Independence and singular cardinals

Diana Carolina Montoya Fakultät für Mathematik Universität Wien

> Arctic set theory conference February 21, 2023

Der Wissenschaftsfonds.

Contents

Independent families at uncountable cardinals

• A word on the regular case

• The singular case

Section 1

Independent families at uncountable cardinals

Basic definitions

Definition

Assume that κ is a regular cardinal and χ is an infinite cardinal. Let \mathcal{A} be a family of subsets of χ such that $|\mathcal{A}| \geq \kappa$:

We denote by $\mathsf{BF}_{\kappa}(\mathcal{A})$ the family of partial functions $\{h : \mathcal{A} \to 2 : |\mathsf{dom}(h)| < \kappa\}$ and call it the family of bounded functions on \mathcal{A} .

Definition

 $\blacktriangleright \ \textit{Given } h \in {\rm BF}_\kappa(\mathcal{A}), \textit{ we define }$

$$\mathcal{A}^h = \bigcap \{A^{h(A)} : A \in \mathcal{A} \cap \operatorname{dom}(h)\},$$

where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \chi \setminus A$ otherwise. We call \mathcal{A}^h the Boolean combination of \mathcal{A} associated to h and we refer to $\{\mathcal{A}^h : h \in \mathsf{BF}_\kappa(\mathcal{A})\}$ as the family of generalized boolean combinations of the family \mathcal{A} .

Independent families

Definition

Let κ be a regular cardinal. A family $\mathcal{A} \subseteq \mathcal{P}(\chi)$ such that $|\mathcal{A}| \geq \kappa$ is called κ -independent if for for every $h \in \mathsf{BF}_{\kappa}(\mathcal{A})$, the set \mathcal{A}^h has size χ .

A κ -independent family \mathcal{A} is said to be maximal κ -independent if it is not properly contained in another κ -independent family. We call the cardinal κ the degree of independence of the family \mathcal{A} .

The issue with existence

- Analogously to the classical case (χ = κ = ω) it is possible to construct κ-independent families of size 2^κ (under some assumptions on κ).
- However, it is not possible to use Zorn's lemma to prove the existence of maximal κ-independent families, if κ is uncountable.

The following result of Kunen provides necessary conditions for the existence of maximal κ -independent families in the general context when κ is a regular uncountable cardinal.

Kunen's Theorem

Theorem (See Theorem 1 in [Kun83])

Suppose that κ is regular and uncountable and χ is any infinite cardinal. Also assume that there is a maximal κ -independent family $\mathcal{A} \subseteq \mathcal{P}(\chi)$, with $|\mathcal{A}| \geq \kappa$. Then:

- 1. $2^{<\kappa} = \kappa$ and,
- 2. there is a Γ with sup $\{(2^{\alpha})^+ : \alpha < \kappa\} \le \Gamma \le \min\{\chi, 2^{\kappa}\}$ such that, there is a non-trivial κ^+ -saturated Γ -complete ideal over Γ .

Sufficient conditions

Lemma

Suppose κ is regular, $2^{<\kappa} = \kappa$, $\kappa \leq \chi$ and \mathcal{I} is a κ^+ -saturated χ -complete ideal over χ such that $\mathcal{B}(\operatorname{Fn}_{\kappa}(2^{\chi}, 2))$ isomorphic to $\mathcal{P}(\chi)/\mathcal{I}$. Then, there is a maximal κ -independent family of subsets of χ .

A consistency result

Theorem (Kunen)

If there is a measurable cardinal, then there is a maximal σ -independent family $\mathcal{A} \subseteq \mathcal{P}(2^{\omega_1})$.

The proof

Start with a measurable cardinal κ in a ground model V where CH holds.
Let U be a normal measure witnessing the measurability of κ.
We construct a model in which CH still holds and if κ = 2^{ℵ1}, there is an ω₂-saturated, κ-complete ideal J over κ such that the Boolean algebras P(κ)/J and B(Fn_{ω1}(2^κ, 2)) are isomorphic.

Sufficient conditions

Let \mathbb{P} be $\operatorname{Fn}_{\omega_1}(\kappa, 2)$ and let G to be a \mathbb{P} -generic filter over V. In V[G], $\kappa = 2^{\aleph_1}$ and we can define the following collection of subsets of κ :

$$\mathcal{J} = \{ X \subseteq \kappa : \exists Y \in \mathcal{U}(X \cap Y = \emptyset) \}$$

▶ \mathcal{J} is, in turn a κ -complete ω_2 -saturated ideal because \mathbb{P} has the ω_2 -cc and so \mathcal{J} is ω_2 -saturated and κ -complete in V[G].

The rest of the argument aims to construct an isomorphism between the Boolean algebras $\mathcal{P}(\kappa)/\mathcal{I}$ and $\mathcal{B}(\mathsf{Fn}_{\omega_1}(2^\kappa,2))$ in V[G].

- Let $j: V \to M = \text{Ult}(V, \mathcal{U})$ be the ultrapower embedding associated to \mathcal{U} , i.e. j is elementary, $\operatorname{crit}(j) = \kappa$.
- $\label{eq:left} \begin{tabular}{l} \begin{tabular}{ll} {\bf Let} \ \kappa^* = j(\kappa) > \kappa, \mbox{ then } 2^\kappa < \kappa^* < (2^\kappa)^+ \mbox{ and the posets } {\rm Fn}_{\omega_1}(2^\kappa,2) \mbox{ and } {\rm Fn}_{\omega_1}(\kappa^* \backslash \kappa,2) \mbox{ are isomorphic.} \end{tabular}$

The isomorphism

Let's define the isomorphism $\Gamma: \mathcal{P}(\kappa)/\mathcal{I} \to \mathcal{B}(\operatorname{Fn}_{\omega_1}(\kappa^* \setminus \kappa, 2))$ in V[G] as follows: Given $[X] \in (\mathcal{P}(\kappa)/\mathcal{I})^{V[G]}$, and let \dot{X} be a \mathbb{P} -name for the set X. We define the function as follows:

 $\Gamma([X]):=\bigvee\{q\in \mathrm{Fn}_{\omega_1}(\kappa^*\backslash\kappa,2): \exists p\in G(p\cup q\Vdash \check{\kappa}\in j(\dot{X}))\}.$

Two more consistency results

Corollary

Assume κ is strongly compact in V. Then in V[G], where G is \mathbb{P} -generic (for $\mathbb{P} = \operatorname{Fn}_{\omega_1}(\kappa, 2)$ like in the theorem above) for every cardinal $\chi \geq \kappa$ such that $\operatorname{cf}(\chi) \geq \kappa$ there is a maximal σ -independent family of subsets of χ .

Theorem

Let δ be a regular cardinal such that $2^{<\delta} = \delta$ and κ be a measurable cardinal above it. Then there is a generic extension in which there is a maximal δ -independent family $\mathcal{A} \subseteq \mathcal{P}(2^{\delta})$.

Section 2

A word on the regular case

Countable independence degree

If we assume $\kappa = \omega$ the existence of maximal κ -independent families at a cardinal χ is a straightforward consequence of Zorn's lemma. The following is a result of Fischer and myself regarding these families.

Theorem (See [FM20])

Let χ be a measurable cardinal and let $2^{\chi} = \chi^+$. Then there is a generic extension in which there is a maximal ω -independent family of subsets of χ , which remains maximal after the χ -support product of δ -many copies of χ -Sacks forcing.

On uncountable independence degree

Also, Eskew and Fischer have studied the concept of independence for regular cardinals. In [EF21] they prove in particular that if $i(\kappa)$ is the minimum size of a maximal κ -independent family of subsets of κ . Then, it is consistent that $\kappa^+ < i(\kappa) < 2^{\kappa}$.

They also studied the spectrum of maximal κ -independent families at χ and gave a wide set of results involving it.

Section 3

The singular case

Framework

Now, we want to study the concept of independence in the case when λ is a singular cardinal of cofinality $\kappa < \lambda$.

Look at the definition of Independence and notice, there is no a priori restriction about lifting it to the context of a singular.

Hausdorff's example at \aleph_{ω}

Let

$$\mathcal{C} = \{(a,A): a \in [\lambda]^{<\omega}, A \subseteq \mathcal{P}(a)\}$$

and note $|\mathcal{C}| = \aleph_{\omega}$.

For $X \subseteq \lambda$ define

$$\mathcal{Y}_X=\{(a,A)\in\mathcal{C}:X\cap a\in A\}.$$

Then, $\mathcal{A} = \{\mathcal{Y}_X : X \subseteq \lambda\} \subseteq \mathcal{P}(\mathcal{C}) \simeq \mathcal{P}(\aleph_\omega)$ is ω -independent (or σ -independent).

Given $X_0, X_1, \dots X_i$ and $Z_0, Z_1, \dots Z_j$ for $i, j < \omega$, if $a \in [\lambda]^{<\omega}$ is such that $X_l \cap a \neq X_{l'} \cap a \neq Z_n \cap a \neq Z_{n'} \cap a$ for all $l, l' \leq i$ and $n, n' \leq j$. Then $a \in \bigcap_{l < i} \mathcal{Y}_{X_l} \cap \bigcap_{l < i} \lambda \setminus \mathcal{Y}_{Z_i}$.

Notice that \mathcal{A} is not ω_1 -independent: If $X_0 \subseteq X_1 \subseteq \ldots X_n \subseteq \ldots$ is cofinal in λ . Take $(a, A) \in \bigcap_i \text{ even } \mathcal{Y}_{X_i} \cap \bigcap_i \text{ odd } \lambda \setminus \mathcal{Y}_{X_i}$. Since the sequence of the X_n 's is cofinal there is a $n_a \in \omega$ (we can take it minimal) such that $a \subseteq X_{n_a}$, but then for all $i \ge n_a$, $a \cap X_i = a$ which leads to a contradiction.

More simple properties

The former is a general behavior:

Proposition

Let λ be a singular cardinal of cofinality $\kappa < \lambda$. Suppose that \mathcal{A} is a κ -independent family of subsets of λ , then \mathcal{A} is <u>not</u> κ^+ -independent.

Proposition

Suppose λ is a strong limit singular cardinal with $cf(\lambda) = \kappa$. Then there is a κ -independent family of subsets of λ of size 2^{λ} .

Maximality

Now we turn to maximality and the issue of the existence of maximal independent families at singular cardinals. From now on, we assume that λ is a singular cardinal of cofinality $\kappa < \lambda$.

First we establish that a κ -independent family $\mathcal{A} \subseteq [\lambda]^{\lambda}$ is **maximal** if for all $X \in [\lambda]^{\lambda}$ there is a bounded function $\mathsf{BF}_{\kappa}(\mathcal{A})$ such that either $\mathcal{A}^h \setminus X$ or $\mathcal{A}^h \cap X$ is bounded in λ (i.e. of size $< \lambda$).

Cases

Let's consider the case where λ is singular of countable cofinality. In this case existence of a maximal ω-independent family (or just *independent*) of subsets of λ can be proven using Zorn's lemma.

In the case of λ singular of cofinality $\kappa > \omega$ we have the following: if there exists $\mathcal{A} \subseteq [\lambda]^{\lambda}$ a maximal κ -independent family, then Kunen's Theorem implies that $2^{<\kappa} = \kappa$ and that there is an ordinal Γ with $\sup\{(2^{\alpha})^{+} : \alpha < \lambda\} \leq \Gamma \leq \min\{\lambda, 2^{\kappa}\}$ such that, there is a non-trivial κ^{+} -saturated Γ -complete ideal over Γ .

Main results

The next result guarantees the existence of a maximal κ -independent family at a singular cardinal λ of cofinality κ .

Lemma

Assume that λ is a singular cardinal of cofinality $\kappa > \omega$ which is a limit of the discrete sequence of regular cardinals $(\lambda_{\alpha} : \alpha < \kappa)$ and that $\delta \leq \kappa < \lambda_0$ is a successor cardinal $\delta = \mu^+$. If for each $\alpha < \kappa$ there is a dense maximal δ -independent family $\mathcal{A}_{\alpha} \subseteq [\lambda_{\alpha}]^{\lambda_{\alpha}}$ and also there is a maximal δ -independent family \mathcal{C} of subsets of κ . Then, there is a maximal δ -independent family $\mathcal{B} \subseteq [\lambda]^{\lambda}$.

^aOne can prove an analog of this theorem in which instead of densely maximal, we just have maximal

Theorem

Assume that λ is a singular cardinal of cofinality κ which is a limit of a discrete sequence of cardinals $(\lambda_{\alpha} : \alpha < \kappa)$. Let also $(\delta_{\alpha} : \alpha < \mu)$ be a sequence of cardinals with limit $\mu \leq \kappa$ where μ is a regular cardinal. Suppose also that for each $\alpha < \kappa$, there is a maximal δ^+_{α} -independent family $\mathcal{A}_{\alpha} \subseteq [\lambda_{\alpha}]^{\lambda_{\alpha}}$ and $\kappa < \lambda_0$ is regular such that there is a maximal μ -independent family of subsets of κ . Then, there is a maximal μ -independent family $\mathcal{B} \subseteq [\lambda]^{\lambda}$.

Theorem

Start with a ground model V in which GCH holds. Suppose that λ is a singular cardinal of cofinality $\kappa > \omega$ which is a limit of supercompact cardinals $(\lambda_{\alpha} : \alpha < \kappa)$. Let also $(\delta_{\alpha} : \alpha < \kappa)$ be a sequence of regular successor cardinals converging to κ so that $\delta_{\alpha}^{<\delta_{\alpha}} = \delta_{\alpha}$. Then there is a generic extension of V in which:

 $V^{\mathbb{P}} \models$ There is a maximal κ -independent family of subsets of λ .

Sizes of independent families

Let λ be a singular cardinal of cofinality $\kappa < \lambda$, let's define:

 $\mathfrak{i}(\lambda) = \{ |\mathcal{A}| \colon \mathcal{A} \subseteq [\lambda]^{\lambda} \text{ such that } \mathcal{A} \text{ is maximal } \kappa \text{-independent} \}$

Lemma

The following inequalities hold:

- 1. $\mathfrak{i}_{\kappa}(\lambda)^{<\kappa} \geq \lambda^+$.
- $\text{2. } \mathfrak{i}_{\kappa}(\lambda)^{<\kappa} \geq \mathfrak{r}(\lambda).$

More ZFC properties

Proposition

If for all
$$\gamma < \mathfrak{d}(\lambda)$$
 we get $\gamma^{<\kappa} < \mathfrak{d}(\lambda)$ then $\mathfrak{i}_{\kappa}(\lambda) \geq \mathfrak{d}(\lambda)$.

Theorem (Shelah)

• If λ is strong limit singular, then $\mathfrak{d}(\lambda) = 2^{\lambda}$.

If λ is singular and $\alpha < \lambda$ then $|\alpha|^{\operatorname{cf}(\lambda)} < \lambda$ then $\mathfrak{d}(\lambda) = 2^{\lambda} = \mathfrak{e}(\lambda)$.

Questions

Given a singular strong limit cardinal λ , is it the case that $i(\lambda) = 2^{\lambda}$?

• Looking at the construction of the maximal δ -independent family at a singular from Theorem 2. Regardless of the sizes of the intermediate families \mathcal{A}_{α} for $\alpha < \kappa$, the size of the final family \mathcal{B} is always 2^{λ} . Is it possible to refine the family \mathcal{B} in such a way that its size is dependent on the size of the intermediate families?

Thanks!

Regular ultrafilters

Definition

Let κ, λ, μ be cardinals so that $\kappa \leq \mu$. An ultrafilter \mathcal{D} over λ is (κ, μ) -regular if there is a family $\{X_{\alpha} : \alpha < \mu\}$ of elements of \mathcal{D} so that every subset S of μ of cardinality $\kappa, \bigcap_{\alpha \in S} X_{\alpha} = \emptyset$. We call the sequence $\{X_{\alpha} : \alpha < \mu\}$ a regularizing sequence for \mathcal{U} .

Classical results

Theorem

If $\kappa > \omega$ is a regular cardinal, then κ is strongly compact if and only if for every $\lambda > \kappa$ there is a κ -complete, (κ, λ) -regular ultrafilter.

Theorem (Ketonen)

If $\kappa > \omega$ is strongly compact, then for every regular $\lambda > \kappa$ there is a uniform κ -complete, (κ, λ) -regular ultrafilter over λ .

Proposition

Any κ -complete, (κ, λ) -regular ultrafilter is $(\kappa, \lambda^{<\kappa})$ -regular.

Theorem (Solovay)

If $\lambda > \kappa$ is a regular and κ is strongly compact then $\lambda^{<\kappa} = \lambda$. Hence, the singular cardinal hypothesis holds at any singular strong limit cardinal $> \kappa$ of cofinality κ .

Regular maximal independent families

Definition

Let \mathcal{A} be a maximal κ -independent family at some cardinal χ , we say that \mathcal{A} is regular if for every $g \in \mathsf{BF}_{\kappa^+}(\mathcal{A})$ with $|\mathsf{dom}(g)| = \kappa$, the corresponding boolean combination $\mathcal{A}^g = \emptyset$.

Lemma

Let \mathcal{A} be a dense maximal independent family at a singular cardinal λ of cofinality κ such that for all $g \in \mathsf{BF}_{\kappa^+}$, there is $g' \in \mathsf{BF}_{\kappa^+}(\mathcal{A})$ such that $\emptyset = \mathcal{A}^{g'} =^* \mathcal{A}^g$.

Question

Are all maximal κ -independent families regular, or in other words: Given an uncountable cardinal κ . Is there a cardinal χ such that there are no regular maximal κ -independent families of subsets of χ ?

References I

- Monroe Eskew and Vera Fischer, Strong independence and its spectrum., Submitted, 2021.
- Vera Fischer and Diana Carolina Montoya, Higher independence, Submitted, 2020.
- Kenneth Kunen, *Maximal* σ -independent families, Fund. Math. **117** (1983), no. 1, 75–80. MR 712215