Measurable Hall's theorem for actions of \mathbb{Z}^d

Marcin Sabok (McGill)

Arctic Set Theory, 2019

Definition

Suppose Γ is a group acting on a space X. Two subsets $A, B \subseteq X$ are Γ -equidecomposable if there are partitions

$$A_1,\ldots,A_n,\quad B_1,\ldots,B_n$$

of both sets

$$A = \bigcup_i A_i \quad B = \bigcup_i B_i$$

such that

$$\gamma_i A_i = B_i$$

for some $\gamma_1, \ldots, \gamma_n \in \Gamma$.

3 1 4 3

Definition

Suppose Γ is a group acting on a space X. Two subsets $A, B \subseteq X$ are Γ -equidecomposable if there are partitions

$$A_1,\ldots,A_n,\quad B_1,\ldots,B_n$$

of both sets

$$A = \bigcup_i A_i \quad B = \bigcup_i B_i$$

such that

$$\gamma_i A_i = B_i$$

for some $\gamma_1, \ldots, \gamma_n \in \Gamma$.

Banach-Tarski paradox

The Banach–Tarski paradox says that the unit ball and two copies of the unit ball in \mathbb{R}^3 are $\mathrm{Iso}(\mathbb{R}^3)$ -equidecomposable.

Fact (Banach)

For Γ amenable group, preserving a probability measure μ on X and two measurable sets A,B if A and B are equidecomposable, then $\mu(A)=\mu(B)$

Fact (Banach)

For Γ amenable group, preserving a probability measure μ on X and two measurable sets A,B if A and B are equidecomposable, then $\mu(A)=\mu(B)$

Question (Tarski, 1925)

Are the unit square and the unit disc equidecomposable using isometries on $\mathbb{R}^2?$

Theorem (Laczkovich)

If $A,B\subseteq \mathbb{R}^n$ are bounded, measurable such that $\mu(A)=\mu(B)>0$ and

 $\dim_{\mathrm{box}}(\partial A) < n, \quad \dim_{\mathrm{box}}(\partial B) < n,$

then A and B are equidecomposable by translations.

伺 と く ヨ と く ヨ と

3

Theorem (Laczkovich)

If $A,B\subseteq \mathbb{R}^n$ are bounded, measurable such that $\mu(A)=\mu(B)>0$ and

 $\dim_{\mathrm{box}}(\partial A) < n, \quad \dim_{\mathrm{box}}(\partial B) < n,$

then A and B are equidecomposable by translations.

Here the (upper) box dimension

$$\dim_{\mathrm{box}}(S) = \limsup_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{\log(1/\varepsilon)}.$$

where $N(\varepsilon)$ is the number of cubes of side length ε needed to cover S.

Remark 1

Even though the assumption on the boundary looks technical, some assumption besides the equality of measure is necessary (as shown also by Laczkovich)

Remark 1

Even though the assumption on the boundary looks technical, some assumption besides the equality of measure is necessary (as shown also by Laczkovich)

Remark 2

Laczkovich's proof did not provide measurable pieces in the decomposition.

Theorem (Grabowski, Máthé, Pikhurko, 2017)

If $A,B\subseteq \mathbb{R}^n$ are bounded, measurable such that $\mu(A)=\mu(B)>0$ and

 $\dim_{\mathrm{box}}(\partial A) < n, \quad \dim_{\mathrm{box}}(\partial B) < n,$

then A and B are equidecomposable by translations using measurable pieces.

3

Theorem (Grabowski, Máthé, Pikhurko, 2017)

If $A,B\subseteq \mathbb{R}^n$ are bounded, measurable such that $\mu(A)=\mu(B)>0$ and

 $\dim_{\mathrm{box}}(\partial A) < n, \quad \dim_{\mathrm{box}}(\partial B) < n,$

then A and B are equidecomposable by translations using measurable pieces.

Theorem (ZF) (Marks, Unger, 2017)

If $A,B\subseteq \mathbb{R}^n$ are bounded, Borel such that $\mu(A)=\mu(B)>0$ and

 $\dim_{\mathrm{box}}(\partial A) < n, \quad \dim_{\mathrm{box}}(\partial B) < n,$

then A and B are equidecomposable by translations using Borel pieces.

Action

Laczkovich constructs an action of \mathbb{Z}^d on the torus \mathbb{T}^n for large d, choosing $u_1, \ldots, u_d \in \mathbb{T}^n$ by

$$(k_1,\ldots,k_d)\cdot x = x + k_1u_1 + \ldots k_du_d$$

∃ ▶ ∢

э

Action

Laczkovich constructs an action of \mathbb{Z}^d on the torus \mathbb{T}^n for large d, choosing $u_1, \ldots, u_d \in \mathbb{T}^n$ by

$$(k_1,\ldots,k_d)\cdot x = x + k_1u_1 + \ldots k_du_d$$

Cubes

For such a free action u, the orbits look like copies of the \mathbb{Z}^d and we look at finite fragments of the orbits of the form

 $F_N^u(x) = [0, N]^d \cdot x$

Definition (discrepancy)

Given an action $\Gamma \curvearrowright (X, \mu)$, a subset $A \subseteq X$ and a finite subset F of an orbit, the **discrepancy** is defined as

$$D(F, A) = \left| \frac{|F \cap A|}{|F|} - \mu(A) \right|$$

3 🕨 🖌 3

Definition (discrepancy)

Given an action $\Gamma \curvearrowright (X, \mu)$, a subset $A \subseteq X$ and a finite subset F of an orbit, the **discrepancy** is defined as

$$D(F, A) = \left| \frac{|F \cap A|}{|F|} - \mu(A) \right|$$

Discrepancy measures how well a subset \boldsymbol{A} is equidistributed on the orbits.

Theorem (Laczkovich)

Let $A\subseteq \mathbb{T}^n$ be measurable such that

$$\mu(A) > 0$$
, $\dim_{\text{box}}(\partial A) < n$

and let

$$d > \frac{2n}{n - \dim_{\mathrm{box}}(\partial A)}.$$

For almost all $u\in (\mathbb{T}^n)^d$ there exists $\varepsilon>0$ and M>0 such that for all x and all N we have

$$D(F_N^u(x), A) \le \frac{M}{N^{1+\varepsilon}}.$$

The $\varepsilon>0$ is crucial in both proofs of Grabowski–Máthé–Pikhurko and Marks–Unger.

- 🔹 🖻

э

The $\varepsilon>0$ is crucial in both proofs of Grabowski–Máthé–Pikhurko and Marks–Unger.

Note

Some discrepancy estimates are natural as the size of the boundary of $[0,N]^d$ relative to its size is of the form

$$\frac{2d}{N}.$$

Definition (equidistrubution)

A set $A \subseteq X$ is **equidistributed** with respect to an action $\mathbb{Z}^d \curvearrowright X$ if there exists M > 0 such that for μ -a.e. $x \in X$, for all N we have

$$D(F_N(x), A) \le \frac{M}{N}$$

Note that if $\Gamma \curvearrowright X$ is a finitely generated group action, and A,B are equidecomposable, then they must satisfy a version of the Hall marriage theorem

Note that if $\Gamma \curvearrowright X$ is a finitely generated group action, and A, B are equidecomposable, then they must satisfy a version of the Hall marriage theorem

Definition (Hall condition)

Suppose $\Gamma \curvearrowright X$ is a finitely generated group action and $A, B \subseteq X$. The pair A, B satisfies the **Hall condition** if for every (μ -a.e.) $x \in X$ and every finite subset F of the orbit of x we have

 $|A \cap F| \le |B \cap \operatorname{ball}(F)|$

Note that if $\Gamma \curvearrowright X$ is a finitely generated group action, and A,B are equidecomposable, then they must satisfy a version of the Hall marriage theorem

Definition (Hall condition)

Suppose $\Gamma \curvearrowright X$ is a finitely generated group action and $A, B \subseteq X$. The pair A, B satisfies the **Hall condition** if for every (μ -a.e.) $x \in X$ and every finite subset F of the orbit of x we have

$|A \cap F| \le |B \cap \operatorname{ball}(F)|$

Here, $\operatorname{ball}(F)$ means the ball in the Cayley graph metric on the orbit. In general, this definition depends on the set of generators and we say that A, B satisfy the Hall condition is the above is **true for some set of generators**.

Fact

If A,B are equidecomposable, then A,B satisfy the Hall condition

э

Image: Image:

Fact

If A,B are equidecomposable, then A,B satisfy the Hall condition

Proof

Suppose $\gamma_1, \ldots, \gamma_n$ are used in the decomposition. Add them as generators and then the equidecomposition is a perfect matching in the Cayley graph.

Question (Miller, 1996)

Is there a Borel version of the Hall marriage theorem?

э

Question (Miller, 1996)

Is there a Borel version of the Hall marriage theorem?

As stated, the question has a negative answer, provided by the Banach-Tarski paradox.

∃ → < ∃</p>

Question (Miller, 1996)

Is there a Borel version of the Hall marriage theorem?

As stated, the question has a negative answer, provided by the Banach-Tarski paradox.

If a measurable version of the Hall marriage theorem were true, then any two equidecomposable sets would be equidecomposable with measurable pieces...

Theorem (Marks–Unger)

Let G be a locally finite bipartite Borel graph with Borel bipartition B_0, B_1 . Suppose that for some $\varepsilon > 0$ we have that for every finite set F contained in B_0 or B_1 we have

 $|F| \le (1+\varepsilon)|\operatorname{ball}(F)|.$

Then there exists a Baire measurable perfect matching in G.

Theorem (Marks–Unger)

Let G be a locally finite bipartite Borel graph with Borel bipartition B_0, B_1 . Suppose that for some $\varepsilon > 0$ we have that for every finite set F contained in B_0 or B_1 we have

 $|F| \le (1+\varepsilon)|\operatorname{ball}(F)|.$

Then there exists a Baire measurable perfect matching in G.

Note that ε appears both in the above result and in the circle squaring results...

Theorem (S.–Cieśla)

Suppose Γ is an infinite f.g. abelian group and $\Gamma \curvearrowright (X, \mu)$ is a free pmp action. Suppose $A, B \subseteq X$ are measurable, equidistributed and $\mu(A) = \mu(B) > 0$. TFAE

- A, B satisfy the Hall condition μ -a.e.
- A, B are Γ -equidecomposable μ -a.e.
- A, B are Γ -equidecomposable μ -a.e. using μ -measurable pieces.

同 ト イ ヨ ト イ ヨ ト

Theorem (S.–Cieśla)

Suppose Γ is an infinite f.g. abelian group and $\Gamma \curvearrowright (X, \mu)$ is a free pmp action. Suppose $A, B \subseteq X$ are measurable, equidistributed and $\mu(A) = \mu(B) > 0$. TFAE

- A, B satisfy the Hall condition μ -a.e.
- A, B are Γ -equidecomposable μ -a.e.
- A, B are Γ -equidecomposable μ -a.e. using μ -measurable pieces.

To our knowledge, this provides the first positive answer to Miller's question.

伺 ト イ ヨ ト イ ヨ ト

Corollary

Suppose Γ is an infinite f.g. abelian group and $\Gamma \curvearrowright (X, \mu)$ is a free pmp action. Suppose $A, B \subseteq X$ are measurable, equidistributed and $\mu(A) = \mu(B) > 0$.

3 N 4 3 N

Corollary

Suppose Γ is an infinite f.g. abelian group and $\Gamma \curvearrowright (X, \mu)$ is a free pmp action. Suppose $A, B \subseteq X$ are measurable, equidistributed and $\mu(A) = \mu(B) > 0$.

If A,B are equidecomposable, then A,B are equidecomposable using $\mu\text{-}{\rm measurable}$ pieces.

This generalizes the measurable circle squaring by Grabowski, Máthé and Pikhurko

∃ → < ∃</p>

э

This generalizes the measurable circle squaring by Grabowski, Máthé and Pikhurko

The proof of corollary uses the following lemma.

Lemma (Grabowski, Máthe, Pikhurko)

If A,B are equidecomposable and $\mu\text{-a.e.}$ equidecomposable using measurable pieces, then A,B are equidecomposable using measurable pieces.

Lemma (Grabowski, Máthe, Pikhurko)

If A,B are equidecomposable and $\mu\text{-a.e.}$ equidecomposable using measurable pieces, then A,B are equidecomposable using measurable pieces.

Proof

Suppose

$$A_1,\ldots,A_n,\quad B_1,\ldots,B_n,$$

with $\gamma_i A_i = B_i$ witness that A, B are equidecomposable and

$$A_1^*, \dots, A_m^*, \quad B_1^*, \dots, B_m^*$$

are measurable with $\delta_j A_j^* = B_j^*$ witness that A, B are μ -a.e. equidecomposable. That means that $A \setminus \bigcup_i A_i^*$ and $B \setminus \bigcup_i B_I^*$ have measure zero.

< ロ > < 同 > < 回 > < 回 >

Proof

Let N be a measure zero set containing both the $A\setminus \bigcup_i A_i^*$ and $B\setminus \bigcup_i B_I^*$ and $\Gamma\text{-invariant}.$ Then note that

$$\gamma_i(A_i \cap N) = B_i \cap N$$

and

$$\delta_j(A_i^* \setminus N) = B_i^* \setminus N$$

SO

$$A_1 \cap N, \dots, A_n \cap N, \quad A_1^* \setminus N, \dots A_m^* \setminus N$$

and

$$B_1 \cap N, \ldots, B_n \cap N, \quad B_1^* \setminus N, \ldots B_m^* \setminus N$$

witness equidecomposition using measurable sets.

同 ト イ ヨ ト イ ヨ ト

The main trick

The main trick in the proof of Hall's theorem is the use of **Mokobodzki's medial means**, which exist under the assumption of CH.

∃ → < ∃</p>

The main trick

The main trick in the proof of Hall's theorem is the use of **Mokobodzki's medial means**, which exist under the assumption of CH.

However, the use of CH is not necessary as follows from the following absoluteness lemma

Lemma

Let $V \subseteq W$ be two models of ZFC. Suppose in V we have a standard Borel space X with a Borel probability measure μ , two Borel subsets $A, B \subseteq X$ and $\Gamma \curvearrowright (X, \mu)$ is a Borel pmp action of a countable group Γ .

Lemma

Let $V \subseteq W$ be two models of ZFC. Suppose in V we have a standard Borel space X with a Borel probability measure μ , two Borel subsets $A, B \subseteq X$ and $\Gamma \curvearrowright (X, \mu)$ is a Borel pmp action of a countable group Γ .

The statement that the sets A and B are Γ -equidecomposable μ -a.e. using μ -measurables pieces is absolute between V and W.

Proof

This statement an be written as

$$\exists x_1, \dots, x_n \bigwedge_{i \le n} \mathsf{BorelCode}(x_i)) \land \bigwedge_{i \ne j} x_i^{\#} \cap x_j^{\#} = \emptyset$$

$$\land \forall^{\mu} x \ (x \in A \leftrightarrow \bigvee_{i=1}^n x \in x_i^{\#}) \land \ \forall^{\mu} x \ (x \in B \leftrightarrow \bigvee_{i=1}^n x \in \gamma_i x_i^{\#})$$

and thus is it $\mathbf{\Sigma}_2^1$

- 4 回 > - 4 回 > - 4 回 >

æ

Definition

A medial mean is a linear functional $m:\ell_\infty\to\mathbb{R}$ which is

- positive, i.e. $\mathbf{m}(f) \geq 0$ if $f \geq 0$,
- normalized, i.e. $m(1_N) = 1$
- and shift invariant, i.e. m(Sf) = m(f) where Sf(n+1) = f(n).

伺 ト く ヨ ト く ヨ ト

3

Definition

A medial mean is a linear functional $m:\ell_\infty\to\mathbb{R}$ which is

- positive, i.e. $m(f) \ge 0$ if $f \ge 0$,
- normalized, i.e. $m(1_N) = 1$
- and shift invariant, i.e. m(Sf) = m(f) where Sf(n+1) = f(n).

Theorem (Mokobodzki)

Under CH, there exists a median mean which is universally measurable on $[0,1]^{\mathbb{N}}.$

同 ト イ ヨ ト イ ヨ ト

э

Thank you.

< E > < E >

< 17 ▶

æ