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Set-up

Algebra from set theory

Kunen: There is no elemetary embedding j : V → V .

In fact, there is no elementary embedding j : Vλ+2 → Vλ+2, where
λ = supn∈ω(jn(crit j)). So let’s consider j : Vλ → Vλ (rank-to-rank embeddings)!

Given j , k both elementary embeddings Vλ → Vλ, we can define

j ∗ k =
⋃
α<λ

j(k �Vα) =
⋃
α<λ

j({(x , k(x)) : x ∈ Vα}).

j ∗ k is also elementary from Vλ to Vλ.

For any j , k, ` : Vλ → Vλ,

j ∗ (k ∗ `) = (j ∗ k) ∗ (j ∗ `).
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Set-up

Call an algebraic structure with a binary relation ∗ satisfying
a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) an LD-system. (Algebraists also call such a thing a
shelf.)

Let j : Vλ → Vλ be a rank-to-rank embedding and let Ej be the structure
consisting of embeddings generated by j under the ∗ operation.

Theorem (Laver)

Ej is the free LD-system on the single generator j .
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Set-up

Set theory in classifiability

Any reasonably definable map will be Borel. So if you have a classification
programme looking for a map

{codes for objects}/ ∼obj−→ {codes for invariants}/ ∼inv

but descriptive set theory tells you there is no such Borel map, then there can be
no such classification.
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Set-up

Definition

Let X and Y be Polish spaces (separable completely metrizable spaces, e.g. R),
let E be an equivalence relation on X , and let F be an equivalence relation on Y .
We say that E is Borel reducible to F , and write

E ≤B F

if there is a Borel function f : X → Y such that

x1 E x2 iff f (x1) F f (x2).

Natural Question
Where does isomorphism of LD-systems fit in the Borel reducibility partial order?
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Set-up

Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures.

Countable structures: might as well assume that the underlying set is always N.

So then an n-ary relation is then encoded by a subset of Nn, ie, an element of 2Nn

.

So for example the space of all (directed) graphs is encoded as 2N2

— essentially,

Cantor space. Likewise, the space of LD-systems is a subspace of 2N3

, and any
first order class of structures is similarly encoded in a Polish space.

Andrew Brooke-Taylor Self-distributivity & Borel reducibility Arctic 6 6 / 22



Set-up

Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures.

Countable structures: might as well assume that the underlying set is always N.

So then an n-ary relation is then encoded by a subset of Nn, ie, an element of 2Nn

.

So for example the space of all (directed) graphs is encoded as 2N2

— essentially,

Cantor space. Likewise, the space of LD-systems is a subspace of 2N3

, and any
first order class of structures is similarly encoded in a Polish space.

Andrew Brooke-Taylor Self-distributivity & Borel reducibility Arctic 6 6 / 22



Set-up

Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures.

Countable structures: might as well assume that the underlying set is always N.

So then an n-ary relation is then encoded by a subset of Nn, ie, an element of 2Nn

.

So for example the space of all (directed) graphs is encoded as 2N2

— essentially,

Cantor space. Likewise, the space of LD-systems is a subspace of 2N3

, and any
first order class of structures is similarly encoded in a Polish space.

Andrew Brooke-Taylor Self-distributivity & Borel reducibility Arctic 6 6 / 22



Set-up

Classes of structures

Our focus:
isomorphism relations on first order classes of countable structures.

Countable structures: might as well assume that the underlying set is always N.

So then an n-ary relation is then encoded by a subset of Nn, ie, an element of 2Nn

.

So for example the space of all (directed) graphs is encoded as 2N2

— essentially,

Cantor space. Likewise, the space of LD-systems is a subspace of 2N3

, and any
first order class of structures is similarly encoded in a Polish space.

Andrew Brooke-Taylor Self-distributivity & Borel reducibility Arctic 6 6 / 22



Set-up

Definition
We say such a class C is Borel complete if its isomorphism relation is maximal: for
every other first order class of countable structures D,

∼=D ≤B
∼=C .

Examples

Graphs

Groups (Mekler)

Rooted trees (Friedman & Stanley)

Linear orders (Friedman & Stanley)

Fields (Friedman & Stanley)

Boolean algebras (Camerlo & Gao)

More refined question

Is the class of countable LD-systems Borel complete?
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Set-up

Back to algebra

Take an oriented knot diagram. We define an algebraic structure with two binary
operations ∗ and ∗′, a generator for each arc of the diagram, and a relation for
each crossing, as follows:

b

c

a

a∗b=c

b

d

a

a∗′b=d
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Set-up

The Reidemeister moves

fillermi
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Set-up

Respecting the Reidemeister moves

c

b∗c

a∗(b∗c)

b

a∗b

a

a

c

a∗c

(a∗b)∗(a∗c)

b

a∗ba∗b

a

a

a

a

b

a∗′(a∗b)

a∗b

a

a

a

b∗(b∗′a)

b∗′ab∗′a

b

b

a

a

b

b

a∗a

a

a

a

filler
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Set-up

Definitions

A quandle is a set with two binary operations ∗ and ∗′ such that

1 ∀a∀b∀c[a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)]

2 ∀a∀b[a ∗ a ∗′ b = a ∗′ a ∗ b = b]

3 ∀a[a ∗ a = a].

Equivalently, for every a the operation of left multiplication by a (i.e. b 7→ a ∗ b) is
an automorphism with fixed point a.

Another example

Any group with the operation of conjugation (a ∗ b = aba−1) is a quandle.
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Set-up

Quandles as knot invariants

Joyce (’82)

The knot quandle is a complete invariant

i.e. two (tame) knots are equivalent if and only if their associated quandles
are isomorphic.

But
is it a good invariant?

Heuristically, it seemed hard to determine whether two quandles are isomorphic.
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Theorem and Proof

Theorem (A.B.-T., S. Miller)

The class of quandles is Borel complete. Consequently, the class of LD-systems is
Borel complete.

Proof

We construct a mapping Q taking (directed, irreflexive) graphs to quandles such
that

Γ ∼=Graphs Γ′ iff Q(Γ) ∼=Quandles Q(Γ′).

It’s a hands-on construction, so inevitably will be Borel (in fact it’s continuous).

Since the class of graphs is known to be Borel complete, this implies that the class
of quandles is Borel complete.
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Theorem and Proof

How to build a quandle?

Need to choose an automorphism b 7→ a ∗ b for every element a.

The most trivial choice
Always take the identity map. This indeed gives a quandle, but it’s not very
interesting.

The next most trivial possibility

Some other bijection τ . But we require a ∗ a = a for every a.

We could decree that a ∗ a = a, but then to preserve bijection, we should probably
also decree that a′ ∗ a = a for every a′ in the τ orbit of a. Or even in some
collection of orbits.
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Theorem and Proof

Dynamical quandles

Introduced by Kamada (2010).

Let X be a set and τ a bijection X → X .

Let Ω denote the set of τ -orbits [x ]τ of X ,
and let θ : Ω→ P(Ω) be a function such that for all x in X , [x ]τ ∈ θ([x ]τ ).

Then the operation ∗ on X given by

x ∗ y =

{
y if [x ]τ ∈ θ([y ]τ )

τy if [x ]τ /∈ θ([y ]τ )

makes (X , ∗) a quandle, the dynamical quandle derived from (X , τ) with respect
to θ.
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Theorem and Proof

Given a graph Γ we encode Γ into the θ of a dynamical quandle.

Let Γ = (V ,E ) be an irreflexive directed graph. We take

X = V × 2

τ flipping the second coordinate: τ(v , 0) = (v , 1), τ(v , 1) = (v , 0).

Identify [(v , i)]τ with v , so Ω is essentially V .

θ : V → P(V ) is defined by

u ∈ θ(v) ←→ u E v ∨ u = v .

Then we define Q(Γ) to be the dynamical quandle derived from (X , τ) with
respect to θ.
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Theorem and Proof

Clearly if Γ ∼= Γ′ then Q(Γ) ∼= Q(Γ′).

Interesting part: if there is a quandle isomorphism f : Q(Γ)→ Q(Γ′), why must
there be a graph isomorphism Γ→ Γ′?

The isomorphism f need not arise from a graph isomorphism. Nevertheless, given
f can we construct an isomorphism ϕ : Γ→ Γ′?
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Theorem and Proof

What can f do?

Consider any (v , j) ∈ Q(Γ).

Case 1

There is some (u, i) ∈ Q(Γ) such that (u, i) ∗ (v , j) 6= (v , j).

Then the “twinning” of (v , j) with (v , 1− j) is witnessed by the action of (u, i).
Since f is a quandle isomorphism, the action of f (u, i) on f (v , j) is also nontrivial,
and so takes f (v , j) it to its twin. So the first component of f (v , j) is independent
of j ∈ {0, 1}, and we take this to be ϕ(v).
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Theorem and Proof

What can f do?

Case 2

Every element of Q(Γ) acts trivially on (v , j).

Then f need not respect the “twinning” structure. But we can show that f only
mixes around (v , j) and (v , 1− j) within a set of elements corresponding to a
clique of vertices all with the same other edges in and out, so we can choose an
arbitrary bijection for ϕ on that clique.

These definitions of ϕ(v) combine to produce a graph isomorphism from Γ to Γ′.
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Going further

Going further

There are various strengthenings of Borel completeness that one can consider.

Theorem (A.B.-T., F. Calderoni, S. Miller)

The embeddability relation on countable quandles is a complete Σ1
1 quasiorder,

and further, is an invariantly universal Σ1
1 quasiorder.
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Going further

Category theory

Many classification problems assume that the map to the invariants will be
functorial — it should respect the homomorphisms between objects, not just
isomorphisms.

So, Filippo Calderoni and I have been working on what happens when we add
functoriality to the notion of Borel reducibility.

Call the analogue of Borel completeness (i.e. maximality for classes of first order
structures) in this context functorial universality.

Then the class of graphs is functorially universal, but those of rooted trees, linear
orders and Boolean algebras are not.
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Going further

Proposition

The class of quandles is not functorially universal.

Proof sketch.
The only rigid quandles are the empty quandle and the singelton: for trivial
quandles (where every left-multiplication operation is the identity), any
permutation is an automorphism, and for non-trivial quandles, there is a
left-multiplication automorphism that is not the identity!

On the other hand, there are many distinct rigid graphs. So there can be no
functorial Borel reduction from graphs to quandles.
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