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Question

Let 9t be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc).
Assume that every small substructure 9t C 9 satisfies a property .

Is it true that 9 itself satisfies ¢?

Yes, if small means finite

© De-Brujin & Erdos: Let G be a graph and suppose that all of its finite subgraphs
H C G have chromatic number <n. Then G has chromatic number <n.

@ Konig: Every Xy-tree has an infinite branch.

© Gaddel: Let I' be an arbitrary collection of L, .,-sentences all of whose finite
subcollections have a model. Then I itself has a model.

This phenomenon is called compactness.
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Question

Let 9t be a mathematical structure of certain kind (e.g., a graph, an Abelian group, etc).
Assume that every small substructure 91 C 9 satisfies a property .

Is it true that 9 itself satisfies ¢?

Question

How about if finite (i.e., cardinality <X) is replaced by countable (i.e., <X;)?

Typically no

© Erdés & Hajnal: Assume the CH. Then there is a graph G with chromatic number Ny
but all of its countable subgraphs H have chromatic number < X.

@ Aronszajn: There is an Ny-tree without cofinal branches.

Item (1) yields a counter-example for the “N;-analogue” of Gédel's Compactness Theorem.
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Question
For which cardinals k > R, does the logic L, , satisfy compactness?

Definition (Keisler & Tarski)

An uncountable cardinal k is called strongly compact if every k-complete filter extends to
a k-complete ultrafilter.

Theorem (Keisler & Tarski)

The following are equivalent for a cardinal K > Ng :
@ « is strongly compact.
@ L., is compact.

© For every X\ > k there is an elementary embedding j: V — M such that crit(j) = &,

"M C M, j(k) > A, and there is s € M such that j“\ C s and M = “|s| < j(k)"
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Definition
An uncountable cardinal & is said to have the \-filter extension property (for A > k) if
every k-complete filter over \ extends to a x-complete ultrafilter.

When A\ = k it is customary to say that x is k-compact.

Question (Mitchell, 1978)

Suppose that & is a k-compact cardinal. Is it K-compact in the inner model L[U/]?
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A prequel of this theorem appeared in an older paper by Gitik:
Theorem (Gitik, 1993)

If k is k-compact then there is an inner model with a strong cardinal.

The proof hints a remarkable feature of k-compactness - the ability to produce extenders.

Theorem (Gitik, 2016)

Suppose that k is k-compact. Then, there is an Extender-Based Prikry forcing that is
universal for the x-distributive forcings of size .
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Gitik's answer

Theorem (Gitik, 1993)

If k is k-compact then there is an inner model with a strong cardinal.

Proof idea

Suppose otherwise. Then, the corresponding core model exists and the following is a set:
Z:={i(k)]i:V — N,“*N C N, N transitive}.

Let A > supZ be regular. Use the filter extension property of k-compact cardinals to build
a (k, A)-extender. This will yield a contradiction as A\ ¢ Z.

(Usw | @< B) = Fo:={X |3a<BICaaNag3IY €Uy X =m,,(Y)} = Uy,

Subtle point: F, might not be x-complete unless the U,_'s are picked in a coherent way.
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Let x be a measurable cardinal. We say that s has the A-gluing property if for every
sequence of k-complete ultrafilters on x, (U, | 7 < A), there is an elementary embedding
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such that Uy = {X C k|, € j(X)}.

P> The A-gluing property is essentially saying that the x-complete filter
F={XC|Vy<A{z(y)|zeX}cU,}

can be extended to a k-complete ultrafilter.

P Gitik's argument shows that if k has the A-gluing property for every cardinal A then
there is an inner model with a strong cardinal.
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Theorem (Hayut, P., 2021)

If % has the M-filter extension property then it has the (2*)-gluing property. In particular,
every k-compact cardinal has the (2%)-gluing property.

Theorem (Hayut, P., 2021)

It is consistent to have a r-compact cardinal without the (2%)"-gluing-property.
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The w-gluing property complies with the following delicate balance:
@ It is a compactness property.
@ Seems not to hold at cardinals weaker than a “partial” strong compact.

© It has low consistency strength.
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Theorem (Hayut, P., 2022)

Suppose that s has the w-gluing property and that there is no inner model for
“Ja (o(a) = @)". Then o (k) > wy.

Proof idea for the lower bound

Define a sequence (V, | @ < wq) of K-normal and k-complete measures using the gluing
property. The very nature of the gluing property will make the sequence (V, NK | a < w1)
to be <-increasing. By maximality of K, these latter measures belong to /C, which yields
(k) > wy.

Theorem (Hayut, P., 2022) (V = K)

Suppose that x is a measurable cardinal with o(k) = w; and that there are no other
measurables \ with o(\) > wy. Then, there is a cardinal-preserving generic extension where
K has the w-gluing property.

v
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Work under “V = K"+"There is no inner model for 3x (o(k) = k)"

First issue
We do not have a Laver function at .

So let’s force it, but without disrupting our control upon the x-complete measures:

Non-stationary supported Fast Function Forcing
Let k be an inaccessible cardinal. We denote by S be the poset consisting on partial
functions s: k — H (k) such that
@ dom s C Inacc,
@ (doms)N B e NSg for all § € InaccN (k+ 1),
Q@ and s(a) € H(a™) for all a € dom s.
The order of S is defined naturally as s < ¢ iff s D t.
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Let U be a k-complete ultrafilter over x in KC[S]. Then, there are:
O A finite iteration ¢: K — K using normal measures in K with
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@ A function f: k" — Kk in K such that [id]y = trr1(f) (pos - - -, fix),
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U={XsCr|TpeS(up)U{{ua)li<k} kg [idy € (X))}
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Let U be a k-complete ultrafilter over x in KC[S]. Then, there are:
O A finite iteration ¢: K — K using normal measures in K with

crit(ion) = k < crit(e12) = p1 < -+ < crit(Lg pt1) = Lk,

@ A function f: k" — Kk in K such that [id]y = trr1(f) (pos - - -, fix),
Q and <a07 vy ak> € Hzgk H(Mj)K
such that

U={XsCr|TpeS(up)U{{ua)li<k} kg [idy € (X))}

Any new measure is coded by S plus some information from H (k%)X
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We would like to force over K[S] with a non-stationary supported iteration of Tree Prikry
forcings (guided by ¢ := |J S) which should give the w-gluing property of .
Yet another issue

Let U € K[S][G] be a x-complete measure. Now it is not longer true that j;, [ K[S] is a
finite iteration (because ji;(IP,;) introduces many w-sequences).

However, there is a way to “reduce the problem” to a finite normal iteration of ji; [ K[S],
which by the previous lemma is a lifting of some finite normal iteration of measures in .

If the above is true then we can code any measure in K[S][G] as an element of H(x*)F,
hence as a potential value for i(¢)(x) for i: K — K. Then we will use the Tree Prikry
forcing with respect to these coded measures to glue all of them.



Lemma (Coding Lemma)

Let P, = (IP,,Qp | @ < B < k) be a non-stationary-supported iteration of U-Tree Prikry
forcings in KC[S]. Assume that, for each oo < k, the iteration has the following properties:
Q |P,| <2% and 1lFp, “(Qq, <*) is a-closed”;
Q 1lkp, “Vp,q € Qo compatible p \ q exists”.
Fix G C P,, K[S]-generic. For each r-complete ultrafilter U € K[S][G] over r there are
(o) a finite sub-iteration v: K[S] — KM [(S)] of ju | K[S],
(8) an ordinal € < (k) with € € range(k),
(v) € u(IP,) with finite support such that «(p) Ar exists for all p € G
KI[S]

such that, for eachp € G, plkp”" “X € U" if and only if there is q € L(P,;) such that

(k(q) € ju(G) & q <* 1(p) Ar & supp(q) = supp(v(p) A7) & q I, € € 1(X)).
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Proof sketch

Let U = (U(a,¢) | a < kK, ¢ < 0(a)) be the coherent sequence of measures in K
witnessing that o(k) = w;.
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Let U = (U(a,¢) | a < kK, ¢ < 0(a)) be the coherent sequence of measures in K
witnessing that o(k) = wy.Working inside K[S] let us define a non-stationary-supported
iteration of Tree Prikry forcings as follows: the iteration is trivial at stage « unless

1lkp, “l(c) is an w-sequence of codes for a-complete measures on «.”

in which case Q, is forced to be the Tree Prikry forcing with respect the sequence of
measures coded by /().
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Let (U, | n < w) € K[S][G] be an w-sequence of k-complete measures on .
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The w-gluing property from o(k) = w;

Proof sketch

Let U = (U(a,¢) | a < kK, ¢ < 0(a)) be the coherent sequence of measures in K
witnessing that o(k) = wy.Working inside K[S] let us define a non-stationary-supported
iteration of Tree Prikry forcings as follows: the iteration is trivial at stage « unless

1lkp, “l(c) is an w-sequence of codes for a-complete measures on «.”

in which case Q, is forced to be the Tree Prikry forcing with respect the sequence of
measures coded by /().

Let (U, | n < w) € K[S][G] be an w-sequence of k-complete measures on x. By the
coding lemma, there is a sequence (¢, | n < w) € H(x")X of codes for this measures. Let
¢ < o(k) = w1 be above all the ordinals mentioned by the codes ¢, 's.
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The w-gluing property from o(k) = w;

Proof sketch

Let U = (U(a,¢) | a < kK, ¢ < 0(a)) be the coherent sequence of measures in K
witnessing that o(k) = wy.Working inside K[S] let us define a non-stationary-supported
iteration of Tree Prikry forcings as follows: the iteration is trivial at stage « unless

1lkp, “l(c) is an w-sequence of codes for a-complete measures on «.”

in which case Q, is forced to be the Tree Prikry forcing with respect the sequence of
measures coded by /().

Let (U, | n < w) € K[S][G] be an w-sequence of k-complete measures on x. By the
coding lemma, there is a sequence (¢, | n < w) € H(x")X of codes for this measures. Let
¢ < o(k) = w1 be above all the ordinals mentioned by the codes ¢, 's.

Take jy(x,c): K — M. Lift it to jy(.c): K[S] — M[7(S)] in a way that j(£)(k) = (¢, |
n < w).
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The w-gluing property from o(k) = w;

Proof sketch

Let U = (U(a,¢) | a < kK, ¢ < 0(a)) be the coherent sequence of measures in K
witnessing that o(k) = wy.Working inside K[S] let us define a non-stationary-supported
iteration of Tree Prikry forcings as follows: the iteration is trivial at stage « unless

1lkp, “l(c) is an w-sequence of codes for a-complete measures on «.”

in which case Q, is forced to be the Tree Prikry forcing with respect the sequence of
measures coded by /().

Let (U, | n < w) € K[S][G] be an w-sequence of k-complete measures on x. By the
coding lemma, there is a sequence (¢, | n < w) € H(x")X of codes for this measures. Let
¢ < o(k) = wy be above all the ordinals mentioned by the codes ¢, 's.

Take jyr(x,c): K — M. Lift it to jy(.c): K[S] = M[7(S)] in a way that j(£)(k) = (¢, |

n < w). This sequence is still a sequence of codes in M [j(.S) * G] and therefore Q,, will be
the tree Prikry forcing gluing the measures coded by (¢, | n < w).
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Question
What's the consistency strength of the A-gluing property?
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Some open questions

Question
What's the consistency strength of the A-gluing property?

Question
What cardinals have the w-gluing property?

Question
Is there any connection between the gluing property and directedness of the RK-order?




Thank you very much for your attention!



