## Working in set theory without powerset

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

> Arctic Set Theory 6 February 22, 2023

# Axioms and applications

Intuitive axiomatization: remove powerset from ZFC.

#### Start with ZF.

### $ZF^-$ :

- Remove powerset.
- Replace the Replacement scheme with the Collection scheme.

#### $ZFC^-$ :

• Replace AC with the Well-Ordering Principle: every set can be well-ordered.

#### Models

- $H_{\kappa^+}$ : collection of all sets with transitive closure of size  $\leq \kappa$  for a cardinal  $\kappa$
- A forcing extension of a model of ZFC by pretame class forcing.
  - $ightharpoonup \Pi_{\mathcal{E} \in \mathrm{Ord}} \mathrm{Add}(\omega, 1).$
  - $ightharpoonup \Pi_{\alpha \in \operatorname{Card}} \operatorname{Col}(\omega, \alpha).$
- A first-order model bi-interpretable with a model of Kelley-Morse Set Theory with the Choice Scheme

### The choice of axioms

**Theorem**: (Szczepaniak) There is a model of ZF<sup>-</sup> in which AC holds (every family of sets has a choice function), but the Well-Ordering Principle fails.

**Open Question**: Are Zorn's Lemma and AC equivalent over ZF<sup>-</sup>?

Consider the following theory.

#### ZFC-:

- Remove powerset
- Replace AC with the Well-Ordering Principle.

**Theorem**: (Zarach) ZFC- does not imply the Collection scheme.

In ZFC, the proof that Replacement implies Collection replies on the existence of the von Neumann  $V_{\alpha}$ -hierarchy.

**Theorem**: (G., Hamkins, Johnstone) It is consistent that there are models of ZFC- in which:

- $\omega_1$  is singular,
- ullet every set of reals is countable, but  $\omega_1$  exists,
- Łoś-Theorem fails for ultrapowers.

Although the above pathological behaviors are eliminated by replacing  $\rm ZFC^-$  with  $\rm ZFC^-$ , we will see later that  $\rm ZFC^-$  is still not as robust as desired.

4 □ > 4 圖 > 4 필 > 4 필 >

# Second-order set theory

In first-order set theory, classes are definable collections of sets (objects in the meta-theory).

Second-order set theory has two sorts of objects: sets and classes.

### Syntax: Two-sorted logic

- Separate variables and quantifiers for sets and classes
- Convention: upper-case letters for classes, lower-case letters for sets
- Notation:

  - ▶  $\Sigma_n^0$  first-order  $\Sigma_n$ -formula ▶  $\Sigma_n^1$  n-alternations of class quantifiers followed by a first-order formula

**Semantics**: A model is a triple  $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$ .

- V consists of the sets.
- C consists of the classes.
- Every set is a class:  $V \subseteq \mathcal{C}$ .
- $C \subseteq V$  for every  $C \in C$ .

#### Second-order axioms

- Sets: ZFC
- Classes:
  - Extensionality
  - ▶ Replacement: If F is a function and a is a set, then  $F \upharpoonright a$  is a set.
  - ightharpoonup Global well-order: There is a class bijection between Ord and V.

#### Gödel-Bernays set theory GBC:

Comprehension scheme for first-order formulas:

If  $\varphi(x, A)$  is a first-order formula, then  $\{x \mid \varphi(x, A)\}$  is a class.

Increasing to the amount of comprehension to more complex second-order assertions produces a hierarchy of second-order set theories culminating in:

### Kelley-Morse set theory $\mathrm{KM}$ :

Full comprehension:

If  $\varphi(x, A)$  is a second-order formula, then  $\{x \mid \varphi(x, A)\}$  is a class.

# Choice principles for classes (continued)

Choice scheme (CC): Given a second-order formula  $\varphi(x,X,A)$ , if for every set x, there is a class X witnessing  $\varphi(x,X,A)$ , then there is a class Y collecting witnesses for every x on its slices  $Y_x = \{y \mid \langle y,x \rangle \in Y\}$  so that  $\varphi(x,Y_x,A)$  holds. ("AC for classes")

**Theorem**: (G., Hamkins) It is consistent that there is a model of KM in which the Choice scheme fails  $\omega$ -many choices for a first-order formula.

**Theorem**: (G., Hamkins) The Łoś-Theorem for second-order ultrapowers is equivalent to the Choice scheme for set-many choices.

**Proposition**: The Choice scheme implies that every formula is equivalent to a  $\sum_{n=1}^{n}$ -formula for some n.

**Theorem:** (G., Hamkins) KM fails to prove that every formula of the form  $\forall x \varphi(x)$ , where  $\varphi(x)$  is  $\Sigma_1^1$ , is equivalent to a  $\Sigma_1^1$ -formula.

Suppose  $\delta$  is a regular cardinal or  $\delta = Ord$ .

**Dependent Choice scheme**  $DC_{\delta}$ : Given a second-order formula  $\varphi(X, Y, A)$ , if for every class X, there is a class Y such that  $\varphi(X, Y, A)$  holds, then there is a class Z such that for every  $\xi < \delta$ ,  $\varphi(Z \upharpoonright \xi, Z_{\xi}, A)$  holds ("DC for classes").

"We can make  $\delta$ -many dependent choices over any definable relation on classes without terminal nodes."

6 / 21

### Models of KM + CC

**Proposition**: Suppose  $V \models \mathrm{ZFC}$  and  $\kappa$  is an inaccessible cardinal. Then  $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM} + \mathrm{CC} + \mathrm{DC}_{\mathrm{Ord}}$ .

Consider the following theory.

# $ZFC_{I}^{-}$ :

- ZFC<sup>-</sup>
- There is the largest cardinal  $\kappa$ .
- $\kappa$  is inaccessible:  $\kappa$  is regular and for all  $\alpha < \kappa$ ,  $2^{\alpha}$  exists and  $2^{\alpha} < \kappa$ .
  - V<sub>κ</sub> exists.
  - $ightharpoonup V_{\kappa} \models \mathrm{ZFC}$

**Proposition**: Suppose  $M \models \mathrm{ZFC}_{\mathrm{I}}^-$  with the largest cardinal  $\kappa$ , then  $\langle V_{\kappa}, \in, P(V_{\kappa}) \rangle \models \mathrm{KM} + \mathrm{CC}$ .

# Bi-interpretability of $\mathrm{KM} + \mathrm{CC}$ and $\mathrm{ZFC}_\mathrm{I}^-$

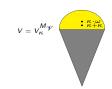
**Theorem**: (Marek) The theory KM+CC is bi-interpretable with the theory  $ZFC_I^-$ .

Suppose  $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{KM+CC}$ .

- View each extensional well-founded class relation  $R \in \mathcal{C}$  as coding a transitive set.
  - $ightharpoonup \operatorname{Ord} + \operatorname{Ord}$ ,  $\operatorname{Ord} \cdot \omega$
  - **▶** *V* ∪ {*V*}
- Define a membership relation E on the collection of all such relations R (modulo isomorphism).
- Let  $\langle M_{\mathscr{V}}, \mathsf{E} \rangle$ , the companion model of  $\mathscr{V}$ , be the resulting first-order structure.
  - ▶  $M_{\mathscr{V}}$  has the largest cardinal  $\kappa \cong \mathrm{Ord}^{\mathscr{V}}$ .
  - $V_{\kappa}^{M_{\gamma \ell}} \cong V.$
  - $\triangleright \mathcal{P}(V_{\kappa})^{M_{\mathscr{V}}} \cong \mathcal{C}.$
  - $\blacktriangleright \langle M_{\mathscr{V}}, \mathsf{E} \rangle \models \mathrm{ZFC}_{\mathsf{L}}^{-}.$

Suppose  $M \models \mathrm{ZFC}_{\mathrm{I}}^-$  with the largest cardinal  $\kappa$ .

- $V = V_{\kappa}^{M}$
- $C = \{X \in M \mid X \subseteq V_{\kappa}^M\}$
- $\mathcal{V} = \langle V, \in, \mathcal{C} \rangle \models \text{KM+CC}$
- $M_{\mathscr{V}} \cong M$  is the companion model of  $\mathscr{V}$ .



Leeds

## First-order Dependent Choice Scheme

### **Dependent Choice Scheme**: $DC_{\delta}$ -scheme ( $\delta$ regular)

Given a formula  $\varphi(x, y, a)$ , if for every b, there is a c such that  $\varphi(b, c, a)$  holds, then there is a function f with domain  $\delta$  such that for all  $\xi < \delta$ ,  $\varphi(f \upharpoonright \xi, f(\xi), a)$  holds.

 $DC_{<\mathrm{Ord}}$ -scheme: the  $DC_{\delta}$ -scheme for every regular  $\delta$ .

**Proposition**: In ZFC, the  $DC_{< Ord}$ -scheme holds.

**Proof**: Fix a regular  $\delta$  and a relation  $\varphi(x, y, a)$  without terminal nodes.

Fix a  $V_{\gamma}$ , with  $cof(\gamma) \ge \delta$ , such that  $V_{\gamma}$  reflects  $\varphi(x, y, a)$  and  $\forall x \exists y \varphi(x, y, a)$ .

- $\bullet \ V_{\gamma}^{<\delta}\subseteq V_{\gamma}.$
- Use a well-ordering of  $V_{\gamma}$  together with closure to construct f.  $\square$

#### Models

- H<sub>κ+</sub>.
- Pretame forcing extensions of ZFC-models pretame forcing preserves DC<sub>QOrd</sub>-scheme.
- A model  $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{CC} + \mathrm{DC}_{\delta}$  if and only if its companion model  $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathsf{L}}^- + \mathrm{DC}_{\delta}$ -scheme.

# Dependent Choice scheme without powerset

**Theorem**: (Friedman, G., Kanovei) There is a model  $M \models \mathrm{ZFC}^-$  in which the  $\mathrm{DC}_{\omega}$ -scheme fails.

- Force with a tree iteration of Jensen's forcing along the tree  $\omega_1^{<\omega}$ .
- N is a symmetric submodel of the forcing extension.
- $M = H_{\omega_1}^N$  ( $\omega$  is the largest cardinal in M)

**Theorem**: (G., Friedman) It is consistent that there is a model of  $\mathrm{ZFC}_{\mathrm{I}}^-$  in which the  $\mathrm{DC}_{\omega}$ -scheme fails.

- ullet Use a generalization of Jensen's forcing to an inaccessible  $\kappa.$
- Force with a tree iteration of generalized Jensen's forcing along the tree  $(\kappa^+)^{<\omega}$ .

**Corollary**: It is consistent that there is a model of KM + CC in which  $DC_{\omega}$  fails.

Work in progress: (G.) It is consistent that there are models of  $ZFC_I^-$  with the largest cardinal  $\kappa$  in which:

- $DC_{\omega}$ -scheme holds, but the  $DC_{\omega_1}$ -scheme fails.
- $DC_{\omega_1}$ -scheme holds, but the  $DC_{\omega_2}$ -scheme fails.
- $DC_{\alpha}$ -scheme holds for every regular  $\alpha < \kappa$ , but the  $DC_{\kappa}$ -scheme fails.

# Dependent Choice scheme as a reflection principle

**Proposition**: (G., Hamkins, Johnstone) In ZFC<sup>-</sup>, TFAE.

- $DC_{\omega}$ -scheme
- Every formula  $\varphi(x, a)$  reflects to a transitive set model.

More generally, the following holds under a weak powerset existence assumption:

**Proposition**: (G.) In ZFC<sup>-</sup>, TFAE for a regular  $\delta$  such that  $\gamma^{<\delta}$  exists for every  $\gamma$ .

- $\bullet$  DC $_{\delta}$ -scheme
- Every formula  $\varphi(x, a)$  reflects to a transitive model m such that  $m^{<\delta} \subseteq m$ .

**Corollary**: In  $\mathrm{ZFC}_{\mathrm{I}}^-$ , the  $\mathrm{DC}_{\delta}$ -scheme holds if and only if every formula reflects to a transitive set model closed under  $<\!\delta$ -sequences.

# Other applications of the Dependent Choice scheme

**Theorem**: (Folklore) In ZFC<sup>-</sup>, TFAE.

- DC<sub><Ord</sub>-scheme
- The partial order Add(Ord, 1) is Ord-distributive.
- Global well-order can be forced without adding sets.

**Proposition**: In ZFC<sup>-</sup> + DC<sub> $\delta$ </sub>-scheme, every class surjects onto  $\delta$ .

**Proposition**: In  $ZFC^- + DC_{< Ord}$ -scheme, every class is big: surjects onto every ordinal.

#### ZFC<sup>-</sup> and the Intermediate Model Theorem

### Intermediate Model Theorem: (Solovay)

- If  $V \models \mathrm{ZFC}$ , V[G] is a set forcing extension, and  $W \models \mathrm{ZFC}$  such that  $V \subseteq W \subseteq V[G]$ , then W = V[H] is a set forcing extension.
- If  $V \models \operatorname{ZF}$ , V[G] is a set forcing extension, and  $V[a] \models \operatorname{ZF}$  such that  $a \subseteq V$  and  $V[a] \subseteq V[G]$ , then V[a] is a set forcing extension.

**Theorem:** (Antos, G., Friedman) If  $M \models \mathrm{ZFC}^-$ , M[G] is a set forcing extension, and  $M[a] \models \mathrm{ZFC}^-$  such that  $a \subseteq M$  and  $M[a] \subseteq M[G]$ , then M[a] = M[H] is a set forcing extension.

**Proof Sketch**: Every poset  $\mathbb{P} \in M$  densely embeds into a class complete Boolean algebra.  $\square$ .

#### Failure of the Intermediate Model Theorem

**Theorem**: (Antos, G., Friedman) If  $M \models \mathrm{ZFC}_{\mathrm{I}}^-$  with the largest cardinal  $\kappa$  and  $G \subseteq \mathrm{Add}(\kappa,1)$  is M-generic, then there is a model  $N \models \mathrm{ZFC}^-$  such that:

- $M \subseteq N \subseteq M[G]$ ,
- N is not a set forcing extension,
- if  $M \models \mathrm{DC}_{\kappa}$ -scheme, then  $N \models \mathrm{DC}_{\kappa}$ -scheme.

#### **Proof Sketch:**

- $G \subseteq Add(\kappa, \kappa) \cong Add(\kappa, 1)$
- $G_{\xi} = G \upharpoonright \xi$  is the restriction of G to the first  $\xi$ -many coordinates of the product.
- $\bullet \ \ \mathsf{N} = \bigcup_{\xi < \kappa} \, \mathsf{M}[\mathsf{G}_{\xi}]$
- ullet Use an automorphism argument to show that N satisfies Collection.  $\square$

# ZFC<sup>-</sup> and ground model definability

**Theorem**: (Laver, Woodin) A model  $V \models \mathrm{ZFC}$  is uniformly definable with parameters from V in all its set forcing forcing extensions.

**Theorem**: (G., Johnstone) If  $M \models \mathrm{ZFC}_{\mathrm{I}}^-$  with the largest cardinal  $\kappa$ , then M is uniformly definable in its forcing extensions by any poset in  $V_{\kappa}$ .

Theorem: (G., Johnstone)

- Suppose  $\kappa > \omega$  is regular and W = V[G] is a forcing extension by  $\mathrm{Add}(\omega, \kappa^+)$ . Then  $M = H^W_{\omega^+}$  is not definable in its forcing extensions by  $\mathrm{Add}(\omega, 1)$ .
  - $ightharpoonup P(\omega)$  is a proper class in M.
- Suppose  $\kappa$  is inaccessible and W = V[G] is a forcing extension by  $\mathrm{Add}(\kappa, \kappa^+)$ . Then  $M = H_{\kappa^+}^W$  is not definable in its forcing extensions by  $\mathrm{Add}(\kappa, 1)$ .
  - $ightharpoonup M \models \mathrm{ZFC}_{\mathrm{I}}^{-}$ .

**Theorem**: (Woodin) If there is an elementary embedding  $j: L(V_{\lambda+1}) \to L(V_{\lambda+1})$  with  $\operatorname{crit}(j) < \lambda$  ( $I_0$ ), then  $M = H_{\lambda^+}$  is not definable in its forcing extension by  $\operatorname{Add}(\omega, 1)$ .

•  $P(\omega) \in M$ .

**Open Question**: What is the consistency strength of having a model  $M \models \mathrm{ZFC}^-$  which is not definable in a forcing extension by  $\mathbb{P} \in M$  with  $P(\mathbb{P}) \in M$ ?

15 / 21

### ZFC<sup>-</sup> and HOD

**Theorem**: The inner model HOD (hereditarily ordinal definable sets) is definable in any model  $V \models \mathrm{ZFC}$ .

**Proof**: A set *a* is in HOD if and only if there is  $\alpha$  such that *a* is ordinal definable over  $V_{\alpha}$ .  $\square$ 

Open Questions: Is HOD definable in

- models of ZFC<sup>-</sup>?
- models of ZFC<sub>T</sub><sup>-</sup>?
- models of  $ZFC^- + DC_{< Ord}$ -scheme?
- H<sub>κ+</sub>?

# Strange models of ZFC<sup>-</sup>

### Set-up

$$\mathbb{P} = \mathrm{Add}(\omega, \omega) \cong \mathrm{Add}(\omega, 1).$$

$$G \subseteq Add(\omega, \omega)$$
 is V-generic.

 $G_n = G \upharpoonright n$  is the restriction of G to the first n-many coordinates of the product.

$$N = \bigcup_{n < \omega} V[G_n].$$

## Theorem: (Zarach)

- $\bullet$   $N \models \mathrm{ZFC}^-$  automorphism argument
- V and N have the same cardinals and cofinalities forcing is ccc
- $N \models \mathrm{DC}_{\omega}$ -scheme not obvious
- $P(\omega)$  is a proper class in N
- $P(\omega)$  is a small class in N:  $P(\omega)$  does not surject onto  $\gamma = (2^{\omega})^+$
- ullet  $N \models \neg DC_{\gamma}$ -scheme if  $2^{\omega} = \omega_1$ , then  $\gamma = \omega_2$

Does the  $DC_{\omega_1}$ -scheme hold in N?



17 / 21

# Strange models of ZFC<sup>-</sup> (continued)

### Does the $DC_{\omega_1}$ -scheme hold in N?

- $\varphi(x,y) := x$  is a sequence of Cohen reals and y is Cohen generic over V[x].
- In N,  $\varphi(x, y)$  is a relation without terminal nodes.
- If  $N \models \mathrm{DC}_{\omega_1}$ -scheme, then there is a sequence of length  $\omega_1$  of dependent choices over  $\varphi$ .
- But...

**Theorem**: (Blass) A forcing extension by  $\mathrm{Add}(\omega,1)$  cannot have a sequence of Cohen reals  $\langle r_{\xi} \mid \xi < \omega_1 \rangle$  such that for every  $\alpha < \omega_1$ ,  $r_{\alpha}$  is Cohen generic over  $V[\langle r_{\xi} \mid \xi < \alpha \rangle]$ .

So  $N \models \neg DC_{\omega_1}$ -scheme.

A modification of Blass's proof gives:

**Theorem**: Suppose  $\kappa$  is regular and  $\kappa^{<\kappa}=\kappa$ . A forcing extension by  $\mathrm{Add}(\kappa,1)$  cannot have a sequence of Cohen generic subsets  $\langle A_\xi \mid \xi < \kappa^+ \rangle$  of  $\kappa$  such that for every  $\alpha < \kappa^+$ ,  $A_\alpha$  is Cohen generic over  $V[\langle A_\xi \mid \xi < \alpha \rangle]$ .

# Generalizing Zarach's construction

### Set-up

$$\mathbb{P} = \operatorname{Add}(\delta, \delta) \cong \operatorname{Add}(\delta, 1).$$

$$G \subseteq \operatorname{Add}(\delta, \delta)$$
 is  $V$ -generic.

 $G_{\xi} = G \upharpoonright \xi$  is the restriction of G to the first  $\xi$ -many coordinates of the product.

$$N = \bigcup_{\xi < \delta} V[G_{\xi}].$$

### Theorem: (G., Matthews)

- $N \models \mathrm{ZFC}^-$  automorphism argument
- V and N have almost the same cardinals and cofinalities
- $N \models \mathrm{DC}_{\delta}$ -scheme (uses  $N^{<\delta} \subseteq N$  in V[G])
- $P(\delta)$  is a proper class in N
- $P(\delta)$  is a small class in N:  $P(\delta)$  does not surject onto  $\gamma = ((2^{\delta})^+)^{V[G]}$
- $N \models \neg DC_{\gamma}$ -scheme
- If  $\delta^{<\delta} = \delta$ , then  $N \models \neg DC_{\delta^+}$  scheme.

# Jensen's forcing and generalization to inaccessible $\kappa$

- J: (Jensen)
  - subposet of Sacks forcing: perfect trees ordered by  $\subseteq$
  - constructed using
  - CCC
  - adds a unique generic real

**Theorem**: (Lyubetsky, Kanovei, Abraham, G., Friedman) Products and iterations of  $\mathbb{J}$  have "unique generics" properties.

Suppose  $\kappa$  is inaccessible.

 $\mathbb{J}(\kappa)$  (G., Friedman)

- perfect  $\kappa$ -trees ordered by  $\subseteq$
- constructed using  $\diamondsuit_{\kappa^+}(\operatorname{cof}(\kappa))$
- $\bullet$  < $\kappa$ -closed
- κ<sup>+</sup>-cc
- ullet adds a unique generic subset of  $\kappa$

**Theorem**: (G., Friedman) Products and iterations of  $\mathbb{J}(\kappa)$  have "unique generics" properties.

# A different model of $ZFC^- + \neg DC_{\omega}$ -scheme

**Theorem**: (G., Matthews) There is a model of  $N \models ZFC^-$  such that:

- $P(\omega)$  is a proper class.
- Every class is big.
- There are unboundedly many cardinals.
- $DC_{\omega}$ -scheme fails.

**Proof Sketch**: Force with the tree iteration  $\mathbb{P}$  of Jensen's forcing along the tree  $\operatorname{Ord}^{<\omega}$ . Let  $G\subseteq\mathbb{P}$  be V-generic.

- $\bullet$   $\mathbb{P}$  has the ccc, and hence is pretame.
- $V[G] \models \mathrm{ZFC}^- + \mathrm{DC}_{<\mathrm{Ord}}$ -scheme.
- $N = \bigcup L[G_T]$ , where T is a certain set subtree of  $\operatorname{Ord}^{<\omega}$ ,  $\mathbb{P}_T$  is the restriction of  $\mathbb{P}$  to T, and  $G_T$  is the restriction of G to  $\mathbb{P}_T$ .  $\square$