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Team Semantics

• Team semantics: Hodges 1997

• Dependence logic: Väänänen 2007

• Independence logic: Grädel–Väänänen 2013
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Given a structure A and a finite set V of variables, a team of A is
a set X of assignments s : V → A.

x y z
s0 0 0 0
s1 0 0 1
s2 0 1 0
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• A |=X =(~x,~y) if “~x functionally determines~y”, i.e.

∀s, s′ ∈ X(s(~x) = s′(~x) =⇒ s(~y) = s′(~y)).

• A |=X ~x ⊥~y~z if “~x is independent of~z when~y is fixed”

∀s, s′∈X
(
s(~y) = s′(~y) =⇒

∃s′′∈X
(
s′′(~x~y) = s(~x~y) ∧ s′′(~z) = s′(~z)

))
.

• =(~x,~y) ≡~y ⊥~x ~y.
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Let X be the following team:

x y z w
s0 0 0 0 1
s1 0 1 1 0
s2 1 0 0 1
s3 1 1 2 1
s4 2 0 0 1
s5 2 1 0 1

Then

• X satisfies =(z, w) but not =(x, y).

• X satisfies x ⊥ y but not y ⊥ z.
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Syntax of independence logic:

ϕ ::= α | ¬α |~x ⊥~y~z | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ,

where α is first-order atomic



Team Semantics Hidden-Variable Teams Quantum-Mechanical Teams The End

• A |=X ϕ if A |=s ϕ for all s ∈ X, whenever ϕ is a first-order
atomic or negated atomic formula.

• A |=X ϕ ∧ ψ if A |=X ϕ and A |=X ψ.

• A |=X ϕ ∨ ψ if A |=Y ϕ and A |=Z ψ for some Y, Z ⊆ X such
that X = Y ∪ Z.

• A |=X ∃xϕ if A |=X[F/x] ϕ for some function
F : X→ P(A) \ {∅}, where
X[F/x] = {s(a/x) | s ∈ X, a ∈ F(s)}.
• A |=X ∀xϕ if A |=X[A/x] ϕ, where

X[A/x] = {s(a/x) | s ∈ X, a ∈ A}.
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Sort Logic

We consider many-sorted structures and include in our syntax
the quantifiers of sort-logic [Väänänen 2014].

• A |=X ∃̃xϕ ⇐⇒ B |=X ∃xϕ for some expansion B of A by
the sort of x

• A |=X ∀̃xϕ ⇐⇒ B |=X ∀xϕ for all expansions B of A by
the sort of x
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Hidden-Variable Models of Quantum Mechanics

• Could the non-deterministic nature of quantum mechanics
be explained by including “hidden” variables in the
models?

• Brandenburger & Yanofsky: a purely probabilistic
framework

• Abramsky: a relational (possibilistic) framework
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Empirical & Hidden-Variable Teams

We consider variables of three sorts:

• Vm = {x0, . . . , xn−1} (“measurement variables”),

• Vo = {y0, . . . , yn−1} (“outcome variables”), and

• Vh = {z0, . . . , zl−1} (“hidden variables”).

X is an empirical team if dom(X) = Vm ∪Vo.

X is a hidden-variable team if dom(X) = Vm ∪Vo ∪Vh.
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Empirical & Hidden-Variable Teams (cont.)

x0 y0 . . . xn−1 yn−1 z0 . . . zl−1

a0
0 b0

0 . . . a0
n−1 b0

n−1 γ0
0 . . . γ0

l−1

a2
0 b1

0 . . . a2
n−1 b1

n−1 γ1
0 . . . γ2

l−1
...

...
. . .

...
...

...
. . .

...
am−1

0 bm−1
0 . . . am−1

n−1 bm−1
n−1 γm−1

0 . . . γm−1
l−1
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Empirical & Hidden-Variable Teams (cont.)

A hidden-variable team Y realizes an empirical team X if for all
assignments s we have

s ∈ Y ⇐⇒ s � (Vm ∪Vo) ∈ X.

If ϕ(~x,~y,~z) is a formula of independence logic, then

∃̃z0∃z1 . . . ∃zl−1 ϕ defines the class of empirical teams that are
realized by some hidden-variable team satisfying ϕ.
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Properties of Empirical Teams

Weak Determinism: “the outcomes of the measurements are
completely determined”

=(~x,~y)

No-Signalling: “the choice of measurement by one party cannot
be signalled to the other parties”.∧

i<n

{xj | j 6= i} ⊥xi yi
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Properties of Hidden-Variable Teams
Strong Determinism: “the outcome of each individual
measurement is completely determined by that measurement
(and the hidden variable) alone”∧

i<n

=(xi~z, yi)

z-Independence: “the value of the hidden variable is
independent of the choice of measurements”

~z ⊥~x

Parameter Independence: a hidden-variable version of
no-signalling ∧

i<n

{xj | j 6= i} ⊥xi~z yi
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Relationships between the Properties

Strong determinism implies parameter independence

=(xi~z, yi) ` {xj | j 6= i} ⊥xi~z yi
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Empirical vs. Hidden-Variable Teams

An empirical team supports no-signalling iff it can be realized
by a hidden-variable team supporting z-independence and
parameter independence.

In other words, the following formulas are equivalent.

1.
∧

i<n{xj | j 6= i} ⊥xi yi,

2. ∃̃z0∃z1 . . . ∃zl−1
(
~z ⊥~x∧∧i<n{xj | j 6= i} ⊥xi~z yi

)
.
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No-Go Theorems

There is an empirical team that cannot be realized by any
hidden-variable team supporting single-valuedness and
outcome independence.

Theorem
∃̃z0∃z1 . . . ∃zl−1

(
=(~z) ∧∧i<n yi ⊥~x~z {yj | j 6= i}

)
is not valid.
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Proof.
As demonstrated, for instance, by the following team.

x0 x1 y0 y1

s 0 1 0 1
s′ 0 1 1 0

We call the above the EPR team.
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No-Go Theorems (cont.)

There is an empirical team that cannot be realized by a
hidden-variable team supporting z-independence and locality.

Theorem

∃̃z0∃z1 . . . ∃zl−1

(
~z ⊥~x∧

∧
i<n

((
{xj | j 6= i} ⊥xi~z yi

)
∧

(
yi ⊥~x~z {yj | j 6= i}

)))

is not valid.
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Proof.
As is demonstrated, for instance, by the following team.

x0 x1 x2 y0 y1 y2

s0 0 0 0 0 0 1
s1 0 0 0 0 1 0
s2 0 0 0 1 0 0
s3 0 0 0 1 1 1
s4 0 1 1 0 0 0
s5 0 1 1 0 1 1
s6 1 0 1 1 0 1
s7 1 1 0 1 1 0

This is an example of a GHZ team.



Team Semantics Hidden-Variable Teams Quantum-Mechanical Teams The End

Quantum-Mechanical Teams

Definition
A probabilistic empirical team X is quantum-mechanical if it
represents the probability distribution of measurement
outcomes in a finite-dimensional quantum system.

Define a new atomic formula QR such that an ordinary team X
satisfies QR if X is the possibilistic collapse of a
quantum-mechanical team.
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Definition
Let M and O be sets of n-tuples, and denote Mi = {ai |~a ∈ M}
and Oi = {bi |~b ∈ O}. A quantum system of type (M, O) is a
tuple (H, (Aa,b

i )a∈Mi,b∈Oi,i<n, ρ), where

• H is the tensor product
⊗

i<nHi of finite-dimensional
Hilbert spacesHi, i < n,

• for all i < n and a ∈ Mi, {Aa,b
i | b ∈ Oi} is a positive

operator-valued measure onHi, and

• ρ is a density operator onH, i.e. ρ = ∑j<k pj
∣∣ψj
〉 〈

ψj
∣∣ ,

where
∣∣ψj
〉

is a unit vector ofH and pj ∈ [0, 1] for all j < k
and ∑j<k pj = 1.

For each measurement~a ∈ M, we define the probability
distribution p~a of outcomes by setting p~a(~b) := Tr(A~a,~bρ), where
A~a,~b denotes the operator

⊗
i<n Aai,bi

i .



Team Semantics Hidden-Variable Teams Quantum-Mechanical Teams The End

Definition
Let X be a probabilistic team with variable domain Vm ∪Vo

and denote M = {s(~x) | s ∈ supp X} and
O = {s(~y) | s ∈ supp X}. We say that X is quantum-mechanical if
there exists a quantum system

(H, (Aa,b
i )a∈Mi,b∈Oi,i<n, ρ)

of type (M, O) such that for all assignments s, we have
X(s) = ps(~x)(s(~y))/ |M|. We call a quantum-mechanical team X

a quantum realization of an empirical team X if X is the
possibilistic collapse of X.
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Quantum-Mechanical Teams (cont.)

Proposition

1. The EPR team is a collapse of a quantum-mechanical team, hence

QR 6|= ∃~z
(
=(~z) ∧

∧
i<n

yi ⊥⊥~x~z {yj | j 6= i}
)

.

2. A GHZ team is a collapse of a quantum-mechanical team, hence

QR 6|= ∃~z
(
~z⊥⊥~x∧

∧
i<n

{xj | j 6= i} ⊥⊥xi~z yi ∧
∧
i<n

yi ⊥⊥~x~z {yj | j 6= i}
)

.
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Proposition

The set {X | X |= QR} is undecidable but recursively enumerable.

Proof idea: There is a many-one reduction from two-player
one-round non-local games that have a perfect quantum
strategy to teams that have a quantum realization.

Determining whether a non-local game has a perfect quantum
strategy is undecidable. [Slofstra 2019]
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