On a playfully defined family of models

Ben De Bondt

IMJ-PRG Université de Paris

Arctic set theory workshop February 16 2022

The Cofund MathInParis PhD project has received funding from the European Union's Horizon 2020 research and innovation programme under

INSTITUT de Mathématiques

de Jussieu-Paris Rive Gauche

<□▶ < @▶ < E▶ < E▶ = E - のへぐ

This talk reports on ongoing joint work with my thesis advisor **Boban Veličković**.

Preliminaries

Consider the following situation:

 $\lambda < \theta$ are regular cardinals and $M \prec H_{\theta}$ is countable with $H_{\lambda} \in M$. Then for every $x \in H_{\lambda}$, define

 $\operatorname{Hull}(M, x) = \{f(x) : f \in M \text{ a function with } \operatorname{dom}(f) = H_{\lambda}\}.$

Thus

$$M \cup \{x\} \subseteq \operatorname{Hull}(M, x) \prec H_{\theta}$$

and Hull(M, x) is minimal with this property.

Let NS_{ω_1} be the ideal of nonstationary subsets of ω_1 , let $NS_{\omega_1}^+ = P(\omega_1) \setminus NS_{\omega_1}$, we also refer to the poset $(NS_{\omega_1}^+, \subseteq)$ as $NS_{\omega_1}^+$.

> Institut de Mathématiques de jussieu-París Rive Gauche

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = 三 • • • • ● ●

Let $|P(P(\omega_1))| < \lambda < \theta$ be regular cardinals. We associate to every countable $M \prec H_{\theta}$ with $H_{\lambda} \in M$ a game G_{M}^{sg} .

Let $|P(P(\omega_1))| < \lambda < \theta$ be regular cardinals. We associate to every countable $M \prec H_{\theta}$ with $H_{\lambda} \in M$ a game G_{M}^{sg} .

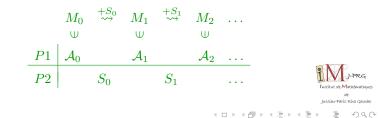
There are two players P1 ("the Challenger") and P2 ("the Constructor"), the game has length ω . As the game G_M^{sg} is played, a sequence $(M_n)_{n<\omega}$ will be constructed, with $M_0 = M$.

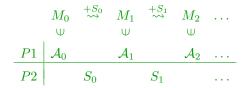
Let $|P(P(\omega_1))| < \lambda < \theta$ be regular cardinals. We associate to every countable $M \prec H_{\theta}$ with $H_{\lambda} \in M$ a game G_{M}^{sg} .

There are two players P1 ("the Challenger") and P2 ("the Constructor"), the game has length ω . As the game G_M^{sg} is played, a sequence $(M_n)_{n<\omega}$ will be constructed, with $M_0 = M$.

In round n of the game,

- P1 plays some maximal antichain $\mathcal{A}_n \subseteq \mathsf{NS}^+_{\omega_1}$ with $\mathcal{A}_n \in M_n$,
- P2 plays some $S_n \in \mathcal{A}_n$ such that $\omega_1 \cap M_n \in S_n$,
- define $M_{n+1} = \operatorname{Hull}(M_n, S_n)$.





Winning condition:

- A player who disobeys the rules loses,
- else P2 wins iff $\forall n \ M_n \cap \omega_1 = M \cap \omega_1$.

Definition

 $M \prec H_{\theta}$ is called **selfgeneric** if for every maximal antichain $\mathcal{A} \subseteq \mathsf{NS}^+_{\omega_1}$, with $\mathcal{A} \in M$, there exists $S \in \mathcal{A} \cap M$ such that $\omega_1 \cap M \in S$.

Definition

 $M \prec H_{\theta}$ is called **selfgeneric** if for every maximal antichain $\mathcal{A} \subseteq \mathsf{NS}^+_{\omega_1}$, with $\mathcal{A} \in M$, there exists $S \in \mathcal{A} \cap M$ such that $\omega_1 \cap M \in S$.

Observation

P2 has a winning strategy for the game G_M^{sg} iff there exists some countable selfgeneric $\widetilde{M} \prec H_{\theta}$ such that $M \subseteq \widetilde{M}$ and $M \cap \omega_1 = \widetilde{M} \cap \omega_1$.

The strong selfgenericity game G_M^{ssg}

We consider a second game, called the strong selfgenericity game G_M^{ssg} . In round n, the player P1 now has two options:

- either P1 makes a move $\mathcal{A}_n \in M_n$ as in the game G_M^{sg} ,
 - the player P2 then has to answer with some S_n just as in the game G_M^{sg} ,
 - define $M_{n+1} = \operatorname{Hull}(M_n, S_n)$.

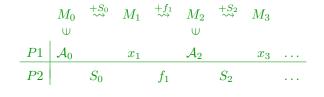
The strong selfgenericity game G_M^{ssg}

We consider a second game, called the strong selfgenericity game G_M^{ssg} . In round n, the player P1 now has two options:

- either P1 makes a move $\mathcal{A}_n \in M_n$ as in the game G_M^{sg} ,
 - the player P2 then has to answer with some S_n just as in the game G^{sg}_M,
 define M_{n+1} = Hull(M_n, S_n).
- or P1 decides to play some $x_n \in H_\lambda$ (x_n not necessarily $\in M_n$),
 - P2 then has to play some function $f_n : \omega_1 \to H_\lambda$ with $f_n(\omega_1 \cap M_n) = x_n$,
 - define $M_{n+1} = \operatorname{Hull}(M_n, f_n)$.

< □ ト < □ ト < 三 ト < 三 ト < 三 · つへ⊙

The strong selfgenericity game G_M^{ssg}



Winning condition:

- A player who disobeys the rules loses,
- else P2 wins iff $\forall n \ M_n \cap \omega_1 = M \cap \omega_1$.

Observation

Both the games G_M^{sg} and G_M^{ssg} are closed for P2, and hence determined.

Definition

Given $M \prec H_{\theta}$ countable with $H_{\lambda} \in M$,

M is called **weakly victorious** iff there exists a winning strategy for P2 in the game G_M^{sg} .

M is called **victorious** iff there exists a winning strategy for P2 in the game G_M^{ssg} .

By the earlier observation, the following are equivalent:

- NS_{ω_1} is precipitous,
- there exist projective stationary many selfgeneric $M \prec H_{\theta}$,
- there exist projective stationary many weakly victorious $M \prec H_{\theta}$.

Question

Is also the existence of (many) **victorious** models $M \prec H_{\theta}$ consistent from large cardinals?

By the earlier observation, the following are equivalent:

- NS_{ω_1} is precipitous,
- there exist projective stationary many selfgeneric $M \prec H_{\theta}$,
- there exist projective stationary many weakly victorious $M \prec H_{\theta}$.

Question

Is also the existence of (many) victorious models $M \prec H_{\theta}$ consistent from large cardinals?

Answer

Yes!

In fact,

Proposition

The following are equivalent:

- NS_{ω_1} is precipitous,
- there exist projective stationary many countable weakly victorious $M \prec H_{\theta}$,
- there exist projective stationary many countable victorious $M \prec H_{\theta}$.

In fact,

Proposition

The following are equivalent:

- NS_{ω_1} is precipitous,
- there exist projective stationary many countable weakly victorious $M \prec H_{\theta}$,
- there exist projective stationary many countable victorious $M \prec H_{\theta}$.

Proof.

If time permits.

Definition

Let \overline{M}_0 be a countable transitive model of the theory

 $\mathsf{ZFC}^- + "P(P(\omega_1))$ exists".

A generic iteration of \overline{M}_0 of length $\omega_1 + 1$ is a sequence

 $\mathbf{It} = (\overline{M}_{\beta}, g_{\alpha}, j_{\alpha\beta} : \alpha < \beta \le \omega_1)$

such that

- for every $\alpha < \omega_1$, $\overline{M}_{\alpha+1}$ is the transitivised generic ultrapower of \overline{M}_{α} w.r.t. the $(\overline{M}_{\alpha}, (NS^+_{\omega_1})^{M_{\alpha}})$ -generic filter g_{α} and $j_{\alpha\alpha+1}$ is the induced ultrapower embedding,
- for every limit ordinal γ ≤ ω₁, (M
 γ, j{αγ} : α < γ) is the transitivised direct limit of the system (M
 _β, g_α, j_{αβ} : α < β < γ).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Definition

Let \overline{M}_0 be a countable transitive model of the theory

 $\mathsf{ZFC}^- + "P(P(\omega_1))$ exists".

A generic iteration of \overline{M}_0 of length $\omega_1 + 1$ is a sequence

 $\mathbf{It} = (\overline{M}_{\beta}, g_{\alpha}, j_{\alpha\beta} : \alpha < \beta \le \omega_1)$

such that

- for every $\alpha < \omega_1$, $\overline{M}_{\alpha+1}$ is the transitivised generic ultrapower of \overline{M}_{α} w.r.t. the $(\overline{M}_{\alpha}, (NS^+_{\omega_1})^{M_{\alpha}})$ -generic filter g_{α} and $j_{\alpha\alpha+1}$ is the induced ultrapower embedding,
- for every limit ordinal γ ≤ ω₁, (M
 γ, j{αγ} : α < γ) is the transitivised direct limit of the system (M
 _β, g_α, j_{αβ} : α < β < γ).

Definition

 \overline{M} is called iterable if $\overline{M} \models "NS_{\omega_1}$ is precipitous" and for every iteration It of \overline{M} of limit length $\delta \leq \omega_1$ the direct limit of It is wellfounded.

Observation

Working in a stationary set preserving forcing extension of V, note that the following two data describe the same kind of object:

- a generic iteration It = (M
 _β, g_α, j_{αβ} : α < β ≤ ω₁) of a countable transitive model M
 ₀ of length ω₁ + 1, with M
 _{ω₁} = H^V_λ,
- a continuous sequence $(M_{\beta})_{\beta \leq \omega_1}$ such that $M_{\omega_1} = H^V_{\lambda}$ and such that for every $\beta < \omega_1, M_{\beta} \prec H^V_{\lambda}$ is countable and selfgeneric and $M_{\beta+1} = \operatorname{Hull}(M_{\beta}, M_{\beta} \cap \omega_1).$

Working under the assumption that NS_{ω_1} is precipitous, we will use the projective stationary set of victorious models to show that under this assumption there exists a stationary set preserving forcing that adds a generic iteration It = $(\overline{M}_{\beta}, g_{\alpha}, j_{\alpha\beta} : \alpha < \beta \leq \omega_1)$ of a countable transitive model \overline{M}_0 , with $\overline{M}_{\omega_1} = H_{\lambda}^V$.

Fix two regular cardinals $|P(P(\omega_1))| < \lambda \ll \mu$.

Definition

A set $B \in H_{\mu}$ is called "a building block" if it is a triple $B = (M, z, \Sigma)$, with:

- $M \prec H_{\mu}$ a victorious model,
- Σ a winning strategy for the second player in G_M^{ssg} ,
- z a finite play of the game G_M^{ssg} in which P2 follows Σ .

Fix two regular cardinals $|P(P(\omega_1))| < \lambda << \mu$.

Definition

A set $B \in H_{\mu}$ is called "a building block" if it is a triple $B = (M, z, \Sigma)$, with:

- $M \prec H_{\mu}$ a victorious model,
- Σ a winning strategy for the second player in G_M^{ssg} ,
- z a finite play of the game G_M^{ssg} in which P2 follows Σ .

Notation

- If z is a finite play of the game G_M^{ssg} , write P2(z) for the set of moves that have been made by P2.
- If B is a building block, then

 $\operatorname{Ext}(B) := \operatorname{Hull}(M, P2(z)) \prec H_{\theta}.$

Define two orders on the set of building blocks. Let B_1 , B_2 be two building blocks, then:

- $B_1 < B_2 \iff B_1 \in \operatorname{Ext}(B_2)$,
- $B_1 \sqsubseteq_{\text{game}} B_2 \iff B_1 = (M, z_1, \Sigma) \text{ and } B_2 = (M, z_2, \Sigma)$ and z_2 extends z_1 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define two orders on the set of building blocks. Let B_1 , B_2 be two building blocks, then:

- $B_1 < B_2 \iff B_1 \in \operatorname{Ext}(B_2),$
- $B_1 \sqsubseteq_{\text{game}} B_2 \iff B_1 = (M, z_1, \Sigma) \text{ and } B_2 = (M, z_2, \Sigma)$ and z_2 extends z_1 .

Definition (The forcing $\mathbb{P}(\lambda, \mu)$)

- p is a $\mathbb{P}(\lambda,\mu)\text{-condition}$ iff
 - p is a finite set of building blocks,
 - for every two building blocks $B_1, B_2 \in p$,

 $B_1 > B_2$ or $B_1 = B_2$ or $B_1 < B_2$.

The order on $\mathbb{P}(\lambda, \mu)$: if $p, q \in \mathbb{P}(\lambda, \mu)$, then

 $q \leq p \iff (\forall B \in p) (\exists B' \in q) B \sqsubseteq_{\text{game}} B'.$

We will conclude by sketching the behaviour of $\mathbb{P}(\lambda,\mu)$ on the flipchart.

Application: increasing δ_2^1

The ordinal δ_2^1 is the supremum of all lengths of Δ_2^1 -prewellorderings of \mathbb{R} . If the universe is closed under sharps for reals, then $\delta_2^1 = u_2$, where u_2 is the minimal ordinal $> \omega_1$ which is x-indiscernible for every real x.

Woodin: if $P(\omega_1)^{\sharp}$ exists and NS_{ω_1} is saturated, then $\delta_2^1 = \omega_2$.

Given λ , does there exist a forcing that forces δ_2^1 to be at least λ ?

Under NS_{ω_1} precipitous together with existence of sharps:

- Ketchersid, R., Larson, P. and Zapletal, J. (2007) *Increasing* δ¹₂ and *Namba-Style Forcing*, The Journal of Symbolic Logic **72**, p. 1372-1378.
- Claverie, B. and Schindler, R. (2009) *Increasing* u_2 by a Stationary Set *Preserving Forcing*, The Journal of Symbolic Logic **74**, p. 187-200.
- the forcing $\mathbb{P}(\lambda, \mu)$.

Thank you!

