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States as information packages

@ in physics, a 'model’ is a prediction instrument
@ everything there is to know about a system is coded in the state of
the system

@ states are modelled as unit vectors in a complex Hilbert space

@ observables (such as position, momentum, energy) correspond to self
adjoint operators

Example

Two key operators in quantum mechanics are the position operator @ and
the momentum operator P (here in one dimension)

Q)(x) = xib(x)

. dy
P()(x) = —in (%)

where i = h/27, and h is the Planck constant.

v
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Two approaches

Eigenvector approach
@ basically assuming everything works as in a finite dimensional case

@ used in beginning physics courses

Wave function approach
e working in La(R")

@ used by mathematical physicists
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Eigenvector approach

o for each observable, the possible observed values are eigenvalues of
the corresponding operator

@ the eigenvectors of the operator span the state space

Example J

E.g. there is a state |xg) corresponding to the position xg.

@ linear combinations of eigenstates correspond to superpositions of
possible states, and the coefficients give the probability of observing
the corresponding eigenvalue

@ observation changes the state: after observing an eigenvalue, the
system will be in the corresponding eigenstate
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Wave function approach

@ states are wave functions, i.e., unit vectors in Lp(R")
@ no eigenvalues or eigenvectors for the operators one is interested in

@ the wave function gives the probability distribution of the position of
a particle

@ the oscillations of the wave function encode the momentum:; the
Fourier transform is an isometry between the position and momentum
spaces of the particle

Example

The probability that for a state ¥(x) (in position space) the particle is in
the interval [xg, x1] is given by

JALCRS

0
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Time evolution

The system evolves over time and this is described by a unitary time
evolution operator

K':H—H

that describes change in time interval t (the time independent case). If
the state of the system at time 0 is ¥9(x), then the state at time t is

(%) = K'(¥o(x))-
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Time evolution with eigenvectors: the propagator

The propagator

(y|K*[x)
gives the probability amplitude for a particle to travel from position x to
position y in a given time interval t.

The notation means the inner product of |y) and K*|x), where |x) and |y)
are the eigenvectors corresponding to positions x and y respectively.
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Time evolution with wave functions: the kernel

In the wave function formalism, one calculates time evolution via the
integral representation of the time evolution operator.
So K(x,y,t) is a function such that

Pi(y) = K5 (vo)(y) = /R K(x,y, t)o(x)dx.
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Are these the same?

To describe the same physical reality, both models should give the same
value. )
K(x,y,t) = {y|K'|x)

But how can we even compare them?
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Finite dimensional approximations

@ physicists seem to use the eigenvector approach as an intuitive idea,
but mainly calculate by other means

@ when finite dimensional models are used, it is not always clear what is
meant by "approximation’

@ we give a model theoretic approach to approximations
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Approximations via ultraproducts

Finite dimensional spaces Ultraproduct

>

— L
>
i
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The finite dimensional Hilbert spaces Hy

Definition
Let for each N, Hy be an N-dimensional Hilbert space with two
orthogonal bases

{up:n< N} and {v,:n< N}

such that
v, = / Z l27rnm/N
and thus
1 N—-1
- —i2rnm/N
Unp = N Z e Vv,
m=0
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Operators in Hy

Definition

Further let

h
u, and PN(V,,)Z—nVn,

QN(Un) = \/N

n
VN
and define (the unitary operators)

Ut = e and VIt = etPn,

Lemma

Then the Weyl commutator relation V" Ut = "™ UtV" holds whenever
V/Nht is an integer.

Remark

In no finite dimensional space can the commutator relation [Q, P] = ik
hold, as this requires the operators to be unbounded.

v
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Ultraproduct of Hilbert space models

o start with indexed set of Hilbert space models Hy (N € N) and an
ultrafilter D on N

o define norms on elements of cartesian product [[ycy Hn as
ultralimits of coordinatewise norms

@ cut out 'infinite part’
@ mod out infinitesimals modulo D

o for operators with a uniform bound, we can define an ultraproduct
operator in a straightforward fashion

But. ..
@ the real @ and P are unbounded,

@ we need P and @ for calculations, not just their exponentials.
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Building unbounded operators in ultraproducts

Theorem

Let, for each i € I, H; be a complex Hilbert space and P; a bounded
operator on H; (where the bound may vary with i). Further assume there
are complete subspaces H (possibly {0}), for all k < w, such that

Q ifk #1, then H,-k and H,-’ are orthogonal to each other,
2 Pi(Hik) < Hik'
© for all k < w, there is 0 < My < w such that for all i € | and x € H,-k

1
e X< 1RGN < Ml
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Theorem (continued)

Then if D is an ultrafilter on I, there is a closed subspace K of the metric
D-ultraproduct of the spaces H; where we can define the ultraproduct of
the operators P; as an unbounded operator P satisfying

@ on a dense subset of K, P(f/D) = (P;i(f(i)))ie1/D and
@ ifforn<w, f,/D € dom(P) and both (f,/D)n<w and (P(fn/D))n<w

are Cauchy sequences, and (f,/D)n<., converges to /D, then P is
defined at f/D and P(f/D) = limp_o P(f,/D).
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The K-subspaces

Finite dimensional spaces Ultraproduct

>
> L®)
>
E Neeor”
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Theorem
With the above definitions,
@ for a dense set of t, w, the Weyl commutator relation

VA4 Ut — efﬁtw Ut (VA4

holds,

@ P and Q have (partially defined) unbounded ultraproducts and these
operators have eigenvectors for all real positions (although they do
not span the whole space),

© a metric version of Los's theorem holds when we restrict our
parameters to the parts where P and Q are defined.
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Embedding the L(R) model

To see that the ultraproduct model tells us something of the Ly(R) model,
we need an embedding:
Definition

In a dense set of ('nice’) functions f € Ly (e.g., C°, the set of compactly

supported smooth functions) let F(f) = (Fy(f)| N < w)/D, where for
N>1

(N/2)—1
Fu(fF)= > NV (N7 2)u,+
n=0

N—-1
> NTVA((n = N)NT2)u,,
n=N/2

As F is isometric, it can be extended to all of Ly(RR).
And it maps the quantum mechanical operators @ and P correctly.
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Now we can compare the propagator and the kernel

But they differ!

Example

When the units are chosen such that th/2m € Z, then for rational
positions xp, x; the propagator for the free particle in Hy is

(x1|Kt|x0) = N~Y2thm™ K (xg, x1, t),

when thm~! divides v/N(x; — xp) and 0 otherwise, where
K(xo,x1,t) = (m/2miht)l/2eimbo—1)?/2ht is the value of the kernel.
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What can be done?

(x| K*[x0) = N~2thm ™K (o, x1, t) ]

o the factor N=1/2 stems from the interval corresponding to 'steps’
between eigenvectors, so it can be justified

e for fixed xg, x1, we can argue that m(xl — Xp) is as divisible as we
like, when N grows large

@ we can change the embedding of Ly(R) to change the operator P is
mapped to, to get rid of the factor thm™1

@ but then we get the wrong probabilities (as predicted in the model)

@ so the propagator is actually correct in the model where it is
calculated
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What is happening?

@ calculations in N-dimensional model depend on divisibility questions —
the model of dimension N only 'sees’ positions that are multiples of
1v/'N apart; puts too much weight on these transitions, and 0 on
others

@ in the ultraproduct there are actually continuum many orthogonal
eigenvectors for each position (corresponding to different sequences of
eigenvectors in the Hys)

@ there is no guarantee one has enough divisibility along the way in
these sequences, but in a sense the average is correct

@ since we cannot compute the average in the ultraproduct, we do it
along the way

@ this corresponds to calculating the kernel instead of the propagator
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Calculating the kernel in the ultraproduct

Use

B+e
Klauso = tim [ [ 6K ey /(20 (a)

and calculate the limit in the ultraproduct,

@ in the finite-dimensional models, calculate the average probability
amplitude over small regions and look at the value in the ultraproduct

@ in ultraproduct, look at the limit as regions shrink

@ This gives the correct kernel!
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Why is this interesting?

e calculations with eigenvectors are (relatively) easy

@ our method gives a robust description for what approximation means
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