Damian Sobota

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Joint work with Piotr Borodulin-Nadzieja.

P-points

Definition

A free ultrafilter \mathcal{U} on ω is a *P*-point if for every sequence $\langle A_n: n \in \omega \rangle$ in \mathcal{U} there is $A \in \mathcal{U}$ such that $A \subseteq^* A_n$ for every $n \in \omega$.

P-points

Definition

A free ultrafilter \mathcal{U} on ω is a *P*-point if for every sequence $\langle A_n: n \in \omega \rangle$ in \mathcal{U} there is $A \in \mathcal{U}$ such that $A \subseteq^* A_n$ for every $n \in \omega$.

P-points exist under any of the following assumptions:

- CH (W. Rudin)
- MA+¬CH
- $\mathfrak{d} = \mathfrak{c}$ (J. Ketonen)
- ◊(𝔅) (J.T. Moore, M. Hrušák, M. Džamonja)

P-points

Definition

A free ultrafilter \mathcal{U} on ω is a *P*-point if for every sequence $\langle A_n: n \in \omega \rangle$ in \mathcal{U} there is $A \in \mathcal{U}$ such that $A \subseteq^* A_n$ for every $n \in \omega$.

P-points exist under any of the following assumptions:

- CH (W. Rudin)
- MA+¬CH
- $\mathfrak{d} = \mathfrak{c}$ (J. Ketonen)
- ◊(𝔅) (J.T. Moore, M. Hrušák, M. Džamonja)

P-points may not exist:

- S. Shelah first found a model without P-points
- the Silver model (D. Chodounský, O. Guzmán)

 $\kappa \geqslant \omega$

 λ_{κ} — the $\sigma\text{-additive}$ standard product measure on 2^{κ}

$$\mathcal{N}_{\kappa} = \{A \in \mathsf{Bor}(2^{\kappa}) \colon \ \lambda_{\kappa}(A) = 0\}$$

 $\mathbb{M}_{\kappa} = \mathsf{Bor}(2^{\kappa})/\mathcal{N}_{\kappa}$

 $\kappa \geqslant \omega$

 λ_{κ} — the $\sigma\text{-additive}$ standard product measure on 2^{κ}

$$\mathcal{N}_{\kappa} = \{A \in \mathsf{Bor}(2^{\kappa}): \ \lambda_{\kappa}(A) = 0\}$$

 $\mathbb{M}_{\kappa} = \mathsf{Bor}(2^{\kappa})/\mathcal{N}_{\kappa}$ — measure algebra

 $\kappa \geqslant \omega$

 λ_{κ} — the $\sigma\text{-additive}$ standard product measure on 2^{κ}

$$\mathcal{N}_{\kappa} = \{A \in \mathsf{Bor}(2^{\kappa}): \ \lambda_{\kappa}(A) = \mathsf{0}\}$$

 $\mathbb{M}_{\kappa} = \mathsf{Bor}(2^{\kappa})/\mathcal{N}_{\kappa}$ — measure algebra

Cardinal characteristics

(CH) If $\kappa = \kappa^{\omega}$, then $V^{\mathbb{M}_{\kappa}} \vDash 2^{\omega} = \kappa \land \mathfrak{d} = \omega_1$.

Theorem (P.E. Cohen)

There are P-points in the random model.

Theorem (P.E. Cohen)

There are P-points in the random model.

O. Guzmán

Cohen's proof is flawed.

Theorem (P.E. Cohen)

There are P-points in the random model.

O. Guzmán

Cohen's proof is flawed.

(Again) Open question

Are there P-points in the random model?

Theorem (K. Kunen)

Adding ω_1 Cohen reals and then ω_2 random reals to the ground model produces a P-point.

Theorem (K. Kunen)

Adding ω_1 Cohen reals and then ω_2 random reals to the ground model produces a P-point.

Theorem (A. Dow)

Adding ω_2 random reals to a model of $CH+\Box_{\omega_1}$ produces a P-point.

Let μ be a finitely additive (probability) measure on ω .

Let μ be a finitely additive (probability) measure on ω . Then:

• μ is σ -additive if and only if $\mu = \sum_{n \in A} \alpha_n \delta_n$ for some $A \in \wp(\omega)$ and $\alpha_n \ge 0$, $n \in A$;

Let μ be a finitely additive (probability) measure on ω . Then:

- μ is σ -additive if and only if $\mu = \sum_{n \in A} \alpha_n \delta_n$ for some $A \in \wp(\omega)$ and $\alpha_n \ge 0$, $n \in A$;
- 2) if $\mu(\{n\}) = 0$ for every $n \in \omega$, then μ is not σ -additive.

Let μ be a finitely additive (probability) measure on ω . Then:

- μ is σ -additive if and only if $\mu = \sum_{n \in A} \alpha_n \delta_n$ for some $A \in \wp(\omega)$ and $\alpha_n \ge 0$, $n \in A$;
- 2) if $\mu(\{n\}) = 0$ for every $n \in \omega$, then μ is not σ -additive.

Definition

A (finitely additive probability) measure μ on ω is a *P*-measure if for every sequence (A_n) of pairwise disjoint subsets of ω , there is $A \subseteq \omega$ such that $A_n \subseteq^* A$ for each $n \in \omega$ and $\mu(A) = \sum_{n \in \omega} \mu(A_n)$.

Let μ be a finitely additive (probability) measure on ω . Then:

- μ is σ -additive if and only if $\mu = \sum_{n \in A} \alpha_n \delta_n$ for some $A \in \wp(\omega)$ and $\alpha_n \ge 0$, $n \in A$;
- 2) if $\mu(\{n\}) = 0$ for every $n \in \omega$, then μ is not σ -additive.

Definition

A (finitely additive probability) measure μ on ω is a *P*-measure if for every sequence (A_n) of pairwise disjoint subsets of ω , there is $A \subseteq \omega$ such that $A_n \subseteq^* A$ for each $n \in \omega$ and $\mu(A) = \sum_{n \in \omega} \mu(A_n)$.

Other names: μ has the Additive Property, (AP), AP(*)...

Let μ be a measure on ω . Then, the following are equivalent: • μ has (AP),

Let μ be a measure on ω . Then, the following are equivalent:

- μ has (AP),
- Solution for every increasing sequence (A_n) in ℘(ω) there is A ∈ ℘(ω) such that A_n ⊆* A for every n ∈ ω and µ(A) = lim_{n→∞} µ(A_n),

Let μ be a measure on ω . Then, the following are equivalent:

- μ has (AP),
- Solution for every increasing sequence (A_n) in ℘(ω) there is A ∈ ℘(ω) such that A_n ⊆* A for every n ∈ ω and $\mu(A) = \lim_{n \to \infty} \mu(A_n)$,
- **③** for every decreasing sequence (A_n) in $\wp(\omega)$ there is $A \in \wp(\omega)$ such that $A \subseteq^* A_n$ for every $n \in \omega$ and $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

Let μ be a measure on ω . Then, the following are equivalent:

- μ has (AP),
- Solution for every increasing sequence (A_n) in ℘(ω) there is A ∈ ℘(ω) such that A_n ⊆* A for every n ∈ ω and µ(A) = lim_{n→∞} µ(A_n),
- **③** for every decreasing sequence (A_n) in $\wp(\omega)$ there is $A \in \wp(\omega)$ such that $A \subseteq^* A_n$ for every $n \in \omega$ and $\mu(A) = \lim_{n\to\infty} \mu(A_n)$.

Fact

Let $\mathcal U$ be a free ultrafilter on $\omega.$ Then, $\delta_{\mathcal U}$ is a P-measure if and only if $\mathcal U$ is a P-point.

Do P-measures always exist?

Trivial fact

If there is a P-point, then there is a P-measure.

Do P-measures always exist?

Trivial fact

If there is a P-point, then there is a P-measure.

Theorem (A.H. Mekler)

There is a model of ZFC without P-measures.

Do P-measures always exist?

Trivial fact

If there is a P-point, then there is a P-measure.

Theorem (A.H. Mekler)

There is a model of ZFC without P-measures.

Definition

A closed subset A of a topological space X is a P-set if the intersection of countably many open neighborhoods of A is an open neighborhood of A.

Trivial fact

If there is a P-point, then there is a P-measure.

Theorem (A.H. Mekler)

There is a model of ZFC without P-measures.

Definition

A closed subset A of a topological space X is a P-set if the intersection of countably many open neighborhoods of A is an open neighborhood of A.

The support of the Radon extension of a P-measure onto ω^* is a ccc P-set.

Trivial fact

If there is a P-point, then there is a P-measure.

Theorem (A.H. Mekler)

There is a model of ZFC without P-measures.

Definition

A closed subset A of a topological space X is a P-set if the intersection of countably many open neighborhoods of A is an open neighborhood of A.

The support of the Radon extension of a P-measure onto ω^* is a ccc P-set.

Theorem (R. Frankiewicz, S. Shelah, P. Zbierski)

There is a model of ZFC with no ccc P-sets in ω^* . In particular, there are no P-measures in this model.

For every $A \in \wp(\omega)$ we set:

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \dots, n\}|}{n+1}$$

(if the limit exists).

For every $A \in \wp(\omega)$ we set:

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \dots, n\}|}{n+1}$$

(if the limit exists). $\mathcal{D} = \{A \in \wp(\omega): d(A) \text{ is defined}\}.$

For every $A \in \wp(\omega)$ we set:

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \dots, n\}|}{n+1}$$

(if the limit exists). $\mathcal{D} = \{A \in \wp(\omega): d(A) \text{ is defined}\}.$

Definition

A measure μ on ω is a *density measure* if $\mu \upharpoonright \mathcal{D} = d$.

For every $A \in \wp(\omega)$ we set:

$$d(A) = \lim_{n \to \infty} \frac{|A \cap \{0, \dots, n\}|}{n+1}$$

(if the limit exists). $\mathcal{D} = \{A \in \wp(\omega): d(A) \text{ is defined}\}.$

Definition

A measure μ on ω is a *density measure* if $\mu \upharpoonright \mathcal{D} = d$.

An ultrafilter density

Let \mathcal{U} be a free ultrafilter on ω . For every $A \in \wp(\omega)$ we set:

$$d_{\mathcal{U}}(A) = \lim_{n \to \mathcal{U}} \frac{|A \cap \{0, \dots, n\}|}{n+1}$$

Theorem (J. Grebík)

TFAE:

- There is a P-point.
- ² There is an ultrafilter density which is a P-measure.

Theorem (J. Grebík)

TFAE:

- There is a P-point.
- ² There is an ultrafilter density which is a P-measure.

Theorem (A.H. Mekler)

TFAE:

- There is a density measure which is a P-measure.
- ² There is a P-measure.

Theorem (J. Grebík)

TFAE:

- There is a P-point.
- 2 There is an ultrafilter density which is a P-measure.

Theorem (A.H. Mekler)

TFAE:

- There is a density measure which is a P-measure.
- 2 There is a P-measure.

Question

Assume there is a density P-measure. Does there exist an ultrafilter density which is a P-measure?

$$\alpha < \kappa, \ i \in \{0,1\} \quad \longmapsto \quad C^i_\alpha = \{x \in 2^\kappa \colon \ x(\alpha) = i\}$$

 $\dot{r} = \{\langle \langle \alpha, i \rangle, C_{\alpha}^i \rangle: \ \alpha < \kappa, i \in \{0, 1\}\}$ — \mathbb{M}_{κ} -name for the generic element of 2^{κ}

 $[\![\dot{r} \in C^i_\alpha]\!] = C^i_\alpha$

$$\alpha < \kappa, i \in \{0,1\} \quad \longmapsto \quad C^i_\alpha = \{x \in 2^\kappa \colon x(\alpha) = i\}$$

 $\dot{r} = \{\langle \langle \alpha, i \rangle, C_{\alpha}^i \rangle: \ \alpha < \kappa, i \in \{0, 1\}\}$ — \mathbb{M}_{κ} -name for the generic element of 2^{κ}

 $[\![\dot{r} \in C^i_\alpha]\!] = C^i_\alpha$

 $\mathbb{M}_{\kappa}^{\omega}$ — product Boolean algebra with the coordinate-wise operations

$$\alpha < \kappa, \ i \in \{0,1\} \quad \longmapsto \quad C^i_\alpha = \{x \in 2^\kappa \colon \ x(\alpha) = i\}$$

 $\dot{r} = \{\langle \langle \alpha, i \rangle, C_{\alpha}^i \rangle: \ \alpha < \kappa, i \in \{0, 1\}\}$ — \mathbb{M}_{κ} -name for the generic element of 2^{κ}

 $[\![\dot{r} \in C^i_\alpha]\!] = C^i_\alpha$

 $\mathbb{M}_{\kappa}^{\omega}$ — product Boolean algebra with the coordinate-wise operations

$$M \in \mathbb{M}^{\omega}_{\kappa} \quad \longmapsto \quad \dot{M} = \{\langle k, M(k) \rangle \colon \ k \in \omega\} \longrightarrow \mathbb{M}_{\kappa}$$
-name

Construction

 \mathcal{U} — free ultrafilter on ω , $M \in \mathbb{M}_{\kappa}^{\omega}$

Construction

 \mathcal{U} — free ultrafilter on ω , $M \in \mathbb{M}_{\kappa}^{\omega}$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

Construction

 \mathcal{U} — free ultrafilter on ω , $M \in \mathbb{M}_{\kappa}^{\omega}$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

 μ_{M} is a $\sigma\text{-additive}$ measure on 2^{κ} such that $\mu_{M}\ll\lambda_{\kappa}$

Construction

$$\mathcal{U}$$
 — free ultrafilter on ω , $M \in \mathbb{M}^{\omega}_{\kappa}$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

 μ_{M} is a $\sigma\text{-additive}$ measure on 2^{κ} such that $\mu_{M}\ll\lambda_{\kappa}$

 $f_M: 2^{\kappa} \rightarrow [0,1]$ — Radon–Nikodym derivative of μ_M wrt. λ_{κ}

Construction

$$\mathcal{U}$$
 — free ultrafilter on ω , $M \in \mathbb{M}^{\omega}_{\kappa}$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

 μ_{M} is a $\sigma\text{-additive}$ measure on 2^{κ} such that $\mu_{M}\ll\lambda_{\kappa}$

 $f_M: 2^{\kappa} \to [0, 1]$ — Radon–Nikodym derivative of μ_M wrt. λ_{κ} $\dot{\mu}_{\mathcal{U}}$ — \mathbb{M}_{κ} -name st. $\forall M \in \mathbb{M}_{\kappa}^{\omega}$ we have $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}(\dot{M}) = f_M(\dot{r})$

Construction

$$\mathcal{U}$$
 — free ultrafilter on ω , $\pmb{M} \in \mathbb{M}^\omega_\kappa$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

 μ_{M} is a $\sigma\text{-additive}$ measure on 2^{κ} such that $\mu_{M}\ll\lambda_{\kappa}$

 $f_M \colon 2^{\kappa} \to [0,1]$ — Radon–Nikodym derivative of μ_M wrt. λ_{κ}

 $\dot{\mu}_{\mathcal{U}} - \mathbb{M}_{\kappa}$ -name st. $\forall M \in \mathbb{M}_{\kappa}^{\omega}$ we have $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}(\dot{M}) = f_{\mathcal{M}}(\dot{r})$

Theorem

For every ultrafilter \mathcal{U} on ω , we have:

 $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}} \text{ is a finitely additive probability measure on } \omega.$

Construction

$$\mathcal{U}$$
 — free ultrafilter on ω , $\pmb{M} \in \mathbb{M}^\omega_\kappa$

$$B \in \mathsf{Bor}(2^{\kappa}) \; \mapsto \; \mu_{\mathcal{M}}(B) = \lim_{n \to \mathcal{U}} \lambda_{\kappa}(\llbracket k \in \dot{\mathcal{M}} \rrbracket \cap B)$$

 μ_{M} is a $\sigma\text{-additive}$ measure on 2^{κ} such that $\mu_{M}\ll\lambda_{\kappa}$

 $f_M \colon 2^{\kappa} \to [0,1]$ — Radon–Nikodym derivative of μ_M wrt. λ_{κ}

 $\dot{\mu}_{\mathcal{U}} \longrightarrow \mathbb{M}_{\kappa}$ -name st. $\forall M \in \mathbb{M}_{\kappa}^{\omega}$ we have $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}(\dot{M}) = f_{\mathcal{M}}(\dot{r})$

Theorem

For every ultrafilter \mathcal{U} on ω , we have:

 $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is a finitely additive probability measure on ω .

 $\dot{\mu}_{\mathcal{U}}$ — Solovay measure associated with $\mathcal U$

Let \mathcal{U} be an ultrafilter on ω . Then, TFAE:

- $\textcircled{O} \ \mathcal{U} \text{ is a P-point,}$
- ② $\Vdash_{M_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is a P-measure.

Let \mathcal{U} be an ultrafilter on ω . Then, TFAE:

 $\textcircled{O} \ \mathcal{U} \text{ is a P-point,}$

② $\Vdash_{M_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is a P-measure.

Corollary

There is a P-measure in the random model.

Let \mathcal{U} be an ultrafilter on ω . Then, TFAE:

 $\textcircled{O} \ \mathcal{U} \text{ is a P-point,}$

② $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is a P-measure.

Corollary

There is a P-measure in the random model.

Proposition

Let \mathcal{U} be a free ultrafilter on ω . Then:

$$\ \, {\bf 0} \ \, \forall {\sf A} \in \wp(\omega) \cap V \ \, {\rm we \ have } \Vdash_{\mathbb{M}_\kappa} \dot{\mu}_{\mathcal U} = \delta_{\mathcal U}({\sf A});$$

Let \mathcal{U} be an ultrafilter on ω . Then, TFAE:

 $\textcircled{O} \ \mathcal{U} \text{ is a P-point,}$

② $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is a P-measure.

Corollary

There is a P-measure in the random model.

Proposition

Let \mathcal{U} be a free ultrafilter on ω . Then:

$$\textbf{0} \ \forall \mathsf{A} \in \wp(\omega) \cap \mathsf{V} \text{ we have } \Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}} = \delta_{\mathcal{U}}(\mathsf{A});$$

2 $\Vdash_{\mathbb{M}_{\kappa}} \dot{\mu}_{\mathcal{U}}$ is non-atomic.

The support of the Radon extension of a P-measure onto ω^* is a ccc P-set.

The support of the Radon extension of a P-measure onto ω^* is a ccc P-set.

Theorem (R. Frankiewicz, S. Shelah, P. Zbierski)

There is a model of ZFC with no ccc P-sets in ω^* . In particular, there are no P-measures in this model.

The support of the Radon extension of a P-measure onto ω^* is a ccc P-set.

Theorem (R. Frankiewicz, S. Shelah, P. Zbierski)

There is a model of ZFC with no ccc P-sets in ω^* . In particular, there are no P-measures in this model.

Corollary

There is a ccc P-set in ω^* in the random model.

Definition

An ultrafilter \mathcal{U} on ω is *semi-selective* if whenever $(a_n) \subseteq \mathbb{R}$ is such that $\lim_{n \to \mathcal{U}} a_n = 0$, then there is $X \in \mathcal{U}$ such that $\sum_{n \in X} a_n < \infty$.

Definition

An ultrafilter \mathcal{U} on ω is *semi-selective* if whenever $(a_n) \subseteq \mathbb{R}$ is such that $\lim_{n \to \mathcal{U}} a_n = 0$, then there is $X \in \mathcal{U}$ such that $\sum_{n \in X} a_n < \infty$.

Equivalently, \mathcal{U} is semi-selective if and only if \mathcal{U} is a rapid P-point.

Definition

An ultrafilter \mathcal{U} on ω is *semi-selective* if whenever $(a_n) \subseteq \mathbb{R}$ is such that $\lim_{n \to \mathcal{U}} a_n = 0$, then there is $X \in \mathcal{U}$ such that $\sum_{n \in X} a_n < \infty$.

Equivalently, \mathcal{U} is semi-selective if and only if \mathcal{U} is a rapid P-point.

Theorem (DS.–P. Borodulin-Nadzieja)

For every ultrafilter ${\mathcal U}$ on $\omega,$ the following are equivalent:

• \mathcal{U} is semi-selective;

Definition

An ultrafilter \mathcal{U} on ω is *semi-selective* if whenever $(a_n) \subseteq \mathbb{R}$ is such that $\lim_{n \to \mathcal{U}} a_n = 0$, then there is $X \in \mathcal{U}$ such that $\sum_{n \in X} a_n < \infty$.

Equivalently, ${\mathcal U}$ is semi-selective if and only if ${\mathcal U}$ is a rapid P-point.

Theorem (DS.–P. Borodulin-Nadzieja)

For every ultrafilter \mathcal{U} on ω , the following are equivalent:

- \mathcal{U} is semi-selective;
- ② for every probability measure μ on 2^k and sequence $(P_k)_k$ of Borel subsets of 2^k, if $\lim_{k → U} \mu(P_k) = 0$, then there is X ∈ U such that

$$\bigwedge_{k\in X}\bigvee_{\substack{i\in X\\i>k}}P_i=\emptyset;$$

Definition

An ultrafilter \mathcal{U} on ω is *semi-selective* if whenever $(a_n) \subseteq \mathbb{R}$ is such that $\lim_{n \to \mathcal{U}} a_n = 0$, then there is $X \in \mathcal{U}$ such that $\sum_{n \in X} a_n < \infty$.

Equivalently, ${\mathcal U}$ is semi-selective if and only if ${\mathcal U}$ is a rapid P-point.

Theorem (DS.–P. Borodulin-Nadzieja)

For every ultrafilter \mathcal{U} on ω , the following are equivalent:

- *U* is semi-selective;
- ② for every probability measure μ on 2^k and sequence $(P_k)_k$ of Borel subsets of 2^k, if $\lim_{k → U} \mu(P_k) = 0$, then there is X ∈ U such that

$$\bigwedge_{k\in X}\bigvee_{\substack{i\in X\\i>k}}P_i=\emptyset;$$

③ $\Vdash_{\mathbb{M}_{\kappa}}$ Radon extension of $\dot{\mu}_{\mathcal{U}}$ is strictly positive on $\bigcap_{X \in \mathcal{U}} [X]$.

Thank you for your attention!