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BACKGROUND

m In the ’80s Zimmer promoted the program of understanding the actions of higher rank
Lie groups and their lattices on compact manifolds (aka Zimmer’s program).

m Adams and Kechris (2000) used Zimmer’s cocycle superrigidity theorem to prove the
existence of continuum many pairwise incomparable countable Borel equivalence
relations, a ground breaking result in descriptive set theory.

m This work aims at expanding Adams and Kechris” methods, and investigating those
actions from the viewpoint of descriptive set theory.




BOREL EQUIVALENCE RELATION

Descriptive set theory focuses on definable (= Borel) objects

m Let X be a standard Borel space.
E.g., 2¥ w¥,[0,1],R", C", T = (R/Z)™ with the usual o-algebra of Borel sets.

m Let E be an equivalence relations on X.

m Assume that F is a Borel subset of X x X.
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COUNTABLE BOREL EQUIVALENCE RELATION

Definition

A Borel equivalence relation E is said to be countable iff so are its equivalence classes.

Example

Suppose that I' is a countable group and there is a Borel action ' ~ X, (g, 2) — ¢ - .

Define the corresponding induced orbit equivalence relation on X by

RO~ X)={(z,y) eXxX|3gel (g -z=y)}

Theorem (Feldman-Moore 1975)

If E is a countable Borel equivalence relation on a standard Borel space X, then there exists a
countable group I' and a Borel action of I' ~ X such that E = R(I' ~ X).
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BOREL REDUCIBILITY

Let E and F' equivalence relations on the standard Borel space X and Y, respectively.

m A function f: X — Y is a homomorphism if

By = f(z)E f(y).

m A function f: X — Y is a reduction if
tEy < f(z) E f(y).

We say that E is Borel reducible to F'if there is a Borel reduction from E to F' (in
symbols, F <p F),

Notation: We write £ ~g F'iff E <g F and ' <p F.
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A DEFINABLE NOTION OF CARDINALITY

The following are equivalent:
1. E<p F
2. There is an injection from X/ E intoY/F admitting Borel lifting.
X =======1 > Y

| »

X/E —— Y/F

If E ~p F, then we say that the quotient spaces X/FE and Y/F have the same Borel
cardinality | X/E|p = |Y/F|p.
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SET THEORETIC RIGIDITY

Set theoretic rigidity: The Borel cardinality of a given quotient "encodes" information about
the acting group.

E.g., consider GL,,(Z) ~ T".

Theorem (Adams-Kechris)

T™ /GL(Z)|5 = |T"/GLn(Z)|p < m = n.

We can use descriptive set theory to investigate the action of countable groups on
manifolds and find new instances of rigidity.



« THERE IS GEOMETRY IN THE HUMMING OF THE
STRINGS, THERE IS MUSIC IN THE SPACING OF THE
SPHERES.»

(PYTHAGORAS)



SPHERES

Definition
Let S~ 1 := {z € R" | ||z|| = 1} be the sphere R".

y y

2 . .
St is the unit circle S i e i eyl s

T 23
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ROTATION EQUIVALENCE

Recall
SO, (R) = {A € GL,(R) | AAT = ATA = I,, and det(A4) = 1}.

m We let SO, (R) act on S"~1.

m We focus on the countable subgroup of rational rotations SO,,(Q) and its action

SOL(Q) ~ SPL.

Definition

We call R,, == R(SO,,(Q) ~ S"~1) the (rational) rotation equivalence in dimension n.
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HYPERFINITENESS

Definition

An equivalence relation is hyperfinite iff £ can be written as an increasing union of finite
Borel equivalence relations.

Example

For z,y € 2, let
xEyy <= ImVn>m(x(n) =y(n)).

Ejy is hyperfinite because Ey = F,, where

meN

xFny < Yn>m(x(n) =yn)).
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AN UPPER BOUND FOR R

m There are essentially only two hyperfinite Borel equivalence relations up to Borel
reducibility: =r and Ej.
m [F E is hyperfinite, then E <p Ej.

Theorem (Gao-Jackson 2015)

IfT is abelian, then R(I' ~ X)) is hyperfinite.

An obvious consequence is that Ro <p= Ej.
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GENERIC ERGODICITY

Definition
An equivalence relation E on a Polish space X is said to be generically ergodic if every
FE-invariant Baire measurable subset of X is either meager or comeager.

Proposition

If the action I' ~ X is continuous, then TFAE:
1. The induced orbit equivalence relation R(I' ~ X) is generically ergodic;

2. There is a dense orbit.

Proposition

Let G be a countable group acting on a Polish space X continuously. If R(I' ~ X) is generically
ergodic and every orbit is meager (e.g., when X is perfect), then R(I' ~ X)) is not smooth.
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THE COMPLEXITY OF ROTATION EQUIVALENCE

Proposition

‘R is hyperfinite and not smooth. Thus, Ro ~p FEy.

Y

Ty

4 -3

] _ 1
Consider M = & {3 4

} € S0,(Q).

The action of M on S' moves every point by
an angle 6 = 27r, for 6 irrational.

Each orbit {T}\(x) : n € Z} is dense in S'.
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THE STRUCTURE OF CBERS

Ey ~B Ro

A CBER F'is universal if £ <p F for every
CBER E.

Theorem

(Dougherty—Jackson—Kechris 1994)

The induced equivalence relation E, induced
by the shift action Fy ~ 22 s universal.




A SERIOUS OBSTRUCTION FOR DST

Proving that some CBER is in between Ey and E is gener(ic)ally hard.
Theorem (Hjorth—Kechris 1996)

Let E be a countable Borel equivalence relation on a Polish space X. Then there is a comeager
invariant Borel set C' C X such that E | C' is hyperfinite.




A SERIOUS OBSTRUCTION FOR DST

Proving that some CBER is in between Ey and E is gener(ic)ally hard.
Theorem (Hjorth—Kechris 1996)

Let E be a countable Borel equivalence relation on a Polish space X. Then there is a comeager
invariant Borel set C' C X such that E | C' is hyperfinite.

We borrow tools from ergodic theory, and measure group theory.
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SPHERICAL MEASURE

m There is a unique SO,,(Q)-invariant probability measure ji,, on S*~'. We call 1,, the

spherical measure.
m The action SO, (Q) ~ (S"™1, uu,) is ergodic. le., for every SO,,(Q)-invariant Borel

subset A C X either ji,(A) = 0 or pu,(A) = 1.

If ' ~ X, the free part of the actionis Frp X .= {x € X : Vg # 1r(g- = # x)}.

For SO, (Q) ~ S"~! we have

i (Frso, ) ") = 1.
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MAIN RESULTS

Main Theorem (C. 22+)

For all n > 5 and 2 < m < n, the relation R,, is not Borel reducible to R,,.

Corollary

None of the R,,’s is universal.

Corollary
For {m,n} # {3,4},
IS™1/80m(Q)|5 = |S*1/S0,(Q)|z <= m=n.
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WHY n > 5?

Theorem (Margulis 1980)

Letn > 5. If p is prime and p = 1 (mod 4), then SO,,(Z[2]) is a dense subgroup of SO, (R)
with property (T).

p




WHY n > 5?

Theorem (Margulis 1980)

Letn > 5. Ifp is prime andp = 1 (mod 4), then SO,, (Z[%]) is a dense subgroup of SO, (R)
with property (T).

Theorem (Zimmer 1984)

Forn = 3,4, there is no infinite subgroup of SO,,(R) with property (T).
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DIVIDE AND CONQUER

Suppose that
f:S"—> 8™

is a Borel reduction from R, to R, then A = f~1(FrS™) is a Borel SO,,(Q)-invariant set.lt
follows that p,,(A) = 1 or pu,(A) = 0 by ergodicity.

Define R, := R(SO,(Q) ~ Frgo, (g)S™ ), the restriction of R, to the free part.

Theorem (C. 21+)

Foralln > 5 and2 < m < n, the relation R,, is not Borel reducible to R,,.
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COCYCLE ASSOCIATED TO A BOREL HOMOMORPHISM

Let I' ~ X and A be a group. A Borel function a.: I' x X — A is called a (strict) cocycle if
forallg,h €T,
a(hg,x) = a(h,g-z)a(g,x) forall z € X.

m Suppose' » X and A ~ Y.

m Suppose that A ~ Y is free.

m Let f: X — Y be a Borel homomorphism from R(I' ~ X) to R(A ~Y).
m Forany g € I"and z € X, there is a unique a(g, z) € A so that

flg-z) =a(g,z) - f().

a: ' x X — Ais the cocycle associated to f.
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COCYCLE SUPERRIGIDITY FOR TRANSLATION ACTION

Theorem (Furman 2011; loana 2016)

LetI" < G be a dense subgroup of a connected, compact group G.Suppose that ' has property
(T). Consider the left-translation actionT' ~ (G, m¢), where m¢ is the Haar measure of G.
Assume that 71 (G), the fundamental group of G, is finite. Let A be a countable group and

a: I'x G — A be a cocycle.lf every group homomorphism w1 (G) — A is trivial, then o is
cohomologous to some homomorphism §: I' — A.

That is, there is a Borel map B: X — A such that

6(9) = B(g - z)a(g, z)B(z)™* mg — a.e.(x).




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

*

- Instead of R,, we focus on

m Suppose that there is a Borel reduction from R, to R

R(SOL(Z[L]) ~ S* 1),




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.
m Suppose that there is a Borel reduction from R,, to R},,. Instead of R,, we focus on

R(SOL(Z[L]) ~ S* 1),

P g

m The associated cocycle lift to a cocycle a: T x SO, (R) = SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

m Suppose that there is a Borel reduction from R,, to R},,. Instead of R,, we focus on
R(SOH(Z[%]) ~ St

m The associated cocycle lift to a cocycle a: I x Sm) — SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.

m By cocycle superrigidity for compact actions « is cohomologous to a homomorphism

p: T = SO (Q).




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

Suppose that there is a Borel reduction from R,, to R;,. Instead of R,, we focus on

R(SOL(Z[L]) ~ S* 1),

P g

m The associated cocycle lift to a cocycle a: T x SO, (R) = SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.

By cocycle superrigidity for compact actions « is cohomologous to a homomorphism

p: T = SO (Q).

By Margulis’ normal subgroup theorem for S-arithmetic group either:




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

Suppose that there is a Borel reduction from R,, to R;,. Instead of R,, we focus on

R(SOL(Z[L]) ~ S* 1),

P g

m The associated cocycle lift to a cocycle a: T x SO, (R) = SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.

By cocycle superrigidity for compact actions « is cohomologous to a homomorphism

p: T = SO (Q).

By Margulis’ normal subgroup theorem for S-arithmetic group either:

1. [T : ker p] < o0, or




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

Suppose that there is a Borel reduction from R,, to R;,. Instead of R,, we focus on

R(SOL(Z[L]) ~ S* 1),

P g

m The associated cocycle lift to a cocycle a: T x SO, (R) = SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.

By cocycle superrigidity for compact actions « is cohomologous to a homomorphism

p: T = SO (Q).

By Margulis’ normal subgroup theorem for S-arithmetic group either:

1. [T : ker p] < o0, or
2. ker p is finite.




SKETCH OF THE PROOF OF THE MAIN THEOREM

mletn>5and2 <m < n.

Suppose that there is a Borel reduction from R,, to R;,. Instead of R,, we focus on

R(SOL(Z[L]) ~ S* 1),

P g

m The associated cocycle lift to a cocycle a: T x SO, (R) = SO, (Q) where
I' = p~1(SO,(Z[3])) and p is the covering map.

By cocycle superrigidity for compact actions « is cohomologous to a homomorphism

p: T = SO (Q).

By Margulis’ normal subgroup theorem for S-arithmetic group either:

1. [T : ker p] < o0, or
2. ker p is finite.

Using ergodic theory and Margulis superrigidity theorem for S-arithmetic groups we
can exclude both.
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THE NON-FREE PART

Theorem (C. ’22+)

Suppose that 3 < m < n and that f: S*~1 — S™~! is a weak Borel reduction from R, to R,.
Then, there is a Borel SO,,(Q)-invariantY C X with 1(Y') = 1 such that f(Y") is contained in
the free part.

Whenever m > 4 the main ingredient is the following lemma.

Lemma

Letn > 5 and let p be a prime number such thatp =1 mod 4. Let X be a standard Borel
SO, ( [7] ) -space with an invariant ergodic probability measure. Suppose that G is an

algebraic Q-group such that dim G' < "( Y and that H < G(Q). Then for every Borel cocycle
a: SO, ( [7}) x X — H, there extsts an equivalent cocycle [ such that
5( SO, ( [f] ) X X) is contained in a finite subgroup of H.




BACK TO THE ORIGINS

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

23/ 23



BACK TO THE ORIGINS

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

Theorem (C. ’22+)

There are continuum many pairwise incomparable equivalence subrelations of R3 Borel
reducibility.

23/ 23



BACK TO THE ORIGINS

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

Theorem (C. ’22+)

There are continuum many pairwise incomparable equivalence subrelations of R3 Borel
reducibility.

For a set of prime S, let R, s = R(SO,(Z[S7!]) ~ S%

23/ 23



BACK TO THE ORIGINS

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

Theorem (C. ’22+)

There are continuum many pairwise incomparable equivalence subrelations of R3 Borel
reducibility.

For a set of prime S, let R, s = R(SO,(Z[S7!]) ~ S%

Let A = {S; : i < ¢} be an almost disjoint family of sets of prime numbers. For distinct
S,T € A, the equivalence relation R3 g is not Borel reducible to R3 . O

23/ 23



BACK TO THE ORIGINS

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

Theorem (C. ’22+)

There are continuum many pairwise incomparable equivalence subrelations of R3 Borel
reducibility.

For a set of prime S, let R, s = R(SO,(Z[S7!]) ~ S%

Let A = {S; : i < ¢} be an almost disjoint family of sets of prime numbers. For distinct
S,T € A, the equivalence relation R3 g is not Borel reducible to R3 . O

This proof avoids the machinery of Zimmer’s superrigidity cocycle theorem.
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