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This talk is based on a joint work with Maxwell Levine.
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Conventions

◮ κ denotes a regular uncountable cardinal;

◮ λ denotes an infinite cardinal;

◮ Reg(κ) := {λ < κ | ℵ0 ≤ cf(λ) = λ};
◮ Eκ

λ := {α < κ | cf(α) = λ};
◮ Eκ

∕=λ, E
κ
≥λ and Eκ

>λ are defined analogously;

◮ acc+(A) := {α < sup(A) | sup(A ∩ α) = α > 0}.
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Partitioning a stationary set

Theorem (Solovay, 1971)

For every stationary S ⊆ κ, there exists a partition 〈Si | i < κ〉 of
S into stationary sets.

Solovay’s theorem has countless applications in Set Theory.
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Partitioning a stationary set

Theorem (Solovay, 1971)

For every stationary S ⊆ κ, there exists a partition 〈Si | i < κ〉 of
S into stationary sets.

Solovay’s theorem has countless applications in Set Theory.
For instance, it plays a role in the proof of strong negative partition
relations of the form κ 󰃼 [κ]2κ, and variations of it are missing for
the sought proof that successors of a singular cardinals cannot be
Jónsson.
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Partitioning a stationary set

Theorem (Solovay, 1971)

For every stationary S ⊆ κ, there exists a partition 〈Si | i < κ〉 of
S into stationary sets.

Solovay’s theorem has countless applications in Set Theory.

You
What is your favorite application?
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Variations of Solovay’s theorem

Variation I (Brodsky-Rinot, 2019)

For every θ ≤ κ and a sequence 〈Si | i < θ〉 of stationary subsets
of κ, there exists a cofinal I ⊆ θ and pairwise disjoint stationary
sets 〈Ti | i ∈ I 〉 such that Ti ⊆ Si for all i ∈ I .
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Variations of Solovay’s theorem

Definition
For S ⊆ κ, let Tr(S) := {β ∈ Eκ

>ω | S ∩ β is stationary in β}.

Variation II (Magidor?, 1970’s)

If □λ holds, then for every stationary S ⊆ λ+, there is a partition
〈Si | i < λ+〉 of S into stationary sets such that, for all i < λ+,
Si does not reflect (i.e., Tr(Si ) = ∅).
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Theorem (Shelah, 1991)

If κ > ℵ2, and Eκ
≥ℵ2

admits a nonreflecting stationary set,
then there exists a κ-cc poset whose square is not κ-cc.

5 / 1



Variations of Solovay’s theorem

Variation III (Brodsky-Rinot, 2019)

If □(κ) holds, then for every fat F ⊆ κ, there is a partition
〈Fi | i < κ〉 of F into fat sets such that, for all i < j < κ,
Tr(Fi ) ∩ Tr(Fj) = ∅.
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〈Si | i < λ+〉 of S into stationary sets such that, for all i < λ+,
Si does not reflect (i.e., Tr(Si ) = ∅).

↬ Nonreflecting stationary sets are very useful. To exemplify:
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≥ℵ2

admits a nonreflecting stationary set,
then there exists a κ-cc poset whose square is not κ-cc.

5 / 1



Variations of Solovay’s theorem

Variation III (Brodsky-Rinot, 2019)

If □(κ) holds, then for every fat F ⊆ κ, there is a partition
〈Fi | i < κ〉 of F into fat sets such that, for all i < j < κ,
Tr(Fi ) ∩ Tr(Fj) = ∅.
↬ Partitions as above are sometime enough:

Theorem (Rinot, 2014)

If κ ≥ ℵ2, and □(κ) holds,
then there exists a κ-cc poset whose square is not κ-cc.

↬ Nonreflecting stationary sets are very useful. To exemplify:

Theorem (Shelah, 1991)

If κ > ℵ2, and Eκ
≥ℵ2

admits a nonreflecting stationary set,
then there exists a κ-cc poset whose square is not κ-cc.
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Is there another way?

As said, partitioning κ into stationary sets that pairwise do not
simultaneously reflect is very useful, but is also somewhat wired
into the standard procedure of the partition.

Questions

◮ Is it possible to partition κ into two reflecting stationary sets?

◮ Is it possible to partition κ into κ reflecting stationary sets?

◮ Is it possible to partition κ into 〈Si | i < κ〉 such that, for all
i < j < κ, Tr(Si ) ∩ Tr(Sj) be stationary?

◮ Is it possible to partition κ into 〈Si | i < κ〉 such that󰁗
i<κ Tr(Si ) be stationary?
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Π(S , θ) asserts the existence of a partition 〈Si | i < θ〉 of S
such that
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i<θ Tr(Si ) is stationary.
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Is there another way?

As said, partitioning κ into stationary sets that pairwise do not
simultaneously reflect is very useful, but is also somewhat wired
into the standard procedure of the partition.

Questions

◮ Is it possible to partition κ into two reflecting stationary sets?

◮ Is it possible to partition κ into κ reflecting stationary sets?

◮ Is it possible to partition κ into 〈Si | i < κ〉 such that, for all
i < j < κ, Tr(Si ) ∩ Tr(Sj) be stationary?

◮ Is it possible to partition κ into 〈Si | i < κ〉 such that󰁗
i<κ Tr(Si ) be stationary?

Definition
Π(S , θ,T ) asserts the existence of a partition 〈Si | i < θ〉 of S
such that

󰁗
i<θ Tr(Si ) ∩ T is stationary.
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Singular cardinals combinatorics
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Scales

Definition
Suppose that λ is a singular cardinal, and 󰂓λ = 〈λi | i < cf(λ)〉 is a
strictly increasing sequence of regular cardinals, converging to λ.
For any two functions f , g ∈

󰁔󰂓λ and i < cf(λ), we write f <i g
to express that f (j) < g(j) whenever i ≤ j < cf(λ).
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󰁔󰂓λ.
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and a cofinal A ⊆ α such that, for all δ < γ from A, fδ <
i fγ .

We let G (󰂓f ) denote the set of good points with respect to 󰂓f .

The set of good points is stationary (Shelah, 1990’s)

For every regular θ with cf(λ) < θ < λ, G (󰂓f ) ∩ Eλ+

θ is stationary.

The set of good points is robust

If 󰂓f , 󰂓g are scales in
󰁔󰂓λ, then G (󰂓f )△ G (󰂓g) is nonstationary.
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Scales

Theorem (Shelah, 1990’s)

Every singular cardinal λ admits a scale.

Suppose 󰂓f is a scale in
󰁔󰂓λ.

An ordinal α ∈ Eλ+

>cf(λ) is said to be very good if there exist i < cf(λ)

and a cofinal club A ⊆ α such that, for all δ < γ from A, fδ <
i fγ .

We let V (󰂓f ) denote the set of very good points with respect to 󰂓f .

Recall
If 󰂓f , 󰂓g are scales in

󰁔󰂓λ, then G (󰂓f )△ G (󰂓g) is nonstationary.

Theorem (Cummings-Foreman, 2010)

If V = L, then there are scales 󰂓f , 󰂓g in
󰁔

n<ω ℵn for which

V (󰂓f ) = E
ℵω+1
>ω and V (󰂓g) = ∅.
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Very good points are not robust

The following is implicit in the proof of the above-mentioned
theorem of Cummings-Foreman concerning V = L:

Proposition

Suppose λ is singular, T ⊆ λ+ is stationary and Π(λ+, cf(λ),T ).
Suppose 󰂓f is a scale for λ, living in some product

󰁔
i<cf(λ) λi .

Then T \ V (󰂓g) is stationary for some scale 󰂓g in
󰁔

i<cf(λ) λi .

Proof.
Fix a partition 〈Si | i < cf(λ)〉 of λ+, with
T ′ := T ∩

󰁗
i<cf(λ) Tr(Si ) stationary. Define 〈gβ | β < λ+〉 by

letting gβ(i) := 0 for β ∈ Si , and gβ(i) := fβ(i), otherwise.
Let α ∈ T ′ be arbitrary. To see that α /∈ V (󰂓g), fix an arbitrary
club C ⊆ α and an index i < cf(λ).
Let δ := min(C ∩ Si ) and γ := min(C ∩ Si \ (δ + 1)).
Then δ < γ is a pair of elements of C , while gδ(i) = 0 = gγ(i).
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Very good scales

Definition
A scale 󰂓f for a singular cardinal λ is said to be very good iff club

many α ∈ Eλ+

>cf(λ) are very good for 󰂓f .

Conclusion
Suppose λ is a singular cardinal and Π(λ+, cf(λ),Eλ+

>cf(λ)) holds.

Then any product
󰁔

i<cf(λ) λi admitting a scale for λ, admits yet
another scale which is not very good.

Note
There are numerous ways to consistently get instances of
Π(S , θ,T ). For instance, in a model of Magidor (1982),
Π(S ,ℵ1,E

ℵ2
ℵ1
) holds for every stationary S ⊆ Eℵ2

ℵ0
.

The main point here is to prove instances of Π(S , θ,T ) in ZFC.
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ZFC results
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Main result

Theorem
Suppose that µ < θ are infinite regular cardinals < λ.

1. If λ is inaccessible, then Π(λ, θ,λ) and Π(λ+,λ,λ+) hold;

2. If λ is regular, then Π(Eλ+

µ , θ,Eλ+

θ ) holds;

3. If 2θ ≤ λ and θ ∕= cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ ) holds;

4. If λ is singular and θ++ ∕= cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ++) holds;

5. If λ is singular and θ++ = cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ+3) holds.

This is trivial
Simply take 〈Eλ

µ | µ ∈ Reg(ℵθ+1)〉 and 〈Eλ+

µ | µ ∈ Reg(λ)〉.
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θ ) holds;

3. If 2θ ≤ λ and θ ∕= cf(λ), then Π(Eλ+
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θ ) holds;

4. If λ is singular and θ++ ∕= cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ++) holds;

5. If λ is singular and θ++ = cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ+3) holds.

This is optimal

If Π(S , θ,T ) holds, then {α ∈ T | cf(α) ≥ θ} must be stationary.
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This follows from Clause (4).
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Main result

Theorem
Suppose that µ < θ are infinite regular cardinals < λ.

1. If λ is inaccessible, then Π(λ, θ,λ) and Π(λ+,λ,λ+) hold;

2. If λ is regular, then Π(Eλ+

µ , θ,Eλ+

θ ) holds;

3. If 2θ ≤ λ and θ ∕= cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ ) holds;

4. If λ is singular and θ++ ∕= cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ++) holds;

5. If λ is singular and θ++ = cf(λ), then Π(Eλ+

µ , θ,Eλ+

θ+3) holds.

Remark
Our proof at the level of successors of singulars is indeed different
from the standard proofs for partitioning a stationary set. We build
on the fact that any singular cardinal admits a scale and that the
set of good points of a scale is stationary relative to any cofinality;
we also use a combination of Ulam matrices with club-guessing to
avoid any cardinal arithmetic hypotheses (Clauses (4) and (5)).
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A special case with a simplified proof

Theorem
Let λ be a singular cardinal. Let µ < θ be regular cardinals with
cf(λ) < µ < θ < λ. Then Π(Eλ+

µ , θ,Eλ+

θ++) holds.

Proof. Fix a scale 󰂓f for λ in some product
󰁔

i<cf(λ) λi .

By Shelah’s theorem, T0 := Eλ+

θ++ ∩ G (󰂓f ) is stationary.

Claim 1
There exist i < cf(λ), ζ ∈ Eλ

θ++ , a stationary T1 ⊆ T0, and a
sequence 〈S1

α | α ∈ T1〉 such that, for all α ∈ T1:

◮ S1
α is a stationary subset of Eα

µ ;

◮ 〈fβ(i) | β ∈ S1
α〉 is strictly increasing and converging to ζ.

Proof. By Fodor’s lemma, it suffices to prove that for each α ∈ T0,
there is i < cf(λ) and a stationary S ⊆ Eα

µ on which β 󰀁→ fβ(i) is
strictly increasing.
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A special case with a simplified proof

Theorem
Let λ be a singular cardinal. Let µ < θ be regular cardinals with
cf(λ) < µ < θ < λ. Then Π(Eλ+

µ , θ,Eλ+

θ++) holds.

Proof. Fix a scale 󰂓f for λ in some product
󰁔

i<cf(λ) λi .
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there is i < cf(λ) and a stationary S ⊆ Eα

µ on which β 󰀁→ fβ(i) is
strictly increasing.
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Proof of Claim 1

Let α ∈ T0 be arbitrary. We shall find i < cf(λ) and a stationary
S ⊆ Eα

µ on which β 󰀁→ fβ(i) is strictly increasing.

For each γ ≤ β < α, pick iγ,β < cf(λ) such that fγ <iγ,β fβ .
As α ∈ T0 is a good point, let us also fix i ′ < cf(λ) and a cofinal
A ⊆ α such that, for all δ < γ from A, fδ <

i ′ fγ .
Consider S ′ := acc+(A) ∩ Eα

µ , which is a stationary subset of Eα
µ .

As µ > cf(λ), for each β ∈ S ′, we may pick a cofinal aβ ⊆ A ∩ β
and iβ < cf(λ) such that, for all γ ∈ aβ , iγ,β = iβ .
As θ++ > cf(λ), we may pick a stationary S ⊆ S ′ and i < cf(λ)
such that, for all β ∈ S , max{iβ , i ′, iβ,min(A\β)} = i .
To see that i and S are as sought, let 󰂃 < β be arbitrary elements
of S . Consider δ := min(A \ 󰂃) and γ := min(aβ \ δ).
Clearly, 󰂃 ≤ δ ≤ γ < β and f󰂃 <

i󰂃,min(A\󰂃) fδ <
i ′ fγ <iβ fβ .

In particular, f󰂃 <
i fβ , so that f󰂃(i) < fβ(i), as sought. □

Fix i , ζ, and 〈S1
α | α ∈ T1〉 as in Claim 1.
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Step 2: Find a function g

Claim 2
There are g : Eλ+

µ → θ++ and a sequence 〈S2
α | α ∈ T1〉 such that,

for all α ∈ T1:

◮ S2
α is a stationary subset of S1

α (hence, of Eα
µ );

◮ 〈g(β) | β ∈ S2
α〉 is strictly increasing (hence, cofinal in θ++).

Proof. Fix a club z in ζ with otp(z) = θ++. Define
g : Eλ+

µ → θ++ by letting g(β) := otp(fβ(i) ∩ z) if fβ(i) < ζ and
g(β) := 0, o.w. To see that g is as sought, let α ∈ T1 be arbitrary.
Let π : θ++ → α be the inverse collapse of some club in α. Clearly,
S̄ := {β̄ < θ++ | π(β̄) ∈ S1

α & (g ◦ π)“β̄ ⊆ β̄} is stationary.
Let B̄ := {β̄ ∈ S̄ | (g ◦ π)(β̄) < β̄}. For all 󰂃 < β̄ from S̄ \ B̄ , we
have g(π(󰂃)) < β̄ ≤ g(π(β̄)). Thus, it suffices to show that
S2
α := π[S̄ \ B̄] (which is a subset of S1

α) is stationary.
Suppose not. In particular, B̄ is stationary. But then, Fodor’s
lemma entails a stationary B̂ ⊆ B̄ on which g ◦ π is constant,
contradicting the fact that 〈fπ(β̄)(i) | β̄ ∈ B̂〉 converges to ζ. □
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Step 3: An Ulam Matrix

Let g : Eλ+

µ → θ++ and 〈S2
α | α ∈ T1〉 be given by Claim 2.

Now, fix an Ulam matrix 〈Aξ,η | ξ < θ++, η < θ+〉 over θ++, i.e.,

◮ for all ξ < θ++, |θ++ \
󰁖

η<θ+ Aξ,η| ≤ θ+;

◮ for all η < θ+ and ξ < ξ′ < θ++, Aξ,η ∩ Aξ′,η = ∅.

Claim 3
For every α ∈ T1, there are η < θ+ and x ∈ [θ++]θ

++
such that,

for all ξ ∈ x, g−1[Aξ,η] ∩ α is stationary in α.

Proof. Suppose not. Then, for all η < θ+, the set
xη := {ξ < θ++ | g−1[Aξ,η] ∩ α is stationary in α} has size ≤ θ+.
So X :=

󰁖
η<θ+ xη has size ≤ θ+, and we may fix ξ ∈ θ++ \ X .

It follows that for all η < θ+, g−1[Aξ,η] ∩ α is nonstationary in α.
Consequently, g−1[

󰁖
η<θ+ Aξ,η] ∩ α is nonstationary in α.

However,
󰁖

η<θ+ Aξ,η contains a tail of θ++, contradicting the fact

that 〈g(β) | β ∈ S2
α〉 is strictly increasing and cofinal in θ++. □
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Step 4: Club-guessing

By Shelah’s club-guessing theorem, we now fix a sequence
〈Cι | ι ∈ E θ++

θ 〉 such that, for every club C ⊆ θ++, there exists

ι ∈ E θ++

θ such that Cι ⊆ C ∩ ι and otp(Cι) = θ.

By Claim 3, for every α ∈ T1, let us fix ηα < θ+ and xα ∈ [θ++]θ
++

such that, for all ξ ∈ xα, g
−1[Aξ,ηα ] ∩ α is stationary in α.

Then, fix ια ∈ E θ++

θ such that Cια ⊆ acc+(xα) ∩ ια and
otp(Cια) = θ.
By Fodor’s lemma, fix a stationary T2 ⊆ T1, η < θ+ and ι ∈ E θ++

θ

such that, for all α ∈ T2, ηα = η and ια = ι.
As the elements of 〈Aξ,η | ξ < θ++〉 are pairwise disjoint, we may

fix a function h : Eλ+

µ → θ such that, for all β < λ+:

(g(β) ∈ Aξ,η & ξ < ι) =⇒ h(δ) = sup(otp(Cι ∩ ξ)).
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Step 5: Verification

For each i < θ, let Si := h−1{i}.
We claim that 〈Si | i < θ〉 witnesses Π(Eλ+

µ , θ,Eλ+

θ++). Furthermore:

Claim 4󰁗
i<θ Tr(Si ) ∩ Eλ+

θ++ covers the stationary set T2.

Proof. Fix arbitrary α ∈ T2 and i < θ. We shall find a stationary
subset S ′ ⊆ Eα

µ such that h[S ′] = {i}.
As i < θ = otp(Cι), let ξ

′ denote the unique element of Cι such
that otp(Cι ∩ ξ′) = i . Then, put ξ := min(xα \ (ξ′ + 1)).
As Cι ⊆ acc+(xα), we have that [ξ′, ξ) ∩ Cι = {ξ′}.
Consequently, otp(Cι ∩ ξ) = otp(Cι ∩ (ξ′ + 1)) = i + 1.
As η = ηα and ξ ∈ xα, the set S ′ := g−1[Aξ,η] ∩ α is a stationary
subset of Eα

µ . Finally, for each β ∈ S ′, we have g(β) ∈ Aξ,η,
meaning that h(β) = sup(otp(Cι ∩ ξ)) = sup(i + 1) = i , as sought.

qed
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A finer result

We also have a finer result that apply for arbitrary stationary
S ⊆ λ+ (rather than S = Eλ+

µ ).

Theorem
Suppose that θ < λ are infinite cardinals with θ ∕= cf(λ), and S ,T
are subsets of λ+ with Tr(S) ∩ T ∩ Eλ+

θ stationary.
Then any of the following implies that Π(S , θ,T ) holds:

1. λ is regular;

2. λ is a singular cardinal admitting a good scale, and 2θ ≤ λ.

Good scale
A scale 󰂓f for λ such that club many α ∈ Eλ+

>cf(λ) are good for 󰂓f .
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