Compactness vs. hugeness at ω_2

Monroe Eskew

University of Vienna Supported by FWF Project P34603

Arctic Set Theory Workshop February 18, 2022

Question

Is the tree property at ω_2 consistent with either the existence of a saturated ideal on ω_2 or $(\omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1)$?

Question

Is the tree property at ω_2 consistent with either the existence of a saturated ideal on ω_2 or $(\omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1)$?

Answers so far

- Not if $2^{\omega} \leq \omega_2$.
- Not if the generic hugeness embedding comes from a Kunen-style lift of a ground model hugeness embedding.
- With Neeman's pure side conditions, we can get the tree property with a weaker hugeness property ("weak Chang's conjecture").

Definitions

A normal ideal I on κ is called *weakly presaturated* if, whenever $G \subseteq \mathcal{P}(\kappa)/I$ is generic, then Ult(V, G) is well-founded up to $(\kappa^+)^V + 1$ and $j_G(\kappa) = (\kappa^+)^V$.

Some abbreviations:

- sat(κ): There is a saturated ideal on κ , i.e. a normal ideal I such that $\mathcal{P}(\kappa)/I$ has the κ^+ -c.c.
- ② wps(κ , S): There is a weakly presatuated normal ideal I on κ such that $\kappa \setminus S \in I$.
- $\ \, {\rm SCC}(\kappa): \ \{X\subseteq \kappa^+: X\cap \kappa\in\kappa \ {\rm and} \ {\rm ot}(X)=\kappa\} \ {\rm is \ stationary}.$
- wCC(κ, S): For every stucture A on H_{κ+} in a countable language, there is α ∈ S such that the set {ot(M ∩ κ⁺) : M ≺ A ∧ M ∩ κ = α} is unbounded in κ.

Fact: If
$$\kappa = \mu^+$$
 and $S^{\kappa}_{\mu} = \{ \alpha < \kappa : cf(\alpha) = cf(\mu) \}$, then
 $(CC(\kappa) \lor sat(\kappa)) \implies wps(\kappa, S^{\kappa}_{\mu}) \implies wCC(\kappa, S^{\kappa}_{\mu})$

The following is a kind of diagnosis of why all the attempts of myself and Sean Cox to combine compactness and hugeness at ω_2 failed:

Theorem (Cox-E.)

Suppose $j: V \to M$ is an elementary embedding with critical point κ definable from parameters in V. Suppose $\mathbb{P} * \dot{\mathbb{Q}}$ is a two-step iteration such that:

• *M* is $|\mathbb{P}|$ -closed, and $|\mathbb{P}| < j(\kappa)$.

2 $\mathbb{P} * \dot{\mathbb{Q}}$ collapses all ordinals in the open interval $(\kappa, j(\kappa))$.

Whenever G * H is ℙ * Q̂-generic over V, then in some outer model, j can be lifted to j' : V[G * H] → M[G' * H'], such that P_κ(Ord)^{V[G*H]} ⊆ M[G'].

Then \mathbb{P} forces that $\kappa = \mu^+$ for some $\mu < \kappa$, and \Box^*_{μ} holds.

Theorem (Cox-E.)

Suppose κ is a regular cardinal, $2^{<\kappa} \leq \kappa^+$, and there is a weakly presaturated ideal on κ^+ concentrating on $cof(\kappa)$. Then \Box^*_{κ} holds.

Very vaugely, the argument somehow imitates the usual proof of $\Box_{\omega_1}^*$ from CH, replacing $\omega_1^{\omega} = \omega_1$ with the fact that $([\omega_2]^{\omega})^V$ has size ω_1 in a generic ultrapower, working on the *j*-side to build a weak square sequence of length $j(\omega_2) = \omega_3^V$, and then reflecting.

Theorem (Cox-E.)

Suppose κ is a regular cardinal, $2^{<\kappa} \leq \kappa^+$, and there is a weakly presaturated ideal on κ^+ concentrating on $cof(\kappa)$. Then \Box^*_{κ} holds.

Very vaugely, the argument somehow imitates the usual proof of $\Box_{\omega_1}^*$ from CH, replacing $\omega_1^{\omega} = \omega_1$ with the fact that $([\omega_2]^{\omega})^V$ has size ω_1 in a generic ultrapower, working on the *j*-side to build a weak square sequence of length $j(\omega_2) = \omega_3^V$, and then reflecting.

The assumption that the ideal concentrates on the highest cofinality is important:

Theorem (Woodin-Sargsyan)

It is consistent relative to a Woodin limit of Woodins that $2^{\omega} = \omega_2$, $TP(\omega_2)$, and $wps(\omega_2, S_{\omega}^{\omega_2})$. (Moreover BMM holds.)

Equivalences in terms of elementary submodels

Lemma

TFAE:

• wps(κ, S).

② There is θ > κ and a stationary $T ⊆ \{M ∈ [H_θ]^{<κ} : M ∩ κ ∈ S\}$ such that the following holds: For all f : κ → κ and all A ⊆ S such that $A^* = \{M ∈ T : M ∩ κ ∈ A\}$ is stationary, there are stationary-many $M ∈ A^*$ such that $ot(M ∩ κ^+) > f(M ∩ κ)$.

The witnessing ideal is just the projection of NS \upharpoonright T to κ .

Lemma *TFAE:* • wCC(κ , *S*). • For all $f : \kappa \to \kappa$, there are stationary-many $M \in [H_{\kappa^+}]^{<\kappa}$ such that $M \cap \kappa \in S$ and $ot(M \cap \kappa^+) > f(M \cap \kappa)$.

Neeman forcing

Neeman's two-type side conditions forcing depends on the following parameters:

- Some fixed transitive model K satisfying enough ZFC.
- A collection S of small $M \prec K$.
- A collection \mathcal{T} of transitive $M \prec K$.
- A cardinal κ .

There are some requirements on S, T and their interrelation. The conditions are \in -chains of models from $S \cup T$ length $<\kappa$, closed under pairwise intersection of the models, ordered by $p \leq q$ when $p \supseteq q$.

Neeman forcing

Neeman's two-type side conditions forcing depends on the following parameters:

- Some fixed transitive model K satisfying enough ZFC.
- A collection S of small $M \prec K$.
- A collection \mathcal{T} of transitive $M \prec K$.
- A cardinal κ .

There are some requirements on S, T and their interrelation. The conditions are \in -chains of models from $S \cup T$ length $<\kappa$, closed under pairwise intersection of the models, ordered by $p \leq q$ when $p \supseteq q$.

Typical example: $K = \langle V_{\theta}, \in, ... \rangle$ for θ inaccessible. S = all countable $M \prec K$, T = all countably closed $V_{\alpha} \prec K$, $\kappa = \omega$.

The forcing is strongly proper for $S \cup T$. In the above case, it preserves ω_1 , collapses θ to become ω_2 , and preserves the tree property at θ if θ was weakly compact.

Monroe Eskew (Wien)

Proposition

Suppose θ is measurable. There is a structure \mathfrak{A} on V_{θ} such that, taking S, \mathcal{T} like above and using the finite conditions, Neeman's forcing gets a weakly presaturated ideal on ω_1 .

Proof sketch: Let \mathcal{U} be a normal measure on θ , let \triangleleft be a wellorder on a sufficiently large H_{λ} , and let \mathfrak{A} be the restriction of $\mathfrak{B} = \langle H_{\lambda}, \in, \mathcal{U}, \triangleleft \rangle$, to V_{θ} .

By Neeman's work, and $S_G := \{M : M \in S \land (\exists p \in G) M \in p \in G\}$ is forced to be stationary. Let I be the projection of NS $\upharpoonright S_G$.

Let \dot{A} be a name for an *I*-positive set and let p be an arbitrary condition. Let \dot{F} be a name for a function $V_{\theta}^{<\omega} \rightarrow V_{\theta}$. Let \dot{f} be a name for a function $\omega_1 \rightarrow \omega_1$.

Since it is forced that the inverse of the projection is stationary, there is $q \leq p$ and $M \in S$ such that $\operatorname{Hull}^{\mathfrak{B}}(M) = M$, $\dot{F} \in \operatorname{Hull}^{\mathfrak{B}}(M)$ and $q \Vdash M \cap \omega_1 \in \dot{A}$. We may assume $M \in q$.

Now let $q' \leq q$ decide $\dot{f}(M \cap \omega_1) = \xi$.

By a well-known argument, if $\alpha \in \bigcap (\mathcal{U} \cap \operatorname{Hull}^{\mathfrak{B}}(M))$, then $M_1 = \operatorname{Hull}^{\mathfrak{B}}(M \cup \{\alpha\})$ has the property that $M_1 \cap V_{\alpha} = M$.

Repeat this until we get $M_{\xi} \prec \mathfrak{A}$ such that $\operatorname{ot}(M_{\xi} \cap \theta) \geq \xi$, and such that for some $\alpha \in \bigcap (\mathcal{U} \cap \operatorname{Hull}^{\mathfrak{B}}(M))$, $M_{\xi} \cap V_{\alpha} = M$, and $q' \in V_{\alpha}$.

Now put $q'' = q' \cup \{V_{\alpha}, M_{\xi}\}$. This is a condition below p forcing that $M_{\xi} \in S_G$, M_{ξ} is closed under \dot{F}^G , $M_{\xi} \cap \omega_1 \in \dot{A}$, and $\operatorname{ot}(M_{\xi} \cap \kappa) > \dot{f}(M_{\xi} \cap \omega_1)$.

So q'' forces that there are stationary-many models projecting to A with the desired ordertype property, which implies weak presaturation. \Box

We would like to generalize this to ω_2 . But in the simplest generaliztion of Neeman's forcing we use countable sequences of models which are all countably closed. How can we end-extend models arbitrarily high and arrive another countably closed small model?

We would like to generalize this to ω_2 . But in the simplest generaliztion of Neeman's forcing we use countable sequences of models which are all countably closed. How can we end-extend models arbitrarily high and arrive another countably closed small model?

Suppose κ is inaccessible. For $\lambda > \kappa$, a κ -Magidor model is an $M \prec V_{\lambda}$ such that $M \cap \kappa \in \kappa$ and $trcl(M) = V_{\alpha}$ for some $\alpha < \kappa$. Magidor proved that κ is supercomapact iff for every $\lambda > \kappa$, the set of κ -Magidor $M \prec V_{\lambda}$ is stationary.

Ideally, we would like the following: There are inaccessible $\kappa < \lambda$ and a stationary S of κ -Magidor $M \prec V_{\lambda}$ such that: For every $M \in S$, $\alpha < \kappa$, and $\beta < \lambda$, there is $N \in S$ (key!) such that $N \cap V_{\beta} = M$ and $\operatorname{ot}(N \cap \lambda) > \alpha$.

This would allow us to mimic the argument for a weakly presaturated ideal on general κ . Surprisingly, this turns out to be impossible.

Let κ be supercompact and let $\lambda > \kappa$ be inaccessible. Let \mathbb{P} be the Neeman forcing to make $\kappa = \omega_2$ with finite conditions. Let $G \subseteq \mathbb{P}$ be generic. In V[G], let \mathbb{Q} be the Neeman forcing with

 $S = \{M[G] : M \text{ is } \kappa\text{-Magidor in } V \text{ and } cf(sup(M \cap \lambda)) \ge M \cap \kappa\}$

$$\mathcal{T} = \{ V_{\alpha} \prec V_{\lambda} : \mathsf{cf}(\alpha) \ge \kappa \}$$

In V[G], let \mathbb{Q} be the forcing with countable sequences of these \mathcal{S}, \mathcal{T} .

Theorem (Neeman)

 \mathbb{Q} is countably distributive and forces (preserves) the tree property on κ (which becomes ω_2).

If the wished-for scenario were consistent, then we would get a model violating my theorem with Sean Cox.

Assume κ is almost-huge with target λ . This means there is an elementary $j: V \to M$ with $\operatorname{crit}(j) = \kappa, j(\kappa) = \lambda$, and $M^{<\lambda} \subseteq M$.

Lemma

Let \mathfrak{A} be a structure on V_{λ} in a countable language. Let \mathcal{E} be the set of all κ -Magidor $M \prec \mathfrak{A}$ such that $cf(sup(M \cap \lambda)) \ge M \cap \kappa$ and for all $\alpha < \kappa$ and $\beta < \lambda$, there is $N \prec \mathfrak{A}$ and $\gamma > \beta$ such that:

- N is κ-Magidor,
- ot $(N \cap \lambda) > \alpha$,
- $\gamma \in N$,
- $\mathsf{cf}(\gamma) \ge \kappa$,
- $V_{\gamma} \prec V_{\lambda}$,
- $N \cap V_{\gamma} = M$.
- $cf(sup(N \cap \lambda)) \ge M \cap \kappa$.

Then $\mathcal E$ is stationary.

wCC with the tree property

Let κ be almost-huge with target λ . Let \mathbb{P} be Neeman's finite conditions forcing to make $\kappa = \omega_2$, and let \mathbb{Q} be the further forcing as above.

By Neeman's Theorem, the tree property holds at ω_2 after $\mathbb{P} * \dot{\mathbb{Q}}$. Let us see that wCC($\omega_2, S_{\omega_1}^{\omega_2}$) also holds.

Let $q_0 \in \mathbb{Q}$ be arbitrary. Let \dot{F} be a name for a fintary function on V_{λ} , and let \dot{f} be a name for a function $\kappa \to \kappa$. Let \mathfrak{A} incorporate \dot{F} . Let M be a κ -Magidor model such that $q_0 \in M$ and $M \in \mathcal{E}$.

Let $q_1 \leq q_0$ decide $\dot{f}(M \cap \kappa) = \xi$. Let $N \prec \mathfrak{A}$ and γ be such that:

- *N* is *κ*-Magidor.
- $q_1 \in V_{\gamma} \in N$.
- $cf(\gamma) \geq \kappa$.
- $N \cap V_{\gamma} = M$.
- ot $(N \cap \lambda) > \xi$.

Let $q_2 = q_1 \cup \{V_\gamma, N\}$.

By preservation of cofinalities, $N \cap \kappa$ has uncountable cofinality in V[G, H]. It is forced to be closed under \dot{F} by q_2 . So by the equivalent charaterication of wCC, wCC($\kappa, S_{\omega_1}^{\kappa}$) holds in V[G, H].

This shows that $2^{\omega} = \omega_2 + TP(\omega_2)$ is consistent with $wCC(\omega_2, S_{\omega_1}^{\omega_2})$, in contrast with $wps(\omega_2, S_{\omega_1}^{\omega_2})!$

Let $q_2 = q_1 \cup \{V_\gamma, N\}$.

By preservation of cofinalities, $N \cap \kappa$ has uncountable cofinality in V[G, H]. It is forced to be closed under \dot{F} by q_2 . So by the equivalent charaterication of wCC, wCC($\kappa, S_{\omega_1}^{\kappa}$) holds in V[G, H].

This shows that $2^{\omega} = \omega_2 + TP(\omega_2)$ is consistent with $wCC(\omega_2, S_{\omega_1}^{\omega_2})$, in contrast with $wps(\omega_2, S_{\omega_1}^{\omega_2})!$

Thanks for your attention!