Definable structures in Banach space theory

Piotr Borodulin-Nadzieja

Wrocław

Arctic 2023

Piotr Borodulin-Nadzieja (Wrocław) Definable structures in Banach space theory

This is a joint work with Barnabas Farkas and Sebastian Jachimek.

< □ > < 同

Ideals on ω .

• we will consider analytic P-ideals on ω ;

- we will consider analytic P-ideals on ω ;
- an ideal on ω can be treated as a subset of 2^{ω} ;

- we will consider analytic P-ideals on ω ;
- an ideal on ω can be treated as a subset of 2^{ω} ;
- \mathcal{I} is a P-ideal if for each (A_n) from \mathcal{I} , there is $A \in \mathcal{I}$ such that $A_n \subseteq^* A$ for every n.

Classical examples of analytic P-ideals.

Example (Summable ideal)

$$\mathcal{I}_{1/n} = \{A \subseteq \omega \colon \sum_{i \in A} \frac{1}{n} < \infty\}.$$

Arctic 2023 4 / 24

Classical examples of analytic P-ideals.

Example (Summable ideal)

$$\mathcal{I}_{1/n} = \{A \subseteq \omega \colon \sum_{i \in A} \frac{1}{n} < \infty\}.$$

Example (Density ideal)

$$\mathcal{Z} = \{A \subseteq \omega \colon d(A) = 0\},\$$

where

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \cdots, n\}|}{n+1}$$

Definable structures in Banach space theory Piotr Borodulin-Nadzieja (Wrocław)

э Arctic 2023 4 / 24

∃ → ∢

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

< □ > < 同 > < 回 >

A function $\varphi \colon \mathcal{P}(\omega) \to [0, \infty]$ is an *LSC submeasure* if for each *A*, *B* • $\varphi(\emptyset) = 0$,

| 4 同 🕨 🛛 🖃 🕨 🤘

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an LSC submeasure if for each A, B

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

•
$$\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$$

A function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ is an *LSC submeasure* if for each *A*, *B*

- $\varphi(\emptyset)=0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

• Let φ be a LSC submeasure (taking finite values on finite sets). Define

• Let φ be a LSC submeasure (taking finite values on finite sets). Define

• Fin
$$(\varphi) = \{A \subseteq \omega : \varphi(A) < \infty\}.$$

• Let φ be a LSC submeasure (taking finite values on finite sets). Define

• Fin
$$(\varphi) = \{A \subseteq \omega \colon \varphi(A) < \infty\}.$$

• $\operatorname{Exh}(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$

• Let φ be a LSC submeasure (taking finite values on finite sets). Define

• Fin
$$(\varphi) = \{A \subseteq \omega : \varphi(A) < \infty\}.$$

- $\operatorname{Exh}(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$
- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.

• Let φ be a LSC submeasure (taking finite values on finite sets). Define

• Fin
$$(\varphi) = \{A \subseteq \omega : \varphi(A) < \infty\}.$$

- $\operatorname{Exh}(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus n) = 0\}.$
- Both $Fin(\varphi)$ and $Exh(\varphi)$ are analytic P-ideals.

Theorem (Solecki)

For every analytic P-ideal there is an LSC submeasure φ such that

 $\mathcal{I} = \mathrm{Exh}(\varphi).$

Let's make it more 'continuous'.

 $2^{\omega} \mapsto$

Let's make it more 'continuous'.

 $2^{\omega} \mapsto \mathbb{R}^{\omega}$

イロト イヨト イヨト イ

Consider a function $\varphi \colon \mathcal{P}(\omega) \to [0,\infty]$ such that for each A, $B \subseteq \omega$

- $\varphi(\emptyset) = 0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,

•
$$\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$$

Such functions are called LSC submeasures.

Consider a function $\Phi \colon \mathbb{R}^{\omega} \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^{\omega}$

- $\varphi(\emptyset) = 0$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

- $\Phi(r \cdot x) = r \cdot \Phi(x)$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

- $\Phi(r \cdot x) = r \cdot \Phi(x)$,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\varphi(A) \leq \varphi(B)$ whenever $A \subseteq B$,
- $\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
 ,

- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \varphi(A \cap n) = \varphi(A).$$

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
,

•
$$\Phi(x+y) \leq \Phi(x) + \Phi(y)$$
,

- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,
- $\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$

 $(\pi_A(x))(n) = x(n)$ for $n \in A$ and $(\pi_A(x))(n) = 0$ otherwise.

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
 ,

•
$$\Phi(x+y) \leq \Phi(x) + \Phi(y)$$
,

• $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
 ,

- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\Phi(x) \le \Phi(y)$ whenever $|x(n)| \le |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r\cdot x) = r\cdot \Phi(x)$$
 ,

- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone LSC

Consider a function $\Phi \colon \mathbb{R}^{\omega} \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^{\omega}$

•
$$\Phi(r\cdot x) = r\cdot \Phi(x)$$
 ,

- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone LSC extended

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

- $\Phi(r \cdot x) = r \cdot \Phi(x)$,
- $\Phi(x+y) \leq \Phi(x) + \Phi(y)$,
- $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

Such functions should be called monotone LSC extended norms.

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
 ,

•
$$\Phi(x+y) \leq \Phi(x) + \Phi(y)$$
,

• $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

But we will call them nice norms.

Consider a function $\Phi \colon \mathbb{R}^\omega \to [0,\infty]$ such that for each $x,y \in \mathbb{R}^\omega$

•
$$\Phi(r \cdot x) = r \cdot \Phi(x)$$
 ,

•
$$\Phi(x+y) \leq \Phi(x) + \Phi(y)$$
,

• $\Phi(x) \leq \Phi(y)$ whenever $|x(n)| \leq |y(n)|$ for each n,

•
$$\lim_{n\to\infty} \Phi(\pi_{[0,\ldots,n]}(x)) = \Phi(x).$$

But we will call them nice norms.

Nice norm = norm on \mathbb{R}^{ω} which may attain infinite values and which is compatible with the topological structure of \mathbb{R}^{ω} .

Fin and Exh

• Let Φ be a nice norm (taking finite values on sequences with finite support).

Image: A matrix and a matrix

Fin and Exh

• Let Φ be a nice norm (taking finite values on sequences with finite support).

• Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: $\Phi(x) < \infty$ }.
• Exh(Φ) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

(日)

Fin and Exh

• Let Φ be a nice norm (taking finite values on sequences with finite support).

• Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega} : \Phi(x) < \infty$ }.
• Exh(Φ) = { $x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Exercise: What kind of objects are those guys?

Banach spaces

 Let Φ be a nice norm (taking finite values on sequences with finite support).

• Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega} : \Phi(x) < \infty$ }.

- $\operatorname{Exh}(\Phi) = \{x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0\}.$
- Both $Fin(\Phi)$ and $Exh(\Phi)$ are Banach spaces.

• Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega} : \Phi(x) < \infty$ }.

•
$$\operatorname{Exh}(\Phi) = \{ x \in \mathbb{R}^{\omega} \colon \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0 \}.$$

• Fin(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega} : \Phi(x) < \infty$ }.

•
$$\operatorname{Exh}(\Phi) = \{ x \in \mathbb{R}^{\omega} \colon \lim_{n \to \infty} \Phi(\pi_{\omega \setminus n}(x)) = 0 \}.$$

Let Φ be a nice norm.

•
$$\operatorname{Fin}(\Phi) = \{x \in \mathbb{R}^{\omega} \colon \Phi(x) < \infty\}.$$

• Exh(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Theorem (Solecki)

For every analytic P-ideal ${\cal I}$ there is an LSC submeasure φ such that

 $\mathcal{I} = \mathrm{Exh}(\varphi).$

Let Φ be a nice norm.

•
$$\operatorname{Fin}(\Phi) = \{x \in \mathbb{R}^{\omega} \colon \Phi(x) < \infty\}.$$

• Exh(
$$\Phi$$
) = { $x \in \mathbb{R}^{\omega}$: lim_n $\Phi(\pi_{\omega \setminus n}(x)) = 0$ }.

Theorem (Solecki)

For every analytic P-ideal ${\mathcal I}$ there is an LSC submeasure φ such that

 $\mathcal{I} = \operatorname{Exh}(\varphi).$

Theorem (PBN, Farkas)

For every Banach space X with unconditional basis there is a nice norm Φ such that

$$X = \operatorname{Exh}(\Phi).$$

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

• \mathcal{I} is F_{σ} .

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem

Let Φ be a nice norm. TFAE

• $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

- \mathcal{I} is F_{σ} .
- there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$

Theorem (Mazur)

Let ${\mathcal I}$ be an analytic P-ideal. TFAE

• \mathcal{I} is F_{σ} .

• there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- Exh(Φ) does not contain an isomorphic copy of c₀;

Theorem (Mazur)

Let $\mathcal I$ be an analytic P-ideal. TFAE

• \mathcal{I} is F_{σ} .

• there is an LSC submeasure φ such that

$$\mathcal{I} = \operatorname{Fin}(\varphi) = \operatorname{Exh}(\varphi).$$

Theorem

- $\operatorname{Exh}(\Phi)$ is F_{σ} (in the product topology of \mathbb{R}^{ω});
- $\operatorname{Exh}(\Phi) = \operatorname{Fin}(\Phi);$
- $Exh(\Phi)$ does not contain an isomorphic copy of c_0 ;
- $\mathbb{R}^{\omega}/\mathrm{Exh}(\Phi)$ is Borel reducible to $\mathbb{R}^{\omega}/\ell_{\infty}$.

Pretensious conclusions

< □ > < 同 > < 回

Corollary

Pretensious conclusions

• Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.

Corollary

Pretensious conclusions

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_{σ} P-ideals.

Corollary

Pretensious conclusions

- Banach spaces with unconditional bases are *continuous* versions of analytic P-ideals.
- Banach spaces with unconditional bases without copies of c_0 are *continuous* versions of F_{σ} P-ideals.

We will consider $\mathcal{F} \subseteq \mathcal{P}(\omega)$ which are

• hereditary,

B b

- hereditary,
- covering ω ,

- hereditary,
- covering ω ,
- compact.

- hereditary,
- covering ω ,
- compact.

We will consider $\mathcal{F} \subseteq \mathcal{P}(\omega)$ which are

- hereditary,
- covering ω ,
- compact.

For $x \in \mathbb{R}^{\omega}$ and $F \subseteq \omega$ let

$$\langle x,F\rangle = \sum_{i\in F} |x(i)|.$$

We will consider $\mathcal{F} \subseteq \mathcal{P}(\omega)$ which are

- hereditary,
- covering ω ,
- compact.

For $x \in \mathbb{R}^{\omega}$ and $F \subseteq \omega$ let

$$\langle x,F\rangle = \sum_{i\in F} |x(i)|.$$

The function

$$\|x\|_{\mathcal{F}} = \sup_{F \in \mathcal{F}} \langle x, F \rangle$$

is a nice norm.

< □ > < □ > < □ > < □ > < □ >

Example

Let ${\mathcal F}$ be the family of all singletons. Then

Example

Let ${\mathcal F}$ be the family of all singletons. Then

 $X_{\mathcal{F}} = c_0.$

Example

Let \mathcal{F} be the family of all singletons. Then

$$X_{\mathcal{F}} = c_0.$$

Example

Let $\mathcal{F} = \mathcal{P}(\omega)$. Then

• • = • • = •

Example

Let ${\mathcal F}$ be the family of all singletons. Then

 $X_{\mathcal{F}} = c_0.$

Example	h
Let $\mathcal{F}=\mathcal{P}(\omega).$ Then	
$X_{\mathcal{F}} = \ell_1.$	

Schreier space

Definition (Schreier family)

Let ${\mathcal F}$ be defined by

$F \in \mathcal{F}$ if $|F| \leq \min F + 1$.

Schreier space

Definition (Schreier family)

Let ${\mathcal F}$ be defined by

$F \in \mathcal{F}$ if $|F| \leq \min F + 1$.

 $X_{\mathcal{F}}$ is a standard example in the theory of Banach spaces.

Schreier space

Definition (Schreier family)

Let ${\mathcal F}$ be defined by

 $F \in \mathcal{F}$ if $|F| \leq \min F + 1$.

 $X_{\mathcal{F}}$ is a standard example in the theory of Banach spaces.

E.g. it is a space which is not isomorphic to c_0 but which is c_0 -saturated (i.e. each ∞ -dimensional closed subspace of X_F contains an isomorphic copy of c_0).

Scattered families

Theorem (Pełczynski, Semadeni, 1959)

A family \mathcal{F} is scattered iff $X_{\mathcal{F}}$ is c_0 -saturated.

Theorem (Pełczynski, Semadeni, 1959)

A family \mathcal{F} is scattered iff $X_{\mathcal{F}}$ is c_0 -saturated.

The spaces $X_{\mathcal{F}}$ for scattered families \mathcal{F} were studied by Lopez Abad, Todorcevic, Argyros, . . .

Examples motivated by analytic P-ideals: trace of null

Example (Antichains)

Let

 $\mathcal{F} = \{F \subseteq 2^{<\omega} \colon F \text{ is an antichain}\}.$

Examples motivated by analytic P-ideals: trace of null

Example (Antichains)

Let

$$\mathcal{F} = \{ F \subseteq 2^{<\omega} \colon F \text{ is an antichain} \}.$$

• This family induces the trace of null ideal.

Examples motivated by analytic P-ideals: trace of null

Example (Antichains)

Let

 $\mathcal{F} = \{F \subseteq 2^{<\omega} \colon F \text{ is an antichain}\}.$

- This family induces the trace of null ideal.
- The space $X_{\mathcal{F}}$ is a strange alloy of ℓ_1 and c_0 .

Example motivated by analytic P-ideals: Farah's ideal

Example (Farah's family)

Let

$$\mathcal{F} = \{ F \subseteq \omega \colon \forall n \mid F \cap [2^n, 2^{n+1}) \mid / 2^n \le 1/n \}.$$

Example motivated by analytic P-ideals: Farah's ideal

Example (Farah's family)

Let

$$\mathcal{F} = \{ F \subseteq \omega \colon \forall n \mid F \cap [2^n, 2^{n+1}) \mid / 2^n \le 1/n \}.$$

• This family induces the Farah's ideal.

Example motivated by analytic P-ideals: Farah's ideal

Example (Farah's family)

Let

$$\mathcal{F} = \{ F \subseteq \omega \colon \forall n \mid F \cap [2^n, 2^{n+1}) | / 2^n \le 1/n \}.$$

- This family induces the Farah's ideal.
- The space X_F is an easy example of a ℓ₁-saturated space (every ∞-dimensional closed subspaces contains ℓ₁) which is not isomorphic to ℓ₁.

Definition

A Banach space has the Schur property if every weakly convergent sequence converges in norm.

Definition

A Banach space has the Schur property if every weakly convergent sequence converges in norm.

• Every space with the Schur property is ℓ_1 -saturated,

Definition

A Banach space has the Schur property if every weakly convergent sequence converges in norm.

- Every space with the Schur property is ℓ_1 -saturated,
- \bullet Bourgain showed that there is an $\ell_1\mbox{-saturated}$ space which does not have Schur property,

Definition

A Banach space has the Schur property if every weakly convergent sequence converges in norm.

- Every space with the Schur property is ℓ_1 -saturated,
- Bourgain showed that there is an ℓ_1 -saturated space which does not have Schur property,
- Then several other examples have been constructed.

Farah family of second order

Example (Tldr)

For $N = \{n_1 < n_2 < \dots\} \in [\omega]^{\omega}$ let $f_N : \omega \to \omega$ be defined by $f_N(n_k) = k^{-1}2^{n_k}$ and $f_N(n) = 0$ if $n \notin N$. Denote

$$\mathcal{A}_{N} = \{A \subseteq \omega \colon |A \cap [2^{n}, 2^{n+1})| \leq f_{N}(n)\}.$$

Let

$$\mathcal{F} = \{ F \in [\omega]^{<\omega} \colon \exists N \in [\omega]^{\omega} \ F \subseteq A \text{ for some } A \in \mathcal{A}_N \}.$$

Farah family of second order

Example (Tldr)

For $N = \{n_1 < n_2 < \dots\} \in [\omega]^{\omega}$ let $f_N \colon \omega \to \omega$ be defined by $f_N(n_k) = k^{-1}2^{n_k}$ and $f_N(n) = 0$ if $n \notin N$. Denote

$$\mathcal{A}_{N} = \{A \subseteq \omega \colon |A \cap [2^{n}, 2^{n+1})| \leq f_{N}(n)\}.$$

Let

$$\mathcal{F} = \{ F \in [\omega]^{<\omega} \colon \exists N \in [\omega]^{\omega} \ F \subseteq A \text{ for some } A \in \mathcal{A}_N \}.$$

• The space $X_{\mathcal{F}}$ is ℓ_1 -saturated and does not have Schur property.

Conjecture. If \mathcal{F} is perfect, then $X_{\mathcal{F}}$ is ℓ_1 -saturated.

Conjecture. If \mathcal{F} is perfect, then $X_{\mathcal{F}}$ is ℓ_1 -saturated.

F is perfect if for each finite *F* ∈ *F* there is an infinite *N* ⊇ *F* such that *N* ∈ *F*.

Conjecture. If \mathcal{F} is perfect, then $X_{\mathcal{F}}$ is ℓ_1 -saturated.

F is perfect if for each finite *F* ∈ *F* there is an infinite *N* ⊇ *F* such that *N* ∈ *F*.

Counterexample. Let (A_n) be a partition of ω into infinite sets. Take the hereditary closure of $\{A_n : n \in \omega\}$.

Conjecture. If $\mathcal F$ is perfect in the Ellentuck topology, then $X_{\mathcal F}$ is $\ell_1\text{-saturated}.$

Conjecture. If \mathcal{F} is perfect in the Ellentuck topology, then $X_{\mathcal{F}}$ is ℓ_1 -saturated.

• \mathcal{F} is perfect in the Ellentuck topology if for each finite $F \in \mathcal{F}$ and infinite $N \supseteq F$ there is an infinite $F \subseteq M \subseteq N$ such that $M \in \mathcal{F}$.

Conjecture. If \mathcal{F} is perfect in the Ellentuck topology, then $X_{\mathcal{F}}$ is ℓ_1 -saturated.

F is perfect in the Ellentuck topology if for each finite *F* ∈ *F* and infinite *N* ⊇ *F* there is an infinite *F* ⊆ *M* ⊆ *N* such that *M* ∈ *F*.

Counterexample. Let

$$\mathcal{F} = \{F \subseteq \omega : \text{ for each } n \text{ but one } |F \cap [2^n, 2^{n+1})|/2^n \leq 1/n\}.$$

Conjecture. If \mathcal{F} is perfect in the Ellentuck topology, then there is a c_0 -saturated Y and ℓ_1 -saturated Z such that

$$X_{\mathcal{F}} = Y \oplus Z.$$