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Overview

Question

Is the tree property at ω2 consistent with either the existence of a
saturated ideal on ω2 or (ω3, ω2)� (ω2, ω1)?

Answers so far

Not if 2ω ≤ ω2.

Not if the generic hugeness embedding comes from a Kunen-style lift
of a ground model hugeness embedding.

With Neeman’s pure side conditions, we can get the tree property
with a weaker hugeness property (“weak Chang’s conjecture”).
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Definitions

A normal ideal I on κ is called weakly presaturated if, whenever
G ⊆ P(κ)/I is generic, then Ult(V ,G ) is well-founded up to (κ+)V + 1
and jG (κ) = (κ+)V .

Some abbreviations:

1 sat(κ): There is a saturated ideal on κ, i.e. a normal ideal I such that
P(κ)/I has the κ+-c.c.

2 wps(κ,S): There is a weakly presatuated normal ideal I on κ such
that κ \ S ∈ I .

3 CC(κ): {X ⊆ κ+ : X ∩ κ ∈ κ and ot(X ) = κ} is stationary.
4 wCC(κ,S): For every stucture A on Hκ+ in a countable language,

there is α ∈ S such that the set {ot(M ∩ κ+) : M ≺ A ∧M ∩ κ = α}
is unbounded in κ.

Fact: If κ = µ+ and Sκµ = {α < κ : cf(α) = cf(µ)}, then

(CC(κ) ∨ sat(κ)) =⇒ wps(κ,Sκµ ) =⇒ wCC(κ,Sκµ )
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Negative results

The following is a kind of diagnosis of why all the attempts of myself and
Sean Cox to combine compactness and hugeness at ω2 failed:

Theorem (Cox-E.)

Suppose j : V → M is an elementary embedding with critical point κ
definable from parameters in V . Suppose P ∗ Q̇ is a two-step iteration
such that:

1 M is |P|-closed, and |P| < j(κ).

2 P ∗ Q̇ collapses all ordinals in the open interval (κ, j(κ)).

3 Whenever G ∗H is P ∗ Q̇-generic over V , then in some outer model, j
can be lifted to j ′ : V [G ∗ H]→ M[G ′ ∗ H ′], such that
Pκ(Ord)V [G∗H] ⊆ M[G ′].

Then P forces that κ = µ+ for some µ < κ, and �∗µ holds.
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Negative results

Theorem (Cox-E.)

Suppose κ is a regular cardinal, 2<κ ≤ κ+, and there is a weakly
presaturated ideal on κ+ concentrating on cof(κ). Then �∗κ holds.

Very vaugely, the argument somehow imitates the usual proof of �∗ω1
from

CH, replacing ωω1 = ω1 with the fact that ([ω2]ω)V has size ω1 in a generic
ultrapower, working on the j-side to build a weak square sequence of
length j(ω2) = ωV

3 , and then reflecting.

The assumption that the ideal concentrates on the highest cofinality is
important:

Theorem (Woodin-Sargsyan)

It is consistent relative to a Woodin limit of Woodins that 2ω = ω2,
TP(ω2), and wps(ω2, S

ω2
ω ). (Moreover BMM holds.)
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Equivalences in terms of elementary submodels

Lemma

TFAE:

1 wps(κ,S).

2 There is θ > κ and a stationary T ⊆ {M ∈ [Hθ]<κ : M ∩ κ ∈ S} such
that the following holds: For all f : κ→ κ and all A ⊆ S such that
A∗ = {M ∈ T : M ∩ κ ∈ A} is stationary, there are stationary-many
M ∈ A∗ such that ot(M ∩ κ+) > f (M ∩ κ).

The witnessing ideal is just the projection of NS � T to κ.

Lemma

TFAE:

1 wCC(κ,S).

2 For all f : κ→ κ, there are stationary-many M ∈ [Hκ+ ]<κ such that
M ∩ κ ∈ S and ot(M ∩ κ+) > f (M ∩ κ).
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Neeman forcing

Neeman’s two-type side conditions forcing depends on the following
parameters:

Some fixed transitive model K satisfying enough ZFC.

A collection S of small M ≺ K .

A collection T of transitive M ≺ K .

A cardinal κ.

There are some requirements on S, T and their interrelation. The
conditions are ∈-chains of models from S ∪ T length <κ, closed under
pairwise intersection of the models, ordered by p ≤ q when p ⊇ q.

Typical example: K = 〈Vθ,∈, ...〉 for θ inaccessible. S = all countable
M ≺ K , T = all countably closed Vα ≺ K , κ = ω.

The forcing is strongly proper for S ∪ T . In the above case, it preserves
ω1, collapses θ to become ω2, and preserves the tree property at θ if θ was
weakly compact.
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Proposition

Suppose θ is measurable. There is a structure A on Vθ such that, taking
S, T like above and using the finite conditions, Neeman’s forcing gets a
weakly presaturated ideal on ω1.

Proof sketch: Let U be a normal measure on θ, let C be a wellorder on a
sufficiently large Hλ, and let A be the restriction of B = 〈Hλ,∈,U ,C〉, to
Vθ.

By Neeman’s work, and SG := {M : M ∈ S ∧ (∃p ∈ G )M ∈ p ∈ G} is
forced to be stationary. Let I be the projection of NS � SG .

Let Ȧ be a name for an I -positive set and let p be an arbitrary condition.
Let Ḟ be a name for a function V<ω

θ → Vθ. Let ḟ be a name for a
function ω1 → ω1.

Since it is forced that the inverse of the projection is stationary, there is
q ≤ p and M ∈ S such that HullB(M) = M, Ḟ ∈ HullB(M) and
q 
 M ∩ ω1 ∈ Ȧ. We may assume M ∈ q.
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Now let q′ ≤ q decide ḟ (M ∩ ω1) = ξ.

By a well-known argument, if α ∈
⋂

(U ∩HullB(M)), then
M1 = HullB(M ∪ {α}) has the property that M1 ∩ Vα = M.

Repeat this until we get Mξ ≺ A such that ot(Mξ ∩ θ) ≥ ξ, and such that
for some α ∈

⋂
(U ∩HullB(M)), Mξ ∩ Vα = M, and q′ ∈ Vα.

Now put q′′ = q′ ∪ {Vα,Mξ}. This is a condition below p forcing that
Mξ ∈ SG , Mξ is closed under ḞG , Mξ ∩ ω1 ∈ Ȧ, and
ot(Mξ ∩ κ) > ḟ (Mξ ∩ ω1).

So q′′ forces that there are stationary-many models projecting to A with
the desired ordertype property, which implies weak presaturation. �

Monroe Eskew (Wien) Compactness v. hugeness at ω2 Arctic Set Theory ’22 9 / 14



We would like to generalize this to ω2. But in the simplest generaliztion of
Neeman’s forcing we use countable sequences of models which are all
countably closed. How can we end-extend models arbitrarily high and
arrive another countably closed small model?

Suppose κ is inaccessible. For λ > κ, a κ-Magidor model is an M ≺ Vλ
such that M ∩ κ ∈ κ and trcl(M) = Vα for some α < κ. Magidor proved
that κ is supercomapact iff for every λ > κ, the set of κ-Magidor M ≺ Vλ
is stationary.

Ideally, we would like the following: There are inaccessible κ < λ and a
stationary S of κ-Magidor M ≺ Vλ such that: For every M ∈ S, α < κ,
and β < λ, there is N ∈ S (key!) such that N ∩ Vβ = M and
ot(N ∩ λ) > α.

This would allow us to mimic the argument for a weakly presaturated ideal
on general κ. Surprisingly, this turns out to be impossible.
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Let κ be supercompact and let λ > κ be inaccessible. Let P be the
Neeman forcing to make κ = ω2 with finite conditions. Let G ⊆ P be
generic. In V [G ], let Q be the Neeman forcing with

S = {M[G ] : M is κ-Magidor in V and cf(sup(M ∩ λ)) ≥ M ∩ κ}

T = {Vα ≺ Vλ : cf(α) ≥ κ}

In V [G ], let Q be the forcing with countable sequences of these S, T .

Theorem (Neeman)

Q is countably distributive and forces (preserves) the tree property on κ
(which becomes ω2).

If the wished-for scenario were consistent, then we would get a model
violating my theorem with Sean Cox.
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Assume κ is almost-huge with target λ. This means there is an elementary
j : V → M with crit(j) = κ, j(κ) = λ, and M<λ ⊆ M.

Lemma

Let A be a structure on Vλ in a countable language. Let E be the set of
all κ-Magidor M ≺ A such that cf(sup(M ∩ λ)) ≥ M ∩ κ and for all α < κ
and β < λ, there is N ≺ A and γ > β such that:

N is κ-Magidor,

ot(N ∩ λ) > α,

γ ∈ N,

cf(γ) ≥ κ,

Vγ ≺ Vλ,

N ∩ Vγ = M.

cf(sup(N ∩ λ)) ≥ M ∩ κ.

Then E is stationary.
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wCC with the tree property

Let κ be almost-huge with target λ. Let P be Neeman’s finite conditions
forcing to make κ = ω2, and let Q be the further forcing as above.

By Neeman’s Theorem, the tree property holds at ω2 after P ∗ Q̇. Let us
see that wCC(ω2,S

ω2
ω1

) also holds.

Let q0 ∈ Q be arbitrary. Let Ḟ be a name for a fintary function on Vλ, and
let ḟ be a name for a function κ→ κ. Let A incorporate Ḟ . Let M be a
κ-Magidor model such that q0 ∈ M and M ∈ E .

Let q1 ≤ q0 decide ḟ (M ∩ κ) = ξ. Let N ≺ A and γ be such that:

N is κ-Magidor.

q1 ∈ Vγ ∈ N.

cf(γ) ≥ κ.

N ∩ Vγ = M.

ot(N ∩ λ) > ξ.
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wCC with the tree property

Let q2 = q1 ∪ {Vγ ,N}.

By preservation of cofinailities, N ∩ κ has uncountable cofinality in
V [G ,H]. It is forced to be closed under Ḟ by q2. So by the equivalent
charaterication of wCC, wCC(κ,Sκω1

) holds in V [G ,H].

This shows that 2ω = ω2 + TP(ω2) is consistent with wCC(ω2,S
ω2
ω1

), in
contrast with wps(ω2,S

ω2
ω1

)!

Thanks for your attention!
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