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Background

In the ’80s Zimmer promoted the program of understanding the actions of higher rank
Lie groups and their lattices on compact manifolds (aka Zimmer’s program).

Adams and Kechris (2000) used Zimmer’s cocycle superrigidity theorem to prove the
existence of continuum many pairwise incomparable countable Borel equivalence
relations, a ground breaking result in descriptive set theory.

This work aims at expanding Adams and Kechris’ methods, and investigating those
actions from the viewpoint of descriptive set theory.
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Borel equivalence relation

Descriptive set theory focuses on definable (= Borel) objects

Let X be a standard Borel space.
E.g., 2ω, ωω, [0, 1],Rn,Cn,Tn = (R/Z)n with the usual σ-algebra of Borel sets.

Let E be an equivalence relations on X .

Assume that E is a Borel subset of X ×X .
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Countable Borel equivalence relation

Definition
A Borel equivalence relation E is said to be countable iff so are its equivalence classes.

Example

Suppose that Γ is a countable group and there is a Borel action Γ ↷ X, (g, x) 7→ g · x.

Define the corresponding induced orbit equivalence relation on X by

R(Γ ↷ X) := {(x, y) ∈ X ×X | ∃g ∈ Γ (g · x = y)}.

Theorem (Feldman–Moore 1975)

If E is a countable Borel equivalence relation on a standard Borel space X , then there exists a

countable group Γ and a Borel action of Γ ↷ X such that E = R(Γ ↷ X).
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Borel reducibility

Definition
Let E and F equivalence relations on the standard Borel space X and Y , respectively.

A function f : X → Y is a homomorphism if

x E y =⇒ f(x) E f(y).

A function f : X → Y is a reduction if

x E y ⇐⇒ f(x) E f(y).

We say that E is Borel reducible to F if there is a Borel reduction from E to F (in
symbols, E ≤B F ),

Notation: We write E ∼B F iff E ≤B F and F ≤B E.
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A definable notion of cardinality

Proposition

The following are equivalent:

1. E ≤B F

2. There is an injection from X/E into Y/F admitting Borel lifting.

X Y

X/E Y/F

(1)

If E ∼B F , then we say that the quotient spaces X/E and Y/F have the same Borel
cardinality |X/E|B = |Y/F |B .
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Set theoretic rigidity

Set theoretic rigidity: The Borel cardinality of a given quotient "encodes" information about
the acting group.

E.g., consider GLn(Z) ↷ Tn.

Theorem (Adams-Kechris)

|Tm/GLm(Z)|B = |Tn/GLn(Z)|B ⇐⇒ m = n.

We can use descriptive set theory to investigate the action of countable groups on
manifolds and find new instances of rigidity.
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«There is geometry in the humming of the

strings, there is music in the spacing of the

spheres.»

(Pythagoras)



Spheres

Definition
Let Sn−1 := {x ∈ Rn | ∥x∥ = 1} be the sphere Rn.

x

y

S1 is the unit circle

x

y

z

S2 is the unit sphere
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Rotation equivalence

Recall
SOn(R) = {A ∈ GLn(R) | AAT = ATA = In and det(A) = 1}.

We let SOn(R) act on Sn−1.

We focus on the countable subgroup of rational rotations SOn(Q) and its action
SOn(Q) ↷ Sn−1.

Definition
We call Rn := R(SOn(Q) ↷ Sn−1) the (rational) rotation equivalence in dimension n.
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Hyperfiniteness

Definition
An equivalence relation is hyperfinite iff E can be written as an increasing union of finite
Borel equivalence relations.

Example

For x, y ∈ 2ω , let
x E0 y ⇐⇒ ∃m∀n ≥ m(x(n) = y(n)).

E0 is hyperfinite because E0 =
⋃

m∈N Fm where

x Fm y ⇐⇒ ∀n ≥ m(x(n) = y(n)).
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An upper bound forR2

Fact

There are essentially only two hyperfinite Borel equivalence relations up to Borel

reducibility: =R and E0.

IF E is hyperfinite, then E ≤B E0.

Theorem (Gao-Jackson 2015)

If Γ is abelian, thenR(Γ ↷ X) is hyperfinite.

An obvious consequence is thatR2 ≤B= E0.
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Generic ergodicity

Definition
An equivalence relation E on a Polish space X is said to be generically ergodic if every
E-invariant Baire measurable subset of X is either meager or comeager.

Proposition

If the action Γ ↷ X is continuous, then TFAE:

1. The induced orbit equivalence relationR(Γ ↷ X) is generically ergodic;

2. There is a dense orbit.

Proposition

LetG be a countable group acting on a Polish spaceX continuously. IfR(Γ ↷ X) is generically
ergodic and every orbit is meager (e.g., when X is perfect), thenR(Γ ↷ X) is not smooth.
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The complexity of rotation equivalence

Proposition

R2 is hyperfinite and not smooth. Thus,R2 ∼B E0.

θ
Tθ

x

y

ConsiderM = 1
5

[
4 −3
3 4

]
∈ SOn(Q).

The action ofM on S1 moves every point by
an angle θ = 2πr, for θ irrational.

Each orbit {Tn
θ (x) : n ∈ Z} is dense in S1.
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The structure of CBERs

•

•

•=R

E0 ∼B R2

E∞

Definition
A CBER F is universal if E ≤B F for every
CBER E.

Theorem
(Dougherty–Jackson–Kechris 1994)

The induced equivalence relation E∞ induced

by the shift action F2 ↷ 2F2
is universal.
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A serious obstruction for DST

Proving that some CBER is in between E0 and E∞ is gener(ic)ally hard.

Theorem (Hjorth–Kechris 1996)

Let E be a countable Borel equivalence relation on a Polish space X . Then there is a comeager

invariant Borel set C ⊆ X such that E ↾ C is hyperfinite.

Warning

We borrow tools from ergodic theory, and measure group theory.
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Spherical measure

Fact

There is a unique SOn(Q)-invariant probability measure µn on Sn−1
. We call µn the

spherical measure.

The action SOn(Q) ↷ (Sn−1, µn) is ergodic. I.e., for every SOn(Q)-invariant Borel
subset A ⊆ X ,either µn(A) = 0 or µn(A) = 1.

If Γ ↷ X , the free part of the action is FrΓX := {x ∈ X : ∀g ̸= 1Γ(g · x ̸= x)}.

For SOn(Q) ↷ Sn−1 we have

µn

(
FrSOn(Q) Sn−1

)
= 1.
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Main results

Main Theorem (C. 22+)

For all n ≥ 5 and 2 ≤ m < n, the relation Rn is not Borel reducible toRm.

Corollary

None of theRn’s is universal.

Corollary

For {m,n} ≠ {3, 4},

|Sm−1/SOm(Q)|B = |Sn−1/SOn(Q)|B ⇐⇒ m = n.
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Why n ≥ 5?

Theorem (Margulis 1980)

Let n ≥ 5. If p is prime and p ≡ 1 (mod 4), then SOn(Z[1p ]) is a dense subgroup of SOn(R)
with property (T).

Theorem (Zimmer 1984)

For n = 3, 4, there is no infinite subgroup of SOn(R) with property (T).
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Divide and conquer

Suppose that
f : Sn → Sm

is a Borel reduction fromRn toRm,

then A = f−1(FrSm) is a Borel SOn(Q)-invariant set.It
follows that µn(A) = 1 or µn(A) = 0 by ergodicity.

DefineR∗
m := R(SOn(Q) ↷ FrSOn(Q) Sn−1), the restriction ofRn to the free part.

Theorem (C. ’21+)

For all n ≥ 5 and 2 ≤ m < n, the relationRn is not Borel reducible toR∗
m.

18 23



Divide and conquer

Suppose that
f : Sn → Sm

is a Borel reduction fromRn toRm, then A = f−1(FrSm) is a Borel SOn(Q)-invariant set.

It
follows that µn(A) = 1 or µn(A) = 0 by ergodicity.

DefineR∗
m := R(SOn(Q) ↷ FrSOn(Q) Sn−1), the restriction ofRn to the free part.

Theorem (C. ’21+)

For all n ≥ 5 and 2 ≤ m < n, the relationRn is not Borel reducible toR∗
m.

18 23



Divide and conquer

Suppose that
f : Sn → Sm

is a Borel reduction fromRn toRm, then A = f−1(FrSm) is a Borel SOn(Q)-invariant set.It
follows that µn(A) = 1 or µn(A) = 0 by ergodicity.

DefineR∗
m := R(SOn(Q) ↷ FrSOn(Q) Sn−1), the restriction of Rn to the free part.

Theorem (C. ’21+)

For all n ≥ 5 and 2 ≤ m < n, the relationRn is not Borel reducible toR∗
m.

18 23



Cocycle associated to a Borel homomorphism

Definition
Let Γ ↷ X and ∆ be a group. A Borel function α : Γ×X → ∆ is called a (strict) cocycle if
for all g, h ∈ Γ,

α(hg, x) = α(h, g · x)α(g, x) for all x ∈ X.

Example

Suppose Γ ↷ X and∆ ↷ Y .

Suppose that∆ ↷ Y is free.

Let f : X → Y be a Borel homomorphism fromR(Γ ↷ X) toR(∆ ↷ Y ).

For any g ∈ Γ and x ∈ X , there is a unique α(g, x) ∈ ∆ so that

f(g · x) = α(g, x) · f(x).

α : Γ×X → ∆ is the cocycle associated to f .
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Let Γ ↷ X and ∆ be a group. A Borel function α : Γ×X → ∆ is called a (strict) cocycle if
for all g, h ∈ Γ,

α(hg, x) = α(h, g · x)α(g, x) for all x ∈ X.

Example

Suppose Γ ↷ X and∆ ↷ Y .
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Cocycle superrigidity for translation action

Theorem (Furman 2011; Ioana 2016)

Let Γ ≤ G be a dense subgroup of a connected, compact group G.

Suppose that Γ has property
(T ). Consider the left-translation action Γ ↷ (G,mG), wheremG is the Haar measure of G.

Assume that π1(G), the fundamental group of G, is finite. Let Λ be a countable group and

α : Γ×G → Λ be a cocycle.If every group homomorphism π1(G) → Λ is trivial, then α is

cohomologous to some homomorphism δ : Γ → Λ.

That is, there is a Borel map B : X → Λ such that

δ(g) = B(g · x)α(g, x)B(x)−1 mG − a.e.(x).
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Sketch of the proof of the main theorem

Let n ≥ 5 and 2 ≤ m < n.

Suppose that there is a Borel reduction fromRn toR∗
m. Instead ofRn we focus on

R(SOn(Z[15 ]) ↷ Sn−1).

The associated cocycle lift to a cocycle α : Γ̃× ˜SOn(R) → SOm(Q) where
Γ̃ = p−1(SOn(Z[15 ])) and p is the covering map.

By cocycle superrigidity for compact actions α is cohomologous to a homomorphism

ρ : Γ̃ → SOm(Q).

By Margulis’ normal subgroup theorem for S-arithmetic group either:

1. [Γ̃ : ker ρ] < ∞, or
2. ker ρ is finite.

Using ergodic theory and Margulis superrigidity theorem for S-arithmetic groups we
can exclude both.
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The non-free part

Theorem (C. ’22+)

Suppose that 3 ≤ m < n and that f : Sn−1 → Sm−1
is a weak Borel reduction from Rn to Rm.

Then, there is a Borel SOn(Q)-invariant Y ⊆ X with µ(Y ) = 1 such that f(Y ) is contained in
the free part.

Whenever m ≥ 4 the main ingredient is the following lemma.

Lemma
Let n > 5 and let p be a prime number such that p ≡ 1 mod 4. Let X be a standard Borel

SOn

(
Z
[
1
p

])
-space with an invariant ergodic probability measure. Suppose that G is an

algebraic Q-group such that dimG < n(n−1)
2 and thatH ≤ G(Q). Then for every Borel cocycle

α : SOn

(
Z
[
1
p

])
×X → H , there exists an equivalent cocycle β such that

β
(
SOn

(
Z
[
1
p

])
×X

)
is contained in a finite subgroup of H .
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Back to the origins

Using a very recent superrigidity result by Drimbe and Vaes (2021+) that does not rely on
property (T) we can also use our techniques to prove the following the following:

Theorem (C. ’22+)

There are continuum many pairwise incomparable equivalence subrelations ofR3 Borel

reducibility.

For a set of prime S, letRn,S = R(SOn(Z[S−1]) ↷ S2.

sketch.
Let A = {Si : i < c} be an almost disjoint family of sets of prime numbers. For distinct
S, T ∈ A, the equivalence relationR3,S is not Borel reducible toR3,T .

This proof avoids the machinery of Zimmer’s superrigidity cocycle theorem.
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