$\diamondsuit^\#_\kappa$ and a model theory dichotomy in GDST

(joint work with Gabriel Fernandes and Assaf Rinot) Bar-Ilan University

Arctic Set Theory Workshop 2019

January 2019

Miguel Moreno (ASTW19)

January 2019 1 / 32

The Main Gap Theorem

Outline

1 The Main Gap Theorem

- 2 Generalized Descriptive Set Theory
- 3 The equivalence non-stationary ideal
- 4 The dichotomy
- **5** The $\diamondsuit^{\#}_{\kappa}$ principle

Shelah's Main Gap Theorem

Theorem (Main Gap, Shelah)

Let T be a first order complete theory in a countable vocabulary and $I(T, \alpha)$ the number of non-isomorphic models of T with cardinality $| \alpha |$. Either, for every uncountable cardinal α , $I(T, \alpha) = 2^{\alpha}$, or $\forall \alpha > 0 \ I(T, \aleph_{\alpha}) < \beth_{\omega_1}(| \alpha |)$.

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Questions

What can we say about the complexity of two different non-classifiable theories?

By non-classifiable theories we mean:

- Unstable theories.
- Stable unsuperstale theories.
- Superstable theories with DOP.
- Superstable theories with OTOP.

Have all the non-classifiable theories the same complexity?

Outline

- 1 The Main Gap Theorem
- 2 Generalized Descriptive Set Theory
- 3 The equivalence non-stationary ideal
- 4 The dichotomy
- 5 The $\diamondsuit^{\#}_{\kappa}$ principle

The approach

Use Borel-reducibility and the isomorphism relation on models of size κ to define a partial order on the set of all first-order complete countable theories.

The Generalized Cantor space

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

The generalized Cantor space is the set 2^κ with the bounded topology. For every $\zeta\in 2^{<\kappa},$ the set

$$[\zeta] = \{\eta \in 2^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

 κ -Borel sets

The collection of κ -Borel subsets of 2^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

A function $f: 2^{\kappa} \to 2^{\kappa}$ is κ -Borel, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a κ -Borel subset of 2^{κ} .

Borel reduction

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a κ -Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in 2^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) = 1$$

Definition (The isomorphism relation)

Given T a first-order countable theory in a countable vocabulary, we say that $f, g \in 2^{\kappa}$ are \cong_T equivalent if

•
$$\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

The Borel-reducibility hierarchy

We can define a partial order on the set of all first-order countable theories

$$T \leq_{\kappa} T'$$
 iff $\cong_T \leq_B \cong_{T'}$

Questions

Is the Borel reducibility notion of complexity a refinement of the complexity notion from stability theory?

- If T is a classifiable theory and T' is not, then $T \leq_{\kappa} T'$?
- If T is an unstable theory and T' is not, then $T' \leq_{\kappa} T$?
- Are all the theories comparable by the Borel reducibility notion of compleity, for every two theories *T* and *T'* either *T* ≤_κ *T'* or *T'* ≤_κ *T* holds?

Unstable Theories

Theorem (Friedman, Hyttinen, Kulikov)

If T is unstable and T' is classifiable, then $T \leq_{\kappa} T'$.

Theorem (Asperó, Hyttinen, Kulikov, Moreno)

Let DLO be the theory of dense linear order without end points. If κ is a Π_2^1 -indescribable cardinal, then $T \leq_{\kappa} DLO$ holds for every theory T.

A Borel reducibility counterpart

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq_{\kappa} T'$ and $T' \leq_{\kappa} T$.

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1 If V = L, then $H(\kappa)$ holds.
- It can be forced that H(κ) holds and there are 2^κ equivalence relations strictly between ≅_T and ≅_{T'}.

Outline

- 1 The Main Gap Theorem
- 2 Generalized Descriptive Set Theory
- 3 The equivalence non-stationary ideal
- 4 The dichotomy
- **5** The $\diamondsuit^{\#}_{\kappa}$ principle

For every regular cardinal $\lambda < \kappa$, the relation $E_{\lambda-club}^2$ is defined as follow.

Definition

On the space 2^{κ} , we say that $f, g \in 2^{\kappa}$ are $E^2_{\lambda-club}$ equivalent if the set $\{\alpha < \kappa \mid f(\alpha) = g(\alpha)\}$ contains an unbounded set closed under λ -limits.

Non-classifiable theories

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- **1** If T is unstable or superstable with OTOP, then $E^2_{\lambda-club} \leq _B \cong_T$.
- 2 If $\lambda \geq 2^{\omega}$ and T is superstable with DOP, then $E^2_{\lambda-club} \leq B \cong_T$.

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq_B \cong_T$.

Classifiable theories

Theorem (Hyttinen, Kulikov, Moreno)

Suppose T is a classifiable theory, $\lambda < \kappa$ a regular cardinal such that $\Diamond_{\kappa}(cof(\lambda))$ holds. Then $\cong_{T} \leq_{B} E^{2}_{\lambda-club}$.

The dichotomy

Outline

- 1 The Main Gap Theorem
- 2 Generalized Descriptive Set Theory
- 3 The equivalence non-stationary ideal
- 4 The dichotomy
- **5** The $\diamondsuit^{\#}_{\kappa}$ principle

Σ_1^1 -completeness

An equivalence relation E on 2^{κ} is Σ_1^1 or *analytic*, if E is the projection of a closed set in $2^{\kappa} \times 2^{\kappa} \times 2^{\kappa}$ and it is Σ_1^1 -complete or analytic complete if it is Σ_1^1 (analytic) and every Σ_1^1 (analytic) equivalence relation is Borel reducible to it.

Working in L

Definition

- We define a class function F_{\Diamond} : $On \to L$. For all α , $F_{\Diamond}(\alpha)$ is a pair (X_{α}, C_{α}) where $X_{\alpha}, C_{\alpha} \subseteq \alpha$, C_{α} is a club if α is a limit ordinal and $C_{\alpha} = \emptyset$ otherwise. We let $F_{\Diamond}(\alpha) = (X_{\alpha}, C_{\alpha})$ be the $<_L$ -least pair such that for all $\beta \in C_{\alpha}$, $X_{\beta} \neq X_{\alpha} \cap \beta$ if α is a limit ordinal and such pair exists and otherwise we let $F_{\Diamond}(\alpha) = (\emptyset, \emptyset)$.
- We let $C_{\Diamond} \subseteq On$ be the class of all limit ordinals α such that for all $\beta < \alpha$, $F_{\Diamond} \upharpoonright \beta \in L_{\alpha}$. Notice that for every regular cardinal α , $C_{\Diamond} \cap \alpha$ is a club.

The dichotomy

Working in L

Definition

For all regular cardinal α and set $A \subset \alpha$, we define the sequence $(X_{\gamma}, C_{\gamma})_{\gamma \in A}$ as the sequence $(F_{\Diamond}(\gamma))_{\gamma \in A}$, and the sequence $(X_{\gamma})_{\gamma \in A}$ as the sequence of sets X_{γ} such that $F_{\Diamond}(\gamma) = (X_{\gamma}, C_{\gamma})$ for some C_{γ} .

By ZF^- we mean ZFC + (V = L) without the power set axiom. By ZF^\diamond we mean ZF^- with the following axiom: "For all regular ordinals $\mu < \alpha$ if $(S_\gamma, D_\gamma)_{\gamma \in \alpha}$ is such that for all $\gamma < \alpha$, $F_\diamond(\gamma) = (S_\gamma, D_\gamma)$, then $(S_\gamma)_{\gamma \in cof(\mu)}$ is a diamond sequence."

The Key Lemma

Lemma (Hyttinen, Kulikov, Moreno)

(V = L) For any Σ_1 -formula $\varphi(\eta, \xi, x)$ with parameter $x \in 2^{\kappa}$, a regular cardinal $\mu < \kappa$, the following are equivalent for all $\eta, \xi \in 2^{\kappa}$:

- $\varphi(\eta, \xi, x)$
- $S \setminus A$ is non-stationary, where $S = \{ \alpha \in cof(\mu) \mid X_{\alpha} = \eta^{-1}\{1\} \cap \alpha \}$ and

$$A = \{ \alpha \in \mathcal{C}_{\Diamond} \cap \kappa \mid \exists \beta > \alpha (\mathcal{L}_{\beta} \models ZF^{\diamond} \land \varphi(\eta \restriction \alpha, \xi \restriction \alpha, x \restriction \alpha) \land r(\alpha)) \}$$

where $r(\alpha)$ is the formula " α is a regular cardinal".

The dichotomy

The dichotomy

Theorem (Hyttinen, Kulikov, Moreno)

(V = L) For every $\lambda < \kappa$ regular, $E_{\lambda-club}^2$ is a Σ_1^1 -complete equivalence relation.

Theorem (Hyttinen, Kulikov, Moreno)

(V = L) Suppose that κ is the successor of a regular uncountable cardinal. If T is a theory in a countable vocabulary. Then one of the following holds.

- \cong_T is Δ_1^1 (all the complete extensions of T are classifiable).
- \cong_T is Σ_1^1 -complete (T has at least one non-classifiable extension).

Notice that T is not required to be complete.

Outline

- 1 The Main Gap Theorem
- 2 Generalized Descriptive Set Theory
- 3 The equivalence non-stationary ideal
- 4 The dichotomy
- 5 The $\diamondsuit^{\#}_{\kappa}$ principle

$$\diamondsuit^\#_\kappa(\mathit{cof}(\mu))$$

Definition

For μ be a regular cardinal smaller than κ , $\diamondsuit_{\kappa}^{\#}(cof(\mu))$ asserts the existence of a sequence $\langle N_{\alpha} | \alpha < \kappa \rangle$ such that:

- 1 for every $\alpha < \kappa$, N_{α} is a transitive p.r.-closed set containing α , satisfying $|N_{\alpha}| \leq |\alpha| + \aleph_0$;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C$, $X \cap \alpha, C \cap \alpha \in N_{\alpha}$;
- 3 for every Π₂¹-sentence φ valid in a structure (κ, ∈, (A_n)_{n<ω}), there exists α ∈ cof(μ), such that

$$N_{\alpha} \models "\phi$$
 is valid in $\langle \alpha, \in, (A_n \restriction \alpha)_{n < \omega} \rangle$."

$$\diamondsuit^\#_\kappa(\mathit{cof}(\mu))$$
 in L

Lemma

(V = L) If $\kappa = \lambda^+$ is a successor cardinal and μ is a regular cardinal smaller than κ , then $\diamondsuit_{\kappa}^{\#}(cof(\mu))$ holds.

A Diamond Sequence

Proposition

Suppose $\langle N_{\alpha} \mid \alpha < \kappa \rangle$ is a $\Diamond_{\kappa}^{\#}(cof(\mu))$ -sequence, for some regular $\mu < \kappa$. Suppose that, for each infinite $\alpha < \kappa$, $f_{\alpha} : \alpha \to N_{\alpha}$ is a surjection. Let $c : \kappa \times \kappa \leftrightarrow \kappa$ be Gödel pairing function. For every Π_2^1 -sentence ϕ valid in a structure $\langle \kappa, \in, (A_n)_{n < \omega} \rangle$, there exists $i < \kappa$ such that, for every $X \subseteq \kappa$, for stationarily many $\alpha < \kappa$, the two holds:

•
$$N_{lpha} \models ``\phi$$
 is valid in $\langle lpha, \in, (A_n \restriction lpha)_{n < \omega}
angle$ ";

• $X \cap \alpha = \{\beta < \alpha \mid c(i,\beta) \in f_{\alpha}(i)\}.$

The sets $Z_{\alpha}^{i} = \{\beta < \alpha \mid c(i, \beta) \in f_{\alpha}(i)\}$ witnesses $\Diamond_{\kappa}(cof(\mu))$.

Σ_1^1 -completeness

Theorem

If $\diamondsuit_{\kappa}^{\#}(cof(\mu))$ holds for $\mu < \kappa$ regular, then $E_{\mu-club}^2$ is a Σ_1^1 -complete equivalence relation.

Proof Suppose *E* is a Σ_1^1 equivalence relation. Let $i < \kappa$ be as in the previous proposition, \mathcal{X}_{α} the characteristic function of Z_{α}^i . For every $\eta \in 2^{\kappa}$ and $\alpha \in cof(\mu)$ denote by $T_{\eta\alpha}$ the set

 $\{p \in 2^{lpha} \mid p \in N_{lpha} \text{ and } N_{lpha} \models ``E \text{ is an equivalence relation and}$

$$(p, \eta \restriction \alpha) \in E \text{ is valid in } \langle \alpha, \in, (A_n \restriction \alpha)_{n < \omega} \rangle^{"} \}$$
$$\mathcal{F}(\eta)(\alpha) = \begin{cases} 1 & \text{if } \mathcal{X}_{\alpha} \in T_{\eta\alpha} \text{ and } \alpha \in cof(\mu) \\ 0 & \text{otherwise} \end{cases}$$

The Dichotomy

Theorem

Suppose $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$, $\lambda^{<\lambda} = \lambda$. If T is a theory in a countable vocabulary, and $\diamondsuit_{\kappa}^{\#}(cof(\omega))$ and $\diamondsuit_{\kappa}^{\#}(cof(\lambda))$ hold. Then one of the following holds.

- \cong_T is Δ_1^1 (all the complete extensions of T are classifiable).
- \cong_T is Σ_1^1 -complete (T has at least one non-classifiable extension).

The $\diamondsuit^\#_\kappa$ principle

Questions

Question

Is there an uncountable cardinal κ , such that $H(\kappa)$ is a theorem of ZFC?

Question

Have all the non-classifiable theories the same Borel-reducibility complexity (excluding stable unsuperstable theories)?

The $\diamondsuit^\#_\kappa$ principle

Thank you