information from $H(\kappa^+)^{\mathcal{K}}$.

We would like to force over $\mathcal{K}[S]$ with a **non-stationary supported** iteration of Tree Prikry forcings (guided by $\ell := \bigcup S$) which should give the ω -gluing property of κ .

We would like to force over $\mathcal{K}[S]$ with a **non-stationary supported** iteration of Tree Prikry forcings (guided by $\ell := \bigcup S$) which should give the ω -gluing property of κ .

Yet another issue

Let $\mathcal{U} \in \mathcal{K}[S][G]$ be a κ -complete measure. Now it is not longer true that $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$ is a finite iteration (because $j_{\mathcal{U}}(\mathbb{P}_{\kappa})$ introduces many ω -sequences).

We would like to force over $\mathcal{K}[S]$ with a **non-stationary supported** iteration of Tree Prikry forcings (guided by $\ell := \bigcup S$) which should give the ω -gluing property of κ .

Yet another issue

Let $\mathcal{U} \in \mathcal{K}[S][G]$ be a κ -complete measure. Now it is not longer true that $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$ is a finite iteration (because $j_{\mathcal{U}}(\mathbb{P}_{\kappa})$ introduces many ω -sequences).

However, there is a way to "reduce the problem" to a finite normal iteration of $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$, which by the previous lemma is a lifting of some finite normal iteration of measures in \mathcal{K} .

We would like to force over $\mathcal{K}[S]$ with a **non-stationary supported** iteration of Tree Prikry forcings (guided by $\ell := \bigcup S$) which should give the ω -gluing property of κ .

Yet another issue

Let $\mathcal{U} \in \mathcal{K}[S][G]$ be a κ -complete measure. Now it is not longer true that $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$ is a finite iteration (because $j_{\mathcal{U}}(\mathbb{P}_{\kappa})$ introduces many ω -sequences).

However, there is a way to "reduce the problem" to a finite normal iteration of $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$, which by the previous lemma is a lifting of some finite normal iteration of measures in \mathcal{K} .

If the above is true then we can code any measure in $\mathcal{K}[S][G]$ as an element of $H(\kappa^+)^{\mathcal{K}}$, hence as a potential value for $i(\ell)(\kappa)$ for $i: \mathcal{K} \to \overline{K}$. Then we will use the Tree Prikry forcing with respect to these coded measures to glue all of them.

Lemma (Coding Lemma)

Let $\mathbb{P}_{\kappa} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} \mid \alpha < \beta < \kappa \rangle$ be a non-stationary-supported iteration of \mathcal{U} -Tree Prikry forcings in $\mathcal{K}[S]$. Assume that, for each $\alpha < \kappa$, the iteration has the following properties: **1** $|\mathbb{P}_{\alpha}| \leq 2^{\alpha}$ and $\mathbb{1} \Vdash_{\mathbb{P}_{\alpha}} (Q_{\alpha}, \leq^{*})$ is α -closed"; **2** $1 \Vdash_{\mathbb{P}_{-}} ``\forall p, q \in \mathbb{Q}_{\alpha}$ compatible $p \land q$ exists". Fix $G \subseteq \mathbb{P}_{\kappa} \mathcal{K}[S]$ -generic. For each κ -complete ultrafilter $\mathcal{U} \in \mathcal{K}[S][G]$ over κ there are (α) a finite sub-iteration $\iota \colon \mathcal{K}[S] \to \mathcal{K}^M[\iota(S)]$ of $j_{\mathcal{U}} \upharpoonright \mathcal{K}[S]$, (β) an ordinal $\bar{\epsilon} < \iota(\kappa)$ with $\bar{\epsilon} \in \operatorname{range}(k)$, (γ) $r \in \iota(\mathbb{P}_{\kappa})$ with finite support such that $\iota(p) \wedge r$ exists for all $p \in G$ such that, for each $p \in G$, $p \Vdash_{\mathbb{P}}^{\mathcal{K}[S]}$ " $\dot{X} \in \dot{\mathcal{U}}$ " if and only if there is $q \in \iota(\mathbb{P}_{\kappa})$ such that $(k(q) \in j_{\mathcal{U}}(G) \& q \leq^* \iota(p) \land r \& \operatorname{supp}(q) = \operatorname{supp}(\iota(p) \land r) \& q \Vdash_{\iota(\mathbb{P}_{\kappa})} \bar{\epsilon} \in \iota(\dot{X})).$

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$.

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$. Working inside $\mathcal{K}[S]$ let us define a non-stationary-supported iteration of Tree Prikry forcings as follows: the iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of **codes** for α -complete measures on α ."

in which case $\dot{\mathbb{Q}}_{\alpha}$ is forced to be the Tree Prikry forcing with respect the sequence of measures coded by $\ell(\alpha)$.

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$. Working inside $\mathcal{K}[S]$ let us define a non-stationary-supported iteration of Tree Prikry forcings as follows: the iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of **codes** for α -complete measures on α ."

in which case \dot{Q}_{α} is forced to be the Tree Prikry forcing with respect the sequence of measures coded by $\ell(\alpha)$.

Let $\langle \mathcal{U}_n \mid n < \omega \rangle \in \mathcal{K}[S][G]$ be an ω -sequence of κ -complete measures on κ .

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$. Working inside $\mathcal{K}[S]$ let us define a non-stationary-supported iteration of Tree Prikry forcings as follows: the iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of **codes** for α -complete measures on α ."

in which case \dot{Q}_{α} is forced to be the Tree Prikry forcing with respect the sequence of measures coded by $\ell(\alpha)$.

Let $\langle \mathcal{U}_n \mid n < \omega \rangle \in \mathcal{K}[S][G]$ be an ω -sequence of κ -complete measures on κ . By the coding lemma, there is a sequence $\langle c_n \mid n < \omega \rangle \in H(\kappa^+)^{\mathcal{K}}$ of codes for this measures. Let $\zeta < o(\kappa) = \omega_1$ be above all the ordinals mentioned by the codes c_n 's.

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$. Working inside $\mathcal{K}[S]$ let us define a non-stationary-supported iteration of Tree Prikry forcings as follows: the iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of **codes** for α -complete measures on α ."

in which case \dot{Q}_{α} is forced to be the Tree Prikry forcing with respect the sequence of measures coded by $\ell(\alpha)$. Let $\langle \mathcal{U}_n \mid n < \omega \rangle \in \mathcal{K}[S][G]$ be an ω -sequence of κ -complete measures on κ . By the coding lemma, there is a sequence $\langle c_n \mid n < \omega \rangle \in H(\kappa^+)^{\mathcal{K}}$ of codes for this measures. Let $\zeta < o(\kappa) = \omega_1$ be above all the ordinals mentioned by the codes c_n 's. Take $j_{U(\kappa,\zeta)} \colon \mathcal{K} \to M$. Lift it to $j_{U(\kappa,\zeta)} \colon \mathcal{K}[S] \to M[j(S)]$ in a way that $j(\ell)(\kappa) = \langle c_n \mid n < \omega \rangle$.

Proof sketch

Let $\mathcal{U} = \langle U(\alpha, \zeta) \mid \alpha \leq \kappa, \, \zeta < o^{\mathcal{K}}(\alpha) \rangle$ be the coherent sequence of measures in \mathcal{K} witnessing that $o(\kappa) = \omega_1$. Working inside $\mathcal{K}[S]$ let us define a non-stationary-supported iteration of Tree Prikry forcings as follows: the iteration is trivial at stage α unless

 $1 \Vdash_{\mathbb{P}_{\alpha}} ``\ell(\alpha)$ is an ω -sequence of **codes** for α -complete measures on α ."

in which case \dot{Q}_{α} is forced to be the Tree Prikry forcing with respect the sequence of measures coded by $\ell(\alpha)$.

Let $\langle \mathcal{U}_n \mid n < \omega \rangle \in \mathcal{K}[S][G]$ be an ω -sequence of κ -complete measures on κ . By the coding lemma, there is a sequence $\langle c_n \mid n < \omega \rangle \in H(\kappa^+)^{\mathcal{K}}$ of codes for this measures. Let $\zeta < o(\kappa) = \omega_1$ be above all the ordinals mentioned by the codes c_n 's. Take $j_{U(\kappa,\zeta)} \colon \mathcal{K} \to M$. Lift it to $j_{U(\kappa,\zeta)} \colon \mathcal{K}[S] \to M[j(S)]$ in a way that $j(\ell)(\kappa) = \langle c_n \mid n < \omega \rangle$. This sequence is still a sequence of codes in M[j(S) * G] and therefore \mathbb{Q}_{κ} will be the tree Prikry forcing gluing the measures coded by $\langle c_n \mid n < \omega \rangle$.

Question

What's the consistency strength of the λ -gluing property?

Question

What's the consistency strength of the λ -gluing property?

Question

What cardinals have the ω -gluing property?

Question

What's the consistency strength of the λ -gluing property?

Question

What cardinals have the ω -gluing property?

Question

Is there any connection between the gluing property and directedness of the RK-order?

Thank you very much for your attention!