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Conventions
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K denotes a regular uncountable cardinal;

A denotes an infinite cardinal;

Reg(k) :={A <k | Ng < cf(X) = A}

Ef ={a <k |cf(a) = A};

E;)\, EZ, and EZ, are defined analogously;
acc™(A) := {a < sup(A) | sup(ANa) = a > 0}.
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For every stationary S C &, there exists a partition (S; | i < k) of
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Variations of Solovay's theorem
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Variations of Solovay's theorem

Variation III (Brodsky-Rinot, 2019)

If O(k) holds, then for every fat F C k, there is a partition
(Fi | i < k) of F into fat sets such that, for all i < j < K,
Tr(Fi) NTr(F) = 0.

Variation I (Magidor?, 1970's)

If 00y holds, then for every stationary S C AT, there is a partition
(Si | i < AT) of S into stationary sets such that, for all i < AT,
S; does not reflect (i.e., Tr(S;)) =0).

% Nonreflecting stationary sets are very useful. To exemplify:
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Variations of Solovay's theorem

Variation III (Brodsky-Rinot, 2019)

If O(k) holds, then for every fat F C k, there is a partition
(Fi | i < k) of F into fat sets such that, for all i < j < k,
Tr(F) N Tr(F;) = 0.

% Partitions as above are sometime enough:

Theorem (Rinot, 2014)

If K > Wy, and (k) holds,
then there exists a k-cc poset whose square is not k-cc.

% Nonreflecting stationary sets are very useful. To exemplify:
Theorem (Shelah, 1991)

If Kk > Ny, and EQNQ admits a nonreflecting stationary set,
then there exists a k-cc poset whose square is not k-cc.
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Is there another way?

As said, partitioning ~ into stationary sets that pairwise do not
simultaneously reflect is very useful, but is also somewhat wired
into the standard procedure of the partition.
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As said, partitioning ~ into stationary sets that pairwise do not
simultaneously reflect is very useful, but is also somewhat wired
into the standard procedure of the partition.
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i <j <k, Tr(5)NTr(S;) be stationary?

» Is it possible to partition x into (S; | i < k) such that
ﬂi<n Tr(S;) be stationary?

Definition
M(S, 6, T) asserts the existence of a partition (S; | i < ) of S

such that (;_, Tr(S;) N T is stationary.
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Singular cardinals combinatorics



Scales

Definition

Suppose that \ is a singular cardinal, and X = (\; | i < cf(A)) is a
strictly increasing sequence of regular cardinals, converging to A.
For any two functions f,g € [T and i < cf()), we write f </ g
to express that f(j) < g(j) whenever i < j < cf(A).
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Scales

Theorem (Shelah, 1990’s)

Every singular cardinal A admits a scale.

Suppose f is a scale in ]_[X
An ordinal o € EQZ{()\) is said to be very good if there exist i < c.f()\)
and a eefinal club A C « such that, for all § <~ from A, f5 <' £,.

—

We let V/(f) denote the set of very good points with respect to fl

Recall
If f,g are scales in [] X, then G(f) A G(&) is nonstationary.

Theorem (Cummings-Foreman, 2010)
If V = L, then there are scales f, g in []
V(F) = EX* and V(g) = 0.

N, for which

n<w



Very good points are not robust

The following is implicit in the proof of the above-mentioned
theorem of Cummings-Foreman concerning V = L:

Proposition

Suppose X is singular, T C \* is stationary and T(AT, cf()\), T).
Suppose f is a scale for \, living in some product [Ticcrny Aie
Then T\ V(g) is stationary for some scale g in [ [;_c¢(n) Ai-

Proof.

Fix a partition (S; | i < cf()\)) of AT, with

T":= T NNi<er(n) Tr(Si) stationary. Define (gg | B < A™) by
letting gg(i) := 0 for B € S;, and gg(i) := f3(i), otherwise.

Let a € T’ be arbitrary. To see that o ¢ V/(g), fix an arbitrary
club € C a and an index i < cf(A).

Let 6 :=min(CNS;) and v :=min(C N S; \ (6 + 1)).

Then § <~ is a pair of elements of C, while gs(i) =0=g,(i). O



Very good scales

Definition
A scale f for a singular cardinal X is said to be very good iff club
many « € E;\:f()\) are very good for f
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Very good scales

Definition
A scale f for a singular cardinal X is said to be very good iff club
many « € E;\;(A) are very good for f

Conclusion

Suppose A is a singular cardinal and M(AT, cf()), Eﬁ f(/\)) holds.
Then any product H,<Cf ) A; admitting a scale for A\, admits yet
another scale which is not very good.

Note

There are numerous ways to consistently get instances of
rn(s.,o, T) For instance, in a model of Magidor (1982),
NS, Ny, Ey ) holds for every stationary S C ENZ

The main point here is to prove instances of I'I(S,H, T) in ZFC.
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ZFC results
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Main result

Theorem
Suppose that p < 0 are infinite regular cardinals < \.

1. If X is inaccessible, then T(\,0,\) and M(A1, X\, \T) hold;

This is trivial
Simply take (Eﬁ‘ | 1 € Reg(Np4+1)) and (E[L\+ | 1 € Reg())).
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Main result

Theorem
Suppose that p < 0 are infinite regular cardinals < \.

1. If X is inaccessible, then T(\,0,\) and M(A1, X\, \T) hold;

2. If X is regular, then TI(E)\", 0, E)") holds;

This is optimal

If 11(S,0, T) holds, then {« € T | cf(a) > 0} must be stationary.
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Main result

Theorem
Suppose that p < 0 are infinite regular cardinals < \.

1. If X is inaccessible, then T(\,0,\) and M(A1, X\, \T) hold;
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result

eorem

Suppose that p < 0 are infinite regular cardinals < \.

1

2
3
4

. If X is inaccessible, then T1(\,0,\) and (A1, X\, AT) hold;

. If X is regular, then I'I(E,f, 0, E9)‘+) holds;

L 1F29 < X and 0 # cf(X), then T(E)",0, E)") holds;

. If X is singular and 0+ # cf(X), then N(E)", 0, Ej\,) holds;
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Main result

Theorem
Suppose that p < 0 are infinite regular cardinals < \.

1. If X is inaccessible, then T(\,0,\) and M(A1, X\, \T) hold;

2. If X is regular, then I'I(E,f, 0, E9)‘+) holds;

3. 129 < X and 0 # cf(N), then (E)\", 0, E)") holds;

4. If X is singular and 0+ £ cf()), then N(E)", 0, E)\") holds;
5. If X is singular and 0% = cf(X), then N(E)" .6, Eé\;) holds.

Remark
This follows from Clause (4).
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Main result

Theorem
Suppose that p < 0 are infinite regular cardinals < \.

1. If X is inaccessible, then T(\,0,\) and M(A1, X\, \T) hold;

2. If X is regular, then T(E)",0, E}") holds;

3. 129 < X and 0 # cf(N), then (E)\", 0, E)") holds;

4. If X is singular and 0+ £ cf()), then N(E)", 0, E)\") holds;
5. If X is singular and 0 = cf(\), then T(E)", 0, E;\,) holds.

Remark

Our proof at the level of successors of singulars is indeed different
from the standard proofs for partitioning a stationary set. We build
on the fact that any singular cardinal admits a scale and that the
set of good points of a scale is stationary relative to any cofinality;
we also use a combination of Ulam matrices with club-guessing to
avoid any cardinal arithmetic hypotheses (Clauses (4) and (5)).

12



A special case with a simplified proof

Theorem
Let A\ be a singular cardinal. Let 1 < 0 be regular cardinals with
cf(\) < <0<\ ThenTI(E}",0,Ep) holds.
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A special case with a simplified proof

Theorem

Let A\ be a singular cardinal. Let 1 < 0 be regular cardinals with
cf(\) < <0<\ ThenTI(E}",0,Ep) holds.

Proof. Fix a scale f for A in some product [Ticcrpy Aie

By Shelah’s theorem, Tg := Ee)ﬁ N G(f) is stationary.

Claim 1

There exist | < cf(\), ¢ € E(;\H, a stationary T1 C Ty, and a
sequence (S | a € Ty) such that, for all a € Ty:

» Sl is a stationary subset of EY;
> (f3(i) | B € S}) is strictly increasing and converging to (.
Proof. By Fodor's lemma, it suffices to prove that for each a € Ty,

there is i < cf()) and a stationary S C E on which 8 — f3(i) is
strictly increasing.
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Proof of Claim 1

Let a € Ty be arbitrary. We shall find i < cf(\) and a stationary
S C Ej on which B~ f(i) is strictly increasing. '

For each v < 8 < «, pick iy g < cf(X) such that £, <8 f3.

As a € Ty is a good point, let us also fix /" < cf(\) and a cofinal
A C a such that, for all § <~ from A, f5 </ f,.

Consider S’ := acc™(A) N ES, which is a stationary subset of E.
As 1 > cf(X), for each 3 € S’, we may pick a cofinal ag C AN
and ig < cf(A) such that, for all v € ag, iy 3 = i3.

As 07T > cf()), we may pick a stationary S C S’ and i < cf()\)
such that, for all 8 € S, max{ig, ', ig min(a\g)} = I-

To see that i and S are as sought, let € < 3 be arbitrary elements
of S. Consider § := min(A\ €) and ~ := mln(ag \ 9).

Clearly, e <6 < v < B and f, <leminave) f5 < fy <8 f3.

In particular, f. <' fg, so that f.(i) < f3(i), as sought O

Fix i, ¢, and (S} | @ € Ty) as in Claim 1.
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Step 2: Find a function g

Claim 2
There are g : E{r — 07 and a sequence (S2 | a € T1) such that,
forall € Ty:

> SZ is a stationary subset of S} (hence, of ES);
> (g(B) | B € S2) is strictly increasing (hence, cofinal in 7).

Proof. Fix a club z in ¢ with otp(z) = 6+ 1. Define

g: Elf — 07T by letting g(8) := otp(fz(i) N z) if f3(i) < ¢ and
g(B) :=0, o.w. To see that g is as sought, let a« € Ty be arbitrary.
Let 7 : 67T — o be the inverse collapse of some club in o.. Clearly,
S:= {B <Ot | n(B B) € S: & (gom)' ‘6 C [3} is stationary.

Let B —{BGS!(gOW)( 3) < B}. Forall € < § from S\ B, we
have g(7(€)) < B < g(w(B)). Thus, it suffices to show that

S2 := 7[5\ B] (which is a subset of S}) is stationary.

Suppose not. In particular, B is stationary. But then, Fodor's
lemma entails a stationary B C B on which g o is constant,
contradicting the fact that (£ 3)(/) | B € B) converges to (. O

T
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Step 3: An Ulam Matrix

Let g : Eﬁ‘+ — 07+ and (S2 | a € T1) be given by Claim 2.
Now, fix an Ulam matrix (A, | £ < 61T, np < 07) over 61T, ie,
> forall £ <07, 077\ U, g Acyyl <07
> foralln <6t and { <& <0t Ay NAg, =0.

Claim 3

For every oo € Ty, there aren < 0T and x € [¢9++]9++ such that,
for all € € x, g *[A¢,y] N« is stationary in a.

Proof. Suppose not. Then, for all n < T, the set

X, = {& < 07 | g7 A¢,)] N« is stationary in a} has size < 6.
So X := Un<9+ Xy has size <07, and we may fix £ € 671\ X.

It follows that for all n < 6%, g71[A¢,,] N« is nonstationary in a.
Consequently, g_l[Un<9+ A¢.n] N o is nonstationary in a.

However, {J, g+ A¢; contains a tail of 0%, contradicting the fact
that (g() | B € S2) is strictly increasing and cofinal in 6tF. [
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Step 4: Club-guessing

By Shelah’s club-guessing theorem, we now fix a sequence
(C, | o€ EJ™) such that, for every club C C 0%, there exists

L€ Eg++ such that C, € C N and otp(C,) = 6.

By Claim 3, for every o € Ty, let us fix 9o, < 67 and x, € [9**]9++
such that, for all £ € x,, g [A¢.] N« is stationary in a.

Then, fix o € Eg++ such that C,, C acc™(xy) N tq and

otp(C,,) = 0.

By Fodor's lemma, fix a stationary T, C T1, n < 67 and ¢ € Eg++
such that, for all & € Ty, 7o, =1 and 1o = ¢.

As the elements of (Ag, | £ < 67T) are pairwise disjoint, we may
fix a function h: E/;\+ — 0 such that, for all 3 < \*:

(&(B) € Ay & £ < 1) = h(0) = sup(otp(C, NE)).

17



Step 5: Verification

For each i < 0, let S; := h~1{i}.
We claim that (S; | i < 0) witnesses I'I(Ef,&, Eé\i). Furthermore:

Claim 4

Nico Tr(Si) N E§\+++ covers the stationary set T».

Proof. Fix arbitrary o € T, and i < 6. We shall find a stationary
subset S C EZ such that h[S'] = {i}.

As i < 6 =otp(C,), let ¢ denote the unique element of C, such
that otp(C, N ¢’') = i. Then, put £ := min(x, \ (£’ + 1)).

As C, C acc™(xy), we have that [¢/,&) N C, = {¢'}.
Consequently, otp(C,N¢&) =otp(C,N (¢ +1)) =i+ 1.

As =1, and £ € x,, the set S’ := g7 }[A¢ )] N« is a stationary
subset of EZ. Finally, for each 3 € §', we have g(f8) € A¢,
meaning that h(8) = sup(otp(C, N&)) = sup(i + 1) = i, as sought.

qeo
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A finer result

We also have a finer result that apply for arbitrary stationary

S C AT (rather than S = E}\").

Theorem

Suppose that 8 < X are infinite cardinals with 6 # cf()\), and S, T
are subsets of Xt with Tr(S)N T N E)" stationary.

Then any of the following implies that 1(S, 6, T) holds:

1. X is regular;

2. X is a singular cardinal admitting a good scale, and 29 < \.

Good scale
A scale f for A such that club many o € E;\Zf()\) are good for f.
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