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States as information packages

in physics, a ’model’ is a prediction instrument

everything there is to know about a system is coded in the state of
the system

states are modelled as unit vectors in a complex Hilbert space

observables (such as position, momentum, energy) correspond to self
adjoint operators

Example

Two key operators in quantum mechanics are the position operator Q and
the momentum operator P (here in one dimension)

Q(ψ)(x) = xψ(x)

P(ψ)(x) = −i~
dψ

dx
(x)

where ~ = h/2π, and h is the Planck constant.
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Two approaches

Eigenvector approach

basically assuming everything works as in a finite dimensional case

used in beginning physics courses

Wave function approach

working in L2(Rn)

used by mathematical physicists
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Eigenvector approach

for each observable, the possible observed values are eigenvalues of
the corresponding operator

the eigenvectors of the operator span the state space

Example

E.g. there is a state |x0〉 corresponding to the position x0.

linear combinations of eigenstates correspond to superpositions of
possible states, and the coefficients give the probability of observing
the corresponding eigenvalue

observation changes the state: after observing an eigenvalue, the
system will be in the corresponding eigenstate
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Wave function approach

states are wave functions, i.e., unit vectors in L2(Rn)

no eigenvalues or eigenvectors for the operators one is interested in

the wave function gives the probability distribution of the position of
a particle

the oscillations of the wave function encode the momentum; the
Fourier transform is an isometry between the position and momentum
spaces of the particle

Example

The probability that for a state ψ(x) (in position space) the particle is in
the interval [x0, x1] is given by∫ x1

x0

|ψ(x)|2dx .
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Time evolution

The system evolves over time and this is described by a unitary time
evolution operator

K t : H → H

that describes change in time interval t (the time independent case). If

the state of the system at time 0 is ψ0(x), then the state at time t is

ψt(x) = K t(ψ0(x)).
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Time evolution with eigenvectors: the propagator

The propagator
〈y |K t |x〉

gives the probability amplitude for a particle to travel from position x to
position y in a given time interval t.
The notation means the inner product of |y〉 and K t |x〉, where |x〉 and |y〉
are the eigenvectors corresponding to positions x and y respectively.
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Time evolution with wave functions: the kernel

In the wave function formalism, one calculates time evolution via the
integral representation of the time evolution operator.
So K (x , y , t) is a function such that

ψt(y) = K t(ψ0)(y) =

∫
R

K (x , y , t)ψ0(x)dx .
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Are these the same?

To describe the same physical reality, both models should give the same
value.

K (x , y , t)
?
= 〈y |K t |x〉

But how can we even compare them?
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Finite dimensional approximations

physicists seem to use the eigenvector approach as an intuitive idea,
but mainly calculate by other means

when finite dimensional models are used, it is not always clear what is
meant by ’approximation’

we give a model theoretic approach to approximations
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Approximations via ultraproducts

}
Finite dimensional spaces Ultraproduct

L (R)
2
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The finite dimensional Hilbert spaces HN

Definition

Let for each N, HN be an N-dimensional Hilbert space with two
orthogonal bases

{un : n < N} and {vn : n < N}

such that

vn =

√
1

N

N−1∑
m=0

e i2πnm/Num

and thus

un =

√
1

N

N−1∑
m=0

e−i2πnm/Nvm.
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Operators in HN

Definition

Further let

QN(un) =
n√
N

un and PN(vn) =
hn√

N
vn,

and define (the unitary operators)

Ut = e itQN and V t = e itPN .

Lemma

Then the Weyl commutator relation V wUt = e i~twUtV w holds whenever√
N~t is an integer.

Remark

In no finite dimensional space can the commutator relation [Q,P] = i~
hold, as this requires the operators to be unbounded.
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Ultraproduct of Hilbert space models

start with indexed set of Hilbert space models HN (N ∈ N) and an
ultrafilter D on N
define norms on elements of cartesian product

∏
N∈N HN as

ultralimits of coordinatewise norms

cut out ’infinite part’

mod out infinitesimals modulo D

for operators with a uniform bound, we can define an ultraproduct
operator in a straightforward fashion

But. . .

the real Q and P are unbounded,

we need P and Q for calculations, not just their exponentials.
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Building unbounded operators in ultraproducts

Theorem

Let, for each i ∈ I , Hi be a complex Hilbert space and Pi a bounded
operator on Hi (where the bound may vary with i). Further assume there
are complete subspaces Hk

i (possibly {0}), for all k < ω, such that

1 if k 6= l , then Hk
i and H l

i are orthogonal to each other,

2 Pi (Hk
i ) ⊆ Hk

i ,

3 for all k < ω, there is 0 < Mk < ω such that for all i ∈ I and x ∈ Hk
i

1

Mk
‖x‖ ≤ ‖Pi (x)‖ ≤ Mk‖x‖.
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Theorem (continued)

Then if D is an ultrafilter on I , there is a closed subspace K of the metric
D-ultraproduct of the spaces Hi where we can define the ultraproduct of
the operators Pi as an unbounded operator P satisfying

1 on a dense subset of K , P(f /D) = (Pi (f (i)))i∈I/D and

2 if for n < ω, fn/D ∈ dom(P) and both (fn/D)n<ω and (P(fn/D))n<ω
are Cauchy sequences, and (fn/D)n<ω converges to f /D, then P is
defined at f /D and P(f /D) = limn→∞ P(fn/D).
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The K -subspaces

}
Finite dimensional spaces Ultraproduct

L (R)
2

Q

P

K

K
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Theorem

With the above definitions,

1 for a dense set of t,w , the Weyl commutator relation

V wUt = e i~twUtV w

holds,

2 P and Q have (partially defined) unbounded ultraproducts and these
operators have eigenvectors for all real positions (although they do
not span the whole space),

3 a metric version of  Los’s theorem holds when we restrict our
parameters to the parts where P and Q are defined.
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Embedding the L2(R) model

To see that the ultraproduct model tells us something of the L2(R) model,
we need an embedding:

Definition

In a dense set of (’nice’) functions f ∈ L2 (e.g., C∞c , the set of compactly
supported smooth functions) let F (f ) = (FN(f )| N < ω)/D, where for
N > 1

FN(f ) =

(N/2)−1∑
n=0

N−1/4f (nN−1/2)un+

N−1∑
n=N/2

N−1/4f ((n − N)N−1/2)un.

As F is isometric, it can be extended to all of L2(R).
And it maps the quantum mechanical operators Q and P correctly.
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Now we can compare the propagator and the kernel

But they differ!

Example

When the units are chosen such that th/2m ∈ Z, then for rational
positions x0, x1 the propagator for the free particle in HN is

〈x1|K t |x0〉 = N−1/2thm−1K (x0, x1, t),

when thm−1 divides
√

N(x1 − x0) and 0 otherwise, where
K (x0, x1, t) = (m/2πi~t)1/2e im(x0−x1)2/2~t is the value of the kernel.
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What can be done?

〈x1|K t |x0〉 = N−1/2thm−1K (x0, x1, t)

the factor N−1/2 stems from the interval corresponding to ’steps’
between eigenvectors, so it can be justified

for fixed x0, x1, we can argue that
√

N(x1 − x0) is as divisible as we
like, when N grows large

we can change the embedding of L2(R) to change the operator P is
mapped to, to get rid of the factor thm−1

but then we get the wrong probabilities (as predicted in the model)

so the propagator is actually correct in the model where it is
calculated
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What is happening?

calculations in N-dimensional model depend on divisibility questions –
the model of dimension N only ’sees’ positions that are multiples of
1
√

N apart; puts too much weight on these transitions, and 0 on
others

in the ultraproduct there are actually continuum many orthogonal
eigenvectors for each position (corresponding to different sequences of
eigenvectors in the HNs)

there is no guarantee one has enough divisibility along the way in
these sequences, but in a sense the average is correct

since we cannot compute the average in the ultraproduct, we do it
along the way

this corresponds to calculating the kernel instead of the propagator
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Calculating the kernel in the ultraproduct

Use

K (α, β, t) = lim
ε→0

∫ β+ε

β−ε

∫ α+ε

α−ε
φ(x)K (x , y , t)dxdy / ((2ε)2φ(α))

and calculate the limit in the ultraproduct,

in the finite-dimensional models, calculate the average probability
amplitude over small regions and look at the value in the ultraproduct

in ultraproduct, look at the limit as regions shrink

This gives the correct kernel!
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Why is this interesting?

calculations with eigenvectors are (relatively) easy

our method gives a robust description for what approximation means

Å. Hirvonen (University of Helsinki) Eigenvectors and Approximations January 23, 2019 24 / 25
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