A tail of a generic real Classifying invariants for E_1

Assaf Shani

Harvard University

Arctic Set Theory February 2022

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$M = \bigcap_{n < \omega} V[\langle x_n, x_{n+1}, \ldots \rangle].$$

This model was considered by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_1 . E_1 is the equivalence relation on \mathbb{R}^{ω} :

$$x E_1 y \iff (\exists n)(\forall m > n)x(m) = y(m).$$

What this model looks like was left open. In particular: does it satisfy choice?

We will see some structural results about this model.

The main topic of this talk is: what do the properties of this model tell us about E_1 ?

Specifically: we will define and study a *weak* notion of "classifying invariants".

Let *E* be an equivalence relation on *X*. A **complete classification** of *E* is a map $c: X \rightarrow I$

$$x E y \iff c(x) = c(y).$$

Some "bad" examples:

- $c: X/E \to X$ choice function $c([x]_E) \in [x]_E$. (Not definable)
- $x \mapsto [x]_E$. (Hard to *describe* c(x) from x)

Say that c is **absolute** if: • c is definable.

- c remains a complete classification in generic extensions.
- $c(x)^V = c(x)^{V[G]}$ for $x \in V$. ("local computation")

E,*F* E.R.s on Polish spaces *X*, *Y*. *f* : *X* \rightarrow *Y* is a **reduction** if $x E y \iff f(x) F f(y)$.

Classifying invariants for F can be used to classify E.

E is Borel reducible to F is there is a Borel reduction.

An extremely partial picture of Borel ERs

Generically absolute classifications

Definition: $c: X \to I$ a definable complete classification of *E*. Say that *c* is **generically absolute** if

▶ it remains a complete classification in a Cohen-real extension.

•
$$c(x)^V = c(x)^{V[G]}$$
 for $x \in V$.

Main point: allow some non-orbit relations to "be classifiable" too, maintaining turbulence as the anti-classification phenomenon.

Theorem

- 1. E_1 is generically classifiable. (Using b many of E_0 -classes.)
- A. Choice fails in M. (for b-sequences of E_0 -classes)
- 2. E_1 does not admit an absolute classification.
- B. M = V(A) for a set (of reals) A.
- 3. E_1 is not gen. class. using $< \mathbf{add}(\mathcal{B})$ many E_0 -classes.
- C. An analysis of reals in *M*. (Question: Does $M \models DC_{<add(B)}$?)

Question: is (1) optimal? Chichon-Pawlikowsky: $\mathfrak{b}^{V[x]} = \mathbf{add}(\mathcal{B})^V$

Parts (1) and (A): Classifying invariants for E_1

Fix $x \in (2^{\omega})^{\omega}$. Given $f \in \omega^{\omega}$, Let $[x \upharpoonright f]$ be the set of all finite changes of $x \upharpoonright f$. X This is E_1 -invariant. ($[x \upharpoonright f]$ is an E_0 -class.) 1 0 1 1 0 0 1 1 1 1 Fix $\langle f_{\alpha} \mid \alpha < \mathfrak{b} \rangle$, <*-unbdd, f_{α} increasing. Claim: $x \mapsto \langle [x \upharpoonright f_{\alpha}] \mid \alpha < \mathfrak{b} \rangle$ is a complete 1 1 0 0 1 classification of E_1 . Moreover, this is true in any model in which $\langle f_{\alpha} \mid \alpha < \mathfrak{b} \rangle$ is unbounded. 1 1 1 0 (In particular, in a Cohen-real extension.) Note: $\langle [x \upharpoonright f_{\alpha}] \mid \alpha < \mathfrak{b} \rangle \in M$. (Any E_1 -invariant is in M.) Claim: $\langle [x \upharpoonright f_{\alpha}] \mid \alpha < \mathfrak{b} \rangle$ has no choice function in *M*.

Thanks for listening!

Lower bounds for possible generic invariants

Assume for contradiction that there is a generically absolute classification of E_1 using $< \mathbf{add}(\mathcal{B})$ -sequences of E_0 -classes. $x \in (2^{\omega})^{\omega}$ Cohen-generic. $A = A_x = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ its invariant. Then $A \in M$ (the intersection model). $\kappa < \mathbf{add}(\mathcal{B})^V = \mathfrak{b}^{V[x]}$.

Lemma

For any real $z \in M$ there is a function $f \in M$ so that

 $n \in z \iff x \upharpoonright f \Vdash \check{n} \in \dot{z}.$

Sketch of lower bound proof (part (3) of thm) using the lemma: Working in V[x], associate to each real $z \in \bigcup_{\alpha} A_{\alpha}$ a function f_z , and find some f dominating all of them. Change x (generically) above f, get a new generic x', agreeing with x below f. So x, x' are **not** E_1 -related. It follows however that the invariant $A_{x'}$ is also equal to A, so these are not classifying invariants.

Thanks for listening!