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Introduction
The method of side conditions, invented by Todorcevic,
describes a style of forcing in which elementary substructures
are included in the conditions of a forcing poset P to ensure
properness of P and hence, the preservation of ω1.

Definition
If q ∈ P and N ≺ H(θ) with |N| = ℵ0, then

1 q is said to be (N,P)-generic iff for every dense subset D
of P belonging to N, D ∩ N is predense below q.

2 q is said to be strongly (N,P)-generic iff for every dense
subset D of P ∩ N, D is predense below q.

R1 By elementarity, if D is a dense subset of P and D,P ∈ N,
then D∩N is a dense subset of P ∩N. So, if P ∈ N, then 2⇒ 1.
R2 If q is strongly (N,P)-generic, then q forces that N ∩G is a
V-generic filter on the ctble. set N ∩P. So, q adds a Cohen real.
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A typical condition of a forcing P equipped with side cond. is a
pair (x ,A) where x is an approximation to the desired generic
object and A is a finite set of ctble. elementary substructures
such that if N ∈ A, then (x ,A) is (N,P)-generic.

Friedman and Mitchell independently took the first step in
generalizing this method from adding generic objects of size ω1
to adding larger objects by defining forcing posets with finite
conditions for adding a club subset of ω2. Neeman was the first
to simplify the side conditions of F. and M. by presenting a
general framework for forcing on ω2 with side conditions.

The forcing posets of F, M, and N for adding a club of ω2 with
finite cond. all force that 2ω = ω2. In fact, they can be factored
in many ways so that the quotient forcing also has strongly
generic cond. in the intermediate extensions.
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Friedman asked whether it is possible to add a club subset of
ω2 with finite conditions while preserving CH.

Together with John Krueger I solved this problem by defining a
forcing poset which adds a club to a fat stationary set and falls
in the class of the so called coherent adequate type forcings
(Krueger and Mota, JML, 15, 2015).

Recall that a stationary set S ⊆ ω2 is said to be fat iff for every
club C ⊆ ω2, S ∩ C contains a closed subset with o. t. ω1 + 1.
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We proved that our forcing preserves CH.

Moreover, we proved that any coherent adequate forcing on
H(λ) (meaning that our side conditions are ctble. elementary
substructures of H(λ)) , where 2ω < λ is a cardinal of
uncountable cofinality, collapses 2ω to have size ω1, preserves
(2ω)+, and forces CH.

Another common feature is that all these posets incorporate
systems of countable structures with symmetry requirements
as side conditions.

Notation. if N ∩ ω1 ∈ ω1, then δN := N ∩ ω1.
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Definition
Let T ⊆ H(θ) and let N be a finite set of countable subsets of
H(θ). We will say that N is a T–symmetric system iff
(A) For every N ∈ N , (N,∈,T ) ≺ (H(θ),∈,T ).
(B) Given distinct N, N ′ in N , if δN = δN′ , then there is a

unique isomorphism

ΨN,N′ : (N,∈,T ) −→ (N ′,∈,T )

Furthermore, ΨN,N′ is the identity on N ∩ N ′.
(C) N is closed under isomorphisms. That is, for all N, N ′, M

in N , if M ∈ N and δN = δN′ , then ΨN,N′(M) ∈ N .
(D) For all N, M in N , if δM < δN , then there is some N ′ ∈ N

such that δN′ = δN and M ∈ N ′.



Remark. In all practical cases
⋃

T = H(θ), so T does
determine H(θ) in these cases.

The following lemmas are proved in TAMS, vol. 367, 2015
(Asperó and Mota).

Lemma
Let T ⊆ H(θ) and let N and N ′ be countable elementary
substructures of (H(θ),∈,T ). Suppose N ∈ N is a
T–symmetric system and Ψ : (N,∈,T ) −→ (N ′,∈,T ) is an
isomorphism. Then Ψ(N ) = Ψ“N is also a T–symmetric
system.



Lemma
Let T ⊆ H(θ), let N be a T–symmetric system and let N ∈ N .
Then the following holds.

1 N ∩ N is a T–symmetric system.
2 Suppose N ∗ ∈ N is a T–symmetric system such that
N ∩ N ⊆ N ∗. Let

M = N ∪
⋃
{ΨN,N′“N ∗ : N ′ ∈ N , δN′ = δN}

ThenM is the ⊆–minimal T–symmetric systemW such
that N ∪N ∗ ⊆ W.



Given T ⊆ H(θ) and T –symmetric systems N0, N1, let us write
N0 ∼= N1 iff
• (

⋃
N0) ∩ (

⋃
N1) = R and

• for some m < ω, there are enumerations (N0
i )i<m and

(N1
i )i<m of N0 and N1, respectively, together with an

isomorphism between

〈
⋃
N0,∈,T ,R,N0

i 〉i<m

and
〈
⋃
N1,∈,T ,R,N1

i 〉i<m

which is the identity on R.

Lemma
Let T ⊆ H(θ) and let N0 and N1 be T–symmetric systems.
Suppose N0 ∼= N1. Then N0 ∪N1 is a T–symmetric system.



Definition
The poset P0 is the set of all the T –symmetric systems. Given
q1 and q0 in P0, q1 ≤P0 q0 iff q0 ⊆ q1.

Corollary

1 P0 is (strongly) proper.
2 (CH) If there is a bijection between θ and H(θ) which is

definable in (H(θ),∈,T ), then P0 is ℵ2–Knaster.
3 (CH) If there is a bijection between θ and H(θ) which is

definable in (H(θ),∈,T ), then P0 preserves CH (Asperó
and Mota, APAL, 2016)

Proof of (1). Suppose that κ is regular and N∗ is a ctble. elem.
substr. of H(κ) s. t. P0 and the cond. s are in N∗. Then, letting
N = N∗ ∩ H(θ) and s′ = s ∪ {N}, s′ is (N∗, P0)–generic.



Let E be a dense subset of P0 in N∗. It suffices to show that
there is some condition in E ∩ N∗ compatible with s′. Notice
first that s′ ∩ N ∈ P0. Hence, we may find a condition
s◦ ∈ E ∩ N extending s′ ∩ N. Now let

s∗ = s′ ∪ {ΨN,N(M) : M ∈ q◦, N ∈ s′, δN = δN}.

So, s∗ is a condition in P0 extending both s′ and s◦.



Proof of (2). Suppose that sξ = {Nξ
i : i < m} is a P0–condition

for each ξ < ω2. By CH we may assume that
{
⋃

i<m Nξ
i : ξ < ω2} forms a ∆–system with root X . Moreover,

by CH we may assume, for all ξ, ξ′ < ω2, that the structures
〈
⋃

i<m Nξ
i ,∈,P,X ,N

ξ
i 〉i<m and 〈

⋃
i<m Nξ′

i ,∈,P,X ,N
ξ′

i 〉i<m are
isomorphic and that the isomorphism fixes X .



The first assertion follows from the fact that there are only
ℵ1–many iso. types for such structures. For the second
assertion note that, if Ψ is the unique isomorphism between
〈
⋃

i<m Nξ
i ,∈,T ,X ,N

ξ
i 〉i<m and 〈

⋃
i<m Nξ′

i ,∈,T ,X ,N
ξ′

i 〉i<m, then
the restriction of Ψ to X ∩ θ has to be the identity on X ∩ θ.
Since there is a bijection between θ and H(θ) which is definable
in (H(θ),∈,T ), we have that Ψ fixes X if and only if it fixes
X ∩ θ. It follows that Ψ fixes X . Hence, for all ξ, ξ′ < ω2, sξ ∪ sξ′
extends both sξ and sξ′ .



Proof of (3). Suppose s ∈ P0, ṙα (for α < ω2) are P0–names ,
and s forces that ṙα, for α < ω2, are pairwise distinct reals . By
the ℵ2–chain condition of P0 we may assume that each ṙα is in
H(θ). Let κ be a regular cardinal such that P0 ∈ H(κ). For each
α let Nα be such that {q, ṙα} ∈ Nα and Nα is a countable
elementary substructure of (H(θ),∈,P,SP). We can also
assume that for each α, there is a countable elementary
substructure N∗α ≺ H(κ) such that Nα = H(θ) ∩ N∗α. By CH,
there are distinct α, α′ such that (Nα,∈,P,P0, s, ṙα) and
(Nα,∈,P,P0, s, ṙα) are isomorphic.



By the above lemmas we may also assume that s ∪ {Nα,Nα′} is
a P0–condition. So, s ∪ {Nα,Nα′} is (N∗α, P0)–generic and
(N∗α′ , P0)–generic. Let Ψ be the unique isomorphism between
Nα and Nα′ and note that for every natural number n and for
every condition s′ P0–extending s ∪ {Nα,Nα′}, there are
conditions s′′ and r such that r ∈ Nα, r decides the nth value of
ṙα and s′′ is a common P0–extension of r and s′. Since
symmetric systems are closed under isomorphism, s′′ also
P0–extends Ψ(r) ∈ Nα′ . By correctness of Ψ, Ψ(r) forces that
the nth value of Ψ(ṙα) = ṙα′ is equal to the nth value of ṙα. So,
s ∪ {Nα,Nα′} forces that ṙα = ṙα′ . This is a contradiction.



In the absence of convenient cardinal assumptions

Of course, if T codes a well-ordering of H(θ) and 2ω < θ, then
any two isomorphic N1,N2 ≺ (H(θ),∈,T ) have the same reals
which implies that P0 collapses (2ω)V to ω1. Moreover,

Kuzeljevic and Todorcevic proved that P0 always forces ♦
independently of the status of CH in the ground model.
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Applications in the context of iterated forcing

Something one may naturally envision at this point is the
possibility to build a suitable forcing iteration with systems of
models as side conditions while strengthening the symmetry
constraints, so as to make them apply not only to the side
condition part of the forcing but also to the working parts; one
would hope to exploit the above idea in order to show that the
iteration thus constructed preserves CH, and would of course
like to be able to do that while at the same time forcing some
interesting statement.

Indeed, starting with a model of GCH and doing such an
iteration in length ω2, Asperó and I have recently proved the
consistency of Measuring together with CH
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Definition
Measuring holds if and only if for every sequence
~C = (Cδ : δ ∈ ω1), if each Cδ is a closed subset of δ in the
order topology, then there is a club C ⊆ ω1 such that for every
δ ∈ C there is some α < δ such that either
• (C ∩ δ) \ α ⊆ Cδ, or
• (C \ α) ∩ Cδ = ∅.

That is, a tail of (C ∩ δ) is either contained in or disjoint from Cδ.

This principle is of course equivalent to its restriction to
club-sequences ~C on ω1.

Measuring is a strong form of failure of Club Guessing at ω1.

Measuring follows from BPFA and also from MRP.
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