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P-points

Definition

A free ultrafilter U on ω is a P-point if for every sequence〈
An : n ∈ ω

〉
in U there is A ∈ U such that A ⊆∗ An for every

n ∈ ω.

P-points exist under any of the following assumptions:

CH (W. Rudin)

MA+¬CH

d = c (J. Ketonen)

♦(r) (J.T. Moore, M. Hrušák, M. Džamonja)

P-points may not exist:

S. Shelah first found a model without P-points

the Silver model (D. Chodounský, O. Guzmán)
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P-points may not exist:

S. Shelah first found a model without P-points

the Silver model (D. Chodounský, O. Guzmán)
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λκ — the σ-additive standard product measure on 2κ

Nκ =
{
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}

Mκ = Bor(2κ)/Nκ

— measure algebra

Cardinal characteristics

(CH) If κ = κω, then VMκ � 2ω = κ ∧ d = ω1.
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P-measures

Observation

Let µ be a finitely additive (probability) measure on ω.

Then:
1 µ is σ-additive if and only if µ =

∑
n∈A αnδn for some

A ∈ ℘(ω) and αn  0, n ∈ A;
2 if µ({n}) = 0 for every n ∈ ω, then µ is not σ-additive.

Definition

A (finitely additive probability) measure µ on ω is a P-measure if
for every sequence (An) of pairwise disjoint subsets of ω, there is
A ⊆ ω such that An ⊆∗ A for each n ∈ ω and µ(A) =

∑
n∈ω µ(An).

Other names: µ has the Additive Property, (AP), AP(∗)...
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P-measures vs. P-points

Equivalent definitions

Let µ be a measure on ω. Then, the following are equivalent:
1 µ has (AP),

2 for every increasing sequence (An) in ℘(ω) there is A ∈ ℘(ω)
such that An ⊆∗ A for every n ∈ ω and µ(A) = limn→∞ µ(An),

3 for every decreasing sequence (An) in ℘(ω) there is A ∈ ℘(ω)
such that A ⊆∗ An for every n ∈ ω and µ(A) = limn→∞ µ(An).

Fact

Let U be a free ultrafilter on ω. Then, δU is a P-measure if and
only if U is a P-point.
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Do P-measures always exist?

Trivial fact

If there is a P-point, then there is a P-measure.

Theorem (A.H. Mekler)

There is a model of ZFC without P-measures.

Definition

A closed subset A of a topological space X is a P-set if the
intersection of countably many open neighborhoods of A is an
open neighborhood of A.

The support of the Radon extension of a P-measure onto ω∗ is a
ccc P-set.

Theorem (R. Frankiewicz, S. Shelah, P. Zbierski)

There is a model of ZFC with no ccc P-sets in ω∗. In particular,
there are no P-measures in this model.
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Density measures

The asymptotic density

For every A ∈ ℘(ω) we set:

d(A) = lim
n→∞

|A ∩ {0, . . . , n}|
n + 1

(if the limit exists).

D = {A ∈ ℘(ω) : d(A) is defined}.

Definition

A measure µ on ω is a density measure if µ � D = d .

An ultrafilter density

Let U be a free ultrafilter on ω. For every A ∈ ℘(ω) we set:

dU (A) = lim
n→U

|A ∩ {0, . . . , n}|
n + 1
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Assume there is a density P-measure. Does there exist an ultrafilter
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P-measures in the random model, prelim.

α < κ, i ∈ {0, 1} 7−→ C i
α = {x ∈ 2κ : x(α) = i}

ṙ =
{
〈〈α, i〉,C i

α〉 : α < κ, i ∈ {0, 1}
}

— Mκ-name for the generic
element of 2κ

Jṙ ∈ C i
αK = C i

α

Mω
κ — product Boolean algebra with the coordinate-wise

operations

M ∈Mω
κ 7−→ Ṁ =

{
〈k ,M(k)〉 : k ∈ ω

}
— Mκ-name
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P-measures in the random model

Construction

U — free ultrafilter on ω, M ∈Mω
κ

B ∈ Bor(2κ) 7→ µM(B) = limn→U λκ(Jk ∈ ṀK ∩ B)

µM is a σ-additive measure on 2κ such that µM � λκ

fM : 2κ → [0, 1] — Radon–Nikodym derivative of µM wrt. λκ

µ̇U — Mκ-name st. ∀M ∈Mω
κ we have Mκ µ̇U (Ṁ) = fM(ṙ)

Theorem

For every ultrafilter U on ω, we have:

Mκ µ̇U is a finitely additive probability measure on ω.

µ̇U — Solovay measure associated with U
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P-measures in the random model

Theorem (DS.–P. Borodulin-Nadzieja)

Let U be an ultrafilter on ω. Then, TFAE:
1 U is a P-point,
2 Mκ µ̇U is a P-measure.

Corollary

There is a P-measure in the random model.

Proposition

Let U be a free ultrafilter on ω. Then:
1 ∀A ∈ ℘(ω) ∩ V we have Mκ µ̇U = δU (A);
2 Mκ µ̇U is non-atomic.
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Application of Solovay measures

Definition

An ultrafilter U on ω is semi-selective if whenever (an) ⊆ R is such
that limn→U an = 0, then there is X ∈ U such that

∑
n∈X an <∞.

Equivalently, U is semi-selective if and only if U is a rapid P-point.

Theorem (DS.–P. Borodulin-Nadzieja)

For every ultrafilter U on ω, the following are equivalent:
1 U is semi-selective;
2 for every probability measure µ on 2κ and sequence (Pk)k of
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The end

Thank you for your attention!


