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Preliminaries

Consider the following situation:

λ < θ are regular cardinals and M ≺ Hθ is countable with Hλ ∈ M.

Then for every x ∈ Hλ, define

Hull(M,x) = {f(x) : f ∈ M a function with dom(f) = Hλ}.

Thus
M ∪ {x} ⊆ Hull(M,x) ≺ Hθ

and Hull(M,x) is minimal with this property.

Let NSω1 be the ideal of nonstationary subsets of ω1,
let NS+ω1

= P (ω1) \ NSω1 , we also refer to the poset (NS+ω1
,⊆) as NS+ω1

.



The selfgenericity game Gsg
M

Let |P (P (ω1))| < λ < θ be regular cardinals.
We associate to every countable M ≺ Hθ with Hλ ∈ M a game Gsg

M .

There are two players P1 ( “the Challenger”) and P2 (“the Constructor”),
the game has length ω. As the game Gsg

M is played, a sequence (Mn)n<ω

will be constructed, with M0 = M .

In round n of the game,
P1 plays some maximal antichain An ⊆ NS+ω1

with An ∈ Mn,
P2 plays some Sn ∈ An such that ω1 ∩Mn ∈ Sn,
define Mn+1 = Hull(Mn, Sn).

M0
+S0⇝ M1

+S1⇝ M2 . . .

∈ ∈ ∈

P1 A0 A1 A2 . . .

P2 S0 S1 . . .
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The selfgenericity game Gsg
M

M0
+S0⇝ M1

+S1⇝ M2 . . .

∈ ∈ ∈

P1 A0 A1 A2 . . .

P2 S0 S1 . . .

Winning condition:
A player who disobeys the rules loses,
else P2 wins iff ∀n Mn ∩ ω1 = M ∩ ω1.



The selfgenericity game Gsg
M

Definition

M ≺ Hθ is called selfgeneric if for every maximal antichain A ⊆ NS+ω1
,

with A ∈ M , there exists S ∈ A ∩M such that ω1 ∩M ∈ S.

Observation
P2 has a winning strategy for the game Gsg

M iff there exists some countable
selfgeneric M̃ ≺ Hθ such that M ⊆ M̃ and M ∩ ω1 = M̃ ∩ ω1.
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The strong selfgenericity game Gssg
M

We consider a second game, called the strong selfgenericity game Gssg
M . In

round n, the player P1 now has two options:
either P1 makes a move An ∈ Mn as in the game Gsg

M ,

the player P2 then has to answer with some Sn just as in the game Gsg
M ,

define Mn+1 = Hull(Mn, Sn).

or P1 decides to play some xn ∈ Hλ (xn not necessarily ∈ Mn),
P2 then has to play some function fn : ω1 → Hλ with
fn(ω1 ∩Mn) = xn,
define Mn+1 = Hull(Mn, fn).

M0
+S0⇝ M1

+f1⇝ M2
+S2⇝ M3

∈ ∈

P1 A0 x1 A2 x3 . . .

P2 S0 f1 S2 . . .
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Victorious models

Observation
Both the games Gsg

M and Gssg
M are closed for P2, and hence determined.

Definition
Given M ≺ Hθ countable with Hλ ∈ M,

M is called weakly victorious iff there exists a winning strategy for P2 in
the game Gsg

M .

M is called victorious iff there exists a winning strategy for P2 in the
game Gssg

M .



Victorious models

By the earlier observation, the following are equivalent:
NSω1

is precipitous,
there exist projective stationary many selfgeneric M ≺ Hθ,
there exist projective stationary many weakly victorious M ≺ Hθ.

Question
Is also the existence of (many) victorious models M ≺ Hθ consistent from
large cardinals?

Answer
Yes!
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Victorious models

In fact,

Proposition
The following are equivalent:

NSω1 is precipitous,

there exist projective stationary many countable weakly victorious
M ≺ Hθ,

there exist projective stationary many countable victorious M ≺ Hθ.

Proof.
If time permits.
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Application: forcing special generic iterations
Definition

Let M0 be a countable transitive model of the theory

ZFC− + “P (P (ω1)) exists”.

A generic iteration of M0 of length ω1 + 1 is a sequence

It = (Mβ , gα, jαβ : α < β ≤ ω1)

such that
for every α < ω1, Mα+1 is the transitivised generic ultrapower of Mα

w.r.t. the (Mα, (NS
+
ω1
)Mα)-generic filter gα and jαα+1 is the induced

ultrapower embedding,
for every limit ordinal γ ≤ ω1, (Mγ , jαγ : α < γ) is the transitivised
direct limit of the system (Mβ , gα, jαβ : α < β < γ).

Definition

M is called iterable if M ⊨ “NSω1
is precipitous” and for every iteration It

of M of limit length δ ≤ ω1 the direct limit of It is wellfounded.
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Application: forcing special generic iterations

Observation
Working in a stationary set preserving forcing extension of V , note that the
following two data describe the same kind of object:

a generic iteration It = (Mβ , gα, jαβ : α < β ≤ ω1) of a countable
transitive model M0 of length ω1 + 1, with Mω1

= HV
λ ,

a continuous sequence (Mβ)β≤ω1
such that Mω1

= HV
λ and such that

for every β < ω1, Mβ ≺ HV
λ is countable and selfgeneric and

Mβ+1 = Hull(Mβ ,Mβ ∩ ω1).



Application: forcing special generic iterations

Working under the assumption that NSω1 is precipitous, we will use the
projective stationary set of victorious models to show that under this
assumption there exists a stationary set preserving forcing that adds a
generic iteration It = (Mβ , gα, jαβ : α < β ≤ ω1) of a countable transitive
model M0, with Mω1

= HV
λ .



The forcing P(λ, µ)

Fix two regular cardinals |P (P (ω1))| < λ << µ.

Definition
A set B ∈ Hµ is called “a building block” if it is a triple B = (M, z,Σ),
with:

M ≺ Hµ a victorious model,
Σ a winning strategy for the second player in Gssg

M ,

z a finite play of the game Gssg
M in which P2 follows Σ.

Notation
If z is a finite play of the game Gssg

M , write P2(z) for the set of moves
that have been made by P2.
If B is a building block, then

Ext(B) := Hull(M,P2(z)) ≺ Hθ.
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The forcing P(λ, µ)
Define two orders on the set of building blocks.
Let B1, B2 be two building blocks, then:

B1 < B2 ⇐⇒ B1 ∈ Ext(B2),
B1 ⊑game B2 ⇐⇒ B1 = (M, z1,Σ) and B2 = (M, z2,Σ)
and z2 extends z1.

Definition (The forcing P(λ, µ))
p is a P(λ, µ)-condition iff

p is a finite set of building blocks,
for every two building blocks B1, B2 ∈ p,

B1 > B2 or B1 = B2 or B1 < B2.

The order on P(λ, µ): if p, q ∈ P(λ, µ), then

q ≤ p ⇐⇒ (∀B ∈ p)(∃B′ ∈ q)B ⊑game B
′.



The forcing P(λ, µ)
Define two orders on the set of building blocks.
Let B1, B2 be two building blocks, then:

B1 < B2 ⇐⇒ B1 ∈ Ext(B2),
B1 ⊑game B2 ⇐⇒ B1 = (M, z1,Σ) and B2 = (M, z2,Σ)
and z2 extends z1.

Definition (The forcing P(λ, µ))
p is a P(λ, µ)-condition iff

p is a finite set of building blocks,
for every two building blocks B1, B2 ∈ p,

B1 > B2 or B1 = B2 or B1 < B2.

The order on P(λ, µ): if p, q ∈ P(λ, µ), then

q ≤ p ⇐⇒ (∀B ∈ p)(∃B′ ∈ q)B ⊑game B
′.



We will conclude by sketching the behaviour of P(λ, µ) on the flipchart.



Application: increasing δ∼
1
2

The ordinal δ∼
1
2 is the supremum of all lengths of ∆∼

1
2-prewellorderings of R.

If the universe is closed under sharps for reals, then δ∼
1
2 = u2, where u2 is the

minimal ordinal > ω1 which is x-indiscernible for every real x.

Woodin: if P (ω1)
♯ exists and NSω1

is saturated, then δ∼
1
2 = ω2.

Given λ, does there exist a forcing that forces δ∼
1
2 to be at least λ?

Under NSω1 precipitous together with existence of sharps:
Ketchersid, R., Larson, P. and Zapletal, J. (2007) Increasing δ12 and
Namba-Style Forcing, The Journal of Symbolic Logic 72, p. 1372-1378.
Claverie, B. and Schindler, R. (2009) Increasing u2 by a Stationary Set
Preserving Forcing, The Journal of Symbolic Logic 74, p. 187-200.
the forcing P(λ, µ).



Thank you!
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