More ZFC inequalities between cardinal invariants

Vera Fischer

University of Vienna

January 2019

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 1 / 46

Outline: Higher Analogues

- Eventual difference and $\mathfrak{a}_e(\kappa)$, $\mathfrak{a}_p(\kappa)$, $\mathfrak{a}_g(\kappa)$;
- Generalized Unsplitting and Domination;

Image: A mage: A ma

Eventual Difference

Almost disjointness

 $\mathfrak{a}(\kappa)$ is the min size of a max almost disjoint $\mathscr{A} \subseteq [\kappa]^{\kappa}$ of size $\geq \kappa$

Relatives

- $\mathfrak{a}_{e}(\kappa)$ is the min size of max, eventually different family $\mathscr{F} \subseteq {}^{\kappa}\kappa$,
- a_p(κ) is the min size of a max, eventually different family
 𝔅 ⊆ S(κ) := {f ∈ ^κκ : f is bijective},
- $\mathfrak{a}_g(\kappa)$ is the min size of a max, almost disjoint subgroup of $S(\kappa)$.

What we still do not know...

Even though $Con(\mathfrak{a} < \mathfrak{a}_g)$, both

- the consistency of $a_g < a$, as well as
- the inequality $a \leq a_g$ (in ZFC)

are open.

Roitman Problem

Is it consistent that $\mathfrak{d} < \mathfrak{a}$?

- Yes, if $\aleph_1 < \mathfrak{d}$ (Shelah's template construction).
- Open, if $\aleph_1 = \mathfrak{d}$.

Is it consistent that $\mathfrak{d} = \mathfrak{K}_1 < \mathfrak{a}_g$?

Vera Fischer (University of Vienna)

Image: A mage: A ma

三))

- One of the major differences between a and its relatives, is their relation to $non(\mathcal{M})$.
 - While a and non(*M*) are independent,
 - $\mathfrak{non}(\mathcal{M}) \leq \mathfrak{a}_{e}, \mathfrak{a}_{p}, \mathfrak{a}_{g}$ (Brendle, Spinas, Zhang),

Thus in particular, consistently $\mathfrak{d} = \mathfrak{K}_1 < \mathfrak{a}_g = \mathfrak{K}_2$.

Vera Fischer (University of Vienna)

Uniformity of the Meager Ideal: Higher Analogue

For κ regular uncountable, define $\mathfrak{nm}(\kappa)$ to be the least size of a family $\mathscr{F} \subseteq {}^{\kappa}\kappa$ such that $\forall g \in {}^{\kappa}\kappa \exists f \in \mathscr{F}$ with $|\{\alpha \in \kappa : f(\alpha) = g(\alpha)\}| = \kappa$.

Theorem (Hyttinen)

If κ is a successor, then $\mathfrak{mn}(\kappa) = \mathfrak{b}(\kappa)$.

Theorem (Blass, Hyttinen, Zhang)

Let κ be regular uncountable. Then $\mathfrak{b}(\kappa) \leq \mathfrak{a}(\kappa), \mathfrak{a}_{\rho}(\kappa), \mathfrak{a}_{\rho}(\kappa), \mathfrak{a}_{g}(\kappa);$

Corollary

Thus for κ successors, $\mathfrak{nm}(\kappa) = \mathfrak{b}(\kappa) \leq \mathfrak{a}(\kappa), \mathfrak{a}_{\rho}(\kappa), \mathfrak{a}_{g}(\kappa)$.

Vera Fischer (University of Vienna)

< A >

Roitman in the Uncountable

Theorem (Blass, Hyttinen and Zhang) Let $\kappa \geq \aleph_1$ be regular uncountable. Then

$$\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}(\kappa) = \kappa^+.$$

Vera Fischer (University of Vienna)

Roitman in the Uncountable

The cofinitary groups analogue

- Clearly, the result does not have a cofinitary group analogue for κ = ℵ₀, since ∂ = ℵ₁ < a_g = a_g(ℵ₀) = ℵ₂ is consistent.
- Nevertheless the question remains of interest for uncountable κ: Is it consistent that

$$\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_g(\kappa) = \kappa^+?$$

Vera Fischer (University of Vienna)

Club unboundedness

Theorem (Raghavan, Shelah, 2018)

Let κ be regular uncountable. Then $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}(\kappa) = \kappa^+$.

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 11 / 46

B → < B

Image: A mage: A ma

Club unboundedness

- Let κ be regular uncountable. For $f, g \in {}^{\kappa}\kappa$ we say that $f \leq_{cl} g$ iff $\{\alpha < \kappa : g(\alpha) < f(\alpha)\}$ is non-stationary.
- $\mathfrak{b}_{cl}(\kappa) = \min\{|F| : F \subseteq {}^{\kappa}\kappa \text{ and } F \text{ is cl-unbounded}\}$

Vera Fischer (University of Vienna)

프 > ㅋ >

Theorem (Cummings, Shelah)

If κ is regular uncountable then $\mathfrak{b}(\kappa) = \mathfrak{b}_{cl}(\kappa)$.

Vera Fischer (University of Vienna)

< A >

Higher eventually different analogues

Theorem(F., D. Soukup, 2018)

Suppose $\kappa = \lambda^+$ for some infinite λ and $\mathfrak{b}(\kappa) = \kappa^+$. Then $\mathfrak{a}_{e}(\kappa) = \mathfrak{a}_{p}(\kappa) = \kappa^+$. If in addition $2^{<\lambda} = \lambda$, then $\mathfrak{a}_{g}(\kappa) = \kappa^+$.

Remark

The case of $a_e(\kappa)$ has been considered earlier. The above is a strengthening of each of the following:

• $\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_e(\kappa) = \kappa^+$ for κ successor (Blass, Hyttinen, Zhang)

b(κ) = κ⁺ ⇒ a_e(κ) = κ⁺ proved by Hyttinen under additional assumptions.

-

Outline: $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_{e}(\kappa) = \kappa^+$

• For each $\lambda : \lambda \leq \alpha < \lambda^+ = \kappa$ fix a bijection

 $d_{\alpha}: \alpha \rightarrow \lambda$.

• For each $\delta : \lambda^+ = \kappa \le \delta < \kappa^+$ fix a bijection

 $e_{\delta}: \kappa \rightarrow \delta.$

• Let $\{f_{\delta} : \delta < \kappa^+\}$ witness $\mathfrak{b}_{Cl}(\kappa) = \kappa^+$.

Vera Fischer (University of Vienna)

э.

- We will define functions h_{δ,ζ} ∈ ^κκ for δ < κ⁺, ζ < λ by induction on δ, simultaneously for all ζ < λ.
- Thus, suppose we have defined $h_{\delta',\zeta}$ for $\delta' < \delta$, $\zeta < \lambda$.
- Let $\mu < \kappa$. We want to define $h_{\delta,\zeta}(\mu)$ for each $\zeta \in \lambda$. Let

$$\mathbb{H}_{\delta}(\mu) = \{h_{\delta',\zeta'} : \delta' \in \operatorname{ran}(e_{\delta} \restriction \mu), \zeta' \in \lambda\}.$$

Then, since $e_{\delta}: \kappa \to \delta$ is a bijection, $|\operatorname{ran}(e_{\delta} \restriction \mu)| \leq \lambda$ and so $\mathbb{H}_{\delta}(\mu)$, as well as

$$H_{\delta}(\mu) = \{h(\mu) : h \in \mathbb{H}_{\delta}(\mu)\}$$

are of size $< \kappa$.

• Then define:

$$f^*_{\delta}(\mu) = \max\{f_{\delta}(\mu), \min\{lpha \in \kappa : |lpha ackslash H_{\delta}(\mu)| = \lambda\}\} < \kappa.$$

- Now, |f^{*}_δ(μ)\H_δ(μ)| = λ and so, we have enough space to define the values h_{δ,ζ}(μ) distinct for all ζ < λ.
- More precisely, for each ζ < λ, define h_{δ,ζ}(μ) := β where β is such that

$$d_{f^*_{\delta}(\mu)}[\beta \cap (f^*_{\delta}(\mu) \setminus H_{\delta}(\mu))]$$

is of order type ζ . We say that $h_{\delta,\zeta}(\mu)$ is the ζ -th element of $f^*_{\delta}(\mu) \setminus H_{\delta}(\mu)$ with respect to $d_{f^*_{\delta}(\mu)}$.

Claim: $\{h_{\delta,\zeta}\}_{\delta < \kappa^+, \zeta < \lambda}$ is κ -e.d.

- Case 1: Fix $\delta < \kappa^+$. If $\zeta \neq \zeta'$, then by definition $h_{\delta,\zeta}(\mu) \neq h_{\delta,\zeta'}(\mu)$ for each $\mu < \kappa$.
- Case 2: Let δ' < δ < κ⁺ and ζ, ζ' < λ be given. Since e_δ : κ → δ is a bijection, there is μ₀ ∈ κ such that δ' ∈ range(e_δ ↾ μ₀).
- But then for each $\mu \ge \mu_0$, $h_{\delta',\zeta'} \in \mathbb{H}_{\delta}(\mu)$ and so $h_{\delta',\zeta'}(\mu) \in H_{\delta}(\mu)$.
- However $h_{\delta,\zeta} \in \kappa \setminus H_{\delta}(\mu)$ and so $h_{\delta',\zeta'}(\mu) \neq h_{\delta,\zeta}(\mu)$.

Claim: $\{h_{\delta,\zeta}\}_{\delta < \kappa^+, \zeta < \lambda}$ is κ -med.

Let $h \in {}^\kappa\kappa$ and $\delta < \kappa^+$ such that

$$S = \{\mu \in \kappa : h(\mu) < f_{\delta}(\mu)\}$$

is stationary. There is stationary $S_0 \subseteq S$ such that

•
$$h(\mu) \in H_{\delta}(\mu)$$
 for all $\mu \in S_0$, or

②
$$h(\mu) \notin H_{\delta}(\mu)$$
 for all $\mu \in S_0$.

We will see that in either case, there are δ, ζ such that

$$h_{\delta,\zeta}(\mu) = h(\mu)$$

for stationarily many $\mu \in S_0$.

3 > < 3

< A > <

Case 1: $h(\mu) \in H_{\delta}(\mu)$ for all $\mu \in S_0$

Recall:

•
$$\mathbb{H}_{\delta}(\mu) = \{h_{\delta',\zeta'} : \delta' \in \operatorname{ran}(e_{\delta} \restriction \mu), \zeta' \in \lambda\}$$
, and

•
$$H_{\delta}(\mu) = \{h(\mu) : h \in \mathbb{H}_{\delta}(\mu)\}.$$

Now:

- For each $\mu \in S_0$ there are $\eta_{\mu} < \mu$, $\zeta_{\mu} < \lambda$ such that $h(\mu) = h_{e_{\delta}(\eta_{\mu}),\zeta_{\mu}}(\mu)$.
- By Fodor's Lemma we can find a stationary S₁ ⊆ S₀ such that for all μ ∈ S₁, η_μ = η for some η < μ.
- Then for $\delta' = e_{\delta}(\eta)$ we can find stationarily many $\mu \in S_1$ such that $\zeta_{\mu} = \zeta'$ for some ζ' , and so
- for stationarily many μ in S_1 we have $h(\mu) = h_{\delta',\zeta'}(\mu)$.

< ロ > < 同 > < 回 > < 回 >

Case 2: $h(\mu) \notin H_{\delta}(\mu)$ for all $\mu \in S_0$

Recall:

```
f^*_{\delta}(\mu) = \max\{f_{\delta}(\mu), \min\{\alpha \in \kappa : |\alpha \setminus H_{\delta}(\mu)| = \lambda\}\} < \kappa
```

Now:

- For each $\mu \in S_0$, since $h(\mu) < f_{\delta}(\mu)$ and $f_{\delta}(\mu) \le f_{\delta}^*(\mu)$, we have $h(\mu) \in f_{\delta}^*(\mu) \setminus H_{\delta}(\mu)$.
- Thus, for each $\mu \in S_0 \setminus (\lambda + 1)$ there is $\zeta_{\mu} < \lambda \leq \mu$ such that $h(\mu)$ is the ζ_{μ} -th element of $f_{\delta}^*(\mu) \setminus H_{\delta}(\mu)$ with respect to $d_{f_{\delta}^*(\mu)}$.
- By Fodor's Lemma, there is a stationary S₁ ⊆ S₀ such that for each μ ∈ S₁, ζ = ζ_μ for some ζ and so for all μ ∈ S₁ we have h(μ) = h_{δ,ζ}(μ).

Question

Is it true that b(κ) = κ⁺ implies that a_e(κ) = a_p(κ) = κ⁺ if κ is not a successor?

글 🕨 🖌 글

< A >

Definition

Let κ be regular uncountable.

A family F ⊆ [κ]^κ is splitting if for every B ∈ [κ]^κ there is A ∈ F such that |B ∩ A| = |B ∩ (κ\A)| = κ, i.e. A splits B. Then

 $\mathfrak{s}(\kappa) := \min\{|F| : F \text{ is splitting}\}.$

A family *F* ⊆ [κ]^κ is unsplit if there is no *B* ∈ [κ]^κ which splits every element of *F*. Then

 $\mathfrak{r}(\kappa) := \min\{|F| : F \text{ is unsplit } \}.$

Vera Fischer (University of Vienna)

ヨトィヨト

• • • • • • • • •

Theorem (Raghavan, Shelah)

Let κ be regular uncountable. Then $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa)$.

- Thus splitting and unboundedness at κ behave very differently than splitting and unboundedness at ω, as it is well known that s and b are independent.
- Is it true that for every regular uncountable κ , $\vartheta(\kappa) \leq \mathfrak{r}(\kappa)$?

Theorem (Raghavan, Shelah)

Let $\kappa \geq \beth_{\omega}$ be regular. Then $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 25 / 46

< A >

Club domination

•
$$\mathscr{F} \subseteq {}^{\kappa}\kappa \text{ is } \leq_{cl}$$
-dominating if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathscr{F}(g \leq_{cl} f)$.
• $\mathfrak{d}_{\mathsf{Cl}}(\kappa) = \min\{|F| : F \subseteq {}^{\kappa}\kappa \wedge F \text{ is cl-dominating}\}.$

Vera Fischer (University of Vienna)

æ

Almost always the same

Theorem (Cummings, Shelah) $\mathfrak{d}(\kappa) = \mathfrak{d}_{cl}(\kappa)$ whenever $\kappa \geq \beth_{\omega}$ regular.

Vera Fischer (University of Vienna)

글 🕨 🖌 글

< A >

ŝ

The RS-property

Notation

For κ be regular uncountable and $A \in [\kappa]^{\kappa}$, let $s_A : \kappa \to A$ be defined as follows:

$$s_A(\alpha) = \min(A \setminus (\alpha + 1)).$$

Definition

We say that $F \subseteq [\kappa]^{\kappa}$ has the RS-property if for every club $E_1 \subseteq \kappa$, there is a club $E_2 \subseteq E_1$ such that for every $A \in F$,

$$A \not\subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi)).$$

Vera Fischer (University of Vienna)

< D > < P > < E > < E</p>

Refining and Domination

Outline: $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for $\kappa \geq \beth_{\omega}$ regular

Take $F \subseteq [\kappa]^{\kappa}$ unsplit of size $\mathfrak{r}(\kappa)$. With F we will associate a dominating family of size $\leq \mathfrak{r}(\kappa)$.

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 29 / 46

글 🕨 🖌 글

Image: A mage: A ma

Suppose *F* does not have the RS-property.

- Thus \exists club E_1 such that \forall club $E_2 \subseteq E_1$ there is $A \in F$ with $A \subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$.
- We will show that $\{s_A \circ s_{E_1} : A \in F\}$ is \leq^* -dominating.
- Let $f \in {}^{\kappa}\kappa$ be arbitrary. Take $E_f = \{\xi \in E_1 : \xi \text{ is closed under } f\}$.
- Then E_f is a club and since F does not have the RS-property, there is $A \in F$ and $\delta \in \kappa$ such that $A \setminus \delta \subseteq \bigcup_{\xi \in E_f} [\xi, s_{E_1}(\xi))$.
- Then $\forall \zeta \geq \delta$, $f(\zeta) < (s_A \circ s_{E_1})(\zeta)$.
- Since *f* was arbitrary, $\{s_A \circ s_{E_1} : A \in F\}$ is indeed \leq^* -dominating.

Vera Fischer (University of Vienna)

-

Suppose *F* does have the RS-property.

- That is, for every club E_1 , there is a club $E_2 \subseteq E_1$ such that for all $A \in F$, $A \not\subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$.
- We will show that $\{s_A : A \in F\}$ is \leq_{cl} -dominating.
- Take $f \in {}^{\kappa}\kappa$ and let E_f be an *f*-closed club. Pick E_2 -given by RS.
- If for all A ∈ F, |A ∩ ∪_{ξ∈E2}[ξ, s_{Ef}(ξ))| = κ, then ∪_{ξ∈E2}[ξ, s_{Ef}(ξ)) splits F, contradicting F is unsplit.

- Thus there are $A \in F$, $\delta < \kappa$ with $A \setminus \delta \subseteq \kappa \setminus \bigcup_{\xi \in E_2} [\xi, s_{E_f}(\xi))$.
- Take any $\xi \in E_2 \setminus \delta$. Then, $\delta \leq \xi < s_A(\xi) \in A$ and since $A \cap [\xi, s_{E_f}(\xi)) = \emptyset$, we get $s_{E_f}(\xi) \leq s_A(\xi)$.
- However $s_{E_f}(\xi) \in E_f$ and so is closed under f. Then $f(\xi) < s_{E_f}(\xi) \le s_A(\xi)$ and so $f \le_{cl} s_A$.
- Therefore $\{s_A : A \in F\}$ is $\leq_{c'}$ -dominating, and so $\mathfrak{d}_{c'}(\kappa) \leq |F| = \mathfrak{r}(\kappa)$.
- Since $\kappa \geq \beth_{\omega}$, $\mathfrak{d}(\kappa) = \mathfrak{d}_{\mathsf{CI}}(\kappa)$ and so $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

-

Strong Unsplitting: $r_{\sigma}(\kappa)$

Definition

 $\mathfrak{r}_{\sigma}(\kappa)$ is the least size of a $F \subseteq [\kappa]^{\kappa}$ such that there is no countable $\{B_n : n \in \omega\} \subseteq [\kappa]^{\kappa}$ such that every $A \in F$ is split by some B_n .

Remark

If $\mathfrak{r}_{\sigma}(\kappa)$ exists, then $\mathfrak{r}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$.

Vera Fischer (University of Vienna)

医下子 医

< A >

Theorem (Zapletal) If $\aleph_0 < \kappa \le 2^{\aleph_0}$ then there is a countable \mathscr{B} splitting all $A \in [\kappa]^{\kappa}$.

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 34 / 46

∃ → ∢

Image: A mathematic state of the state of

 $\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$

Remark

Thus $\mathfrak{r}_{\sigma}(\kappa)$ does not exist for $\aleph_0 < \kappa \leq 2^{\aleph_0}$. However:

Theorem(F., D. Soukup, 2018)

If $\kappa > 2^{\aleph_0}$ is regular, then $\mathfrak{r}_{\sigma}(\kappa)$ -exists and $\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$.

Vera Fischer (University of Vienna)

3

$\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$

- Take $F \subseteq [\kappa]^{\kappa}$ of size $\mathfrak{r}_{\sigma}(\kappa)$, which is unsplit by countable $\mathscr{A} \subseteq [\kappa]^{\kappa}$.
- If *F* does not have the RS-property, then $\mathfrak{d}(\kappa) \leq |F| = \mathfrak{r}_{\sigma}(\kappa)$.
- Thus suppose *F* has the *RS*-property. That is, for every club *E*₁ there is a club *E*₂ ⊆ *E*₁ so that for every *A* ∈ *F*,

$$A \not\subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi)).$$

• We will show that $\{s_A : A \in F\}$ is dominating.

$\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$

- Let *f* ∈ ^κκ. Wlg *f* is non-decreasing. Take *E*₀ a club of ordinals closed under *f*.
- Applying the RS-property inductively, build a sequence

 $E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots$

of clubs such that for all $A \in F$ and $n \in \omega$

$$A \not\subseteq^* B_n = \bigcup_{\xi \in E_{n+1}} [\xi, s_{E_n}(\xi)).$$

- Since *F* is a witness to $\mathfrak{r}_{\sigma}(\kappa)$, $\{B_n\}_{n \in \omega}$ do not split *F* and so
- $\exists A \in F$ unsplit by all B_n 's. Thus $A \cap B_n$ is bounded for each n.

ヨトィヨト

• • • • • • • • •

$\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$

- Thus for each *n*, there is δ_n such that $A \setminus \delta_n \subseteq \kappa \setminus B_n$, and so
- for $\delta = \sup \delta_n$ we have that for all $n, A \setminus \delta \subseteq \kappa \setminus B_n$.
- Take any $\alpha \in \kappa \setminus \delta$ and let $\xi_n = \sup(E_n \cap (\alpha + 1))$, for each *n*.
- Then $\{\xi_n\}_{n\in\omega}$ is decreasing, and so there is $n\in\omega$, such that $\xi_n = \xi_{n+1} = \xi$ for some ξ .
- Thus $\xi \leq \alpha$ and $\xi \in E_{n+1} \subseteq E_n$.

∃ → < ∃</p>

 Now ξ ≤ α < s_{E_n}(α) and since E_n ⊆ E₀, s_{E_n}(α) is closed under f. Thus

$$\xi \leq \alpha \leq f(\alpha) < \mathbf{s}_{E_n}(\xi).$$

• On the other hand $\alpha \geq \delta$, $s_A(\alpha) \in A$ and so

$$s_A(\alpha) \notin \bigcup_{\zeta \in E_{n+1}} [\zeta, s_{E_n}(\zeta)).$$

Therefore, s_A(α) ∉ [ξ, s_{E_n}(ξ)) and so s_{E_n}(ξ) ≤ s_A(α).
 Thus f(α) < s_{E_n}(ξ) ≤ s_A(α).

Thus $\{s_A : A \in F\}$ is indeed \leq^* -dominating.

Vera Fischer (University of Vienna)

January 2019 39 / 46

글 🕨 🖌 글

Characterizing $\vartheta(\kappa)$

Among others, the above result leads to a new characterization of $\mathfrak{d}(\kappa)$ for regular uncountable κ .

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 40 / 46

Finitely Unsplitting Number

Definition

Let fr denote the minimal size of a family \mathscr{I} of partitions of ω into finite sets, so that there is no single $A \in [\omega]^{\omega}$ with the property that for each partition $\{I_n\}_{n \in \omega} \in \mathscr{I}$ both

$$\{n \in \omega : I_n \subseteq A\}$$
 and $\{n \in \omega : I_n \cap A = \emptyset\}$

are infinite. That is, there is no A, which interval-splits all partitions.

Theorem (Brendle) $\mathfrak{fr} = \min{\mathfrak{d}, \mathfrak{r}}.$

Vera Fischer (University of Vienna)

< ロ > < 同 > < 回 > < 回 >

Higher analogues: $\mathfrak{fr}(\kappa)$, Club unsplitting number

Definition

For κ regular uncountable, let $\mathfrak{fr}(\kappa)$ denote the minimal size of a family \mathscr{E} of clubs, so that there is no $A \in [\kappa]^{\kappa}$ such that for all $E \in \mathscr{E}$ both

 $\{\xi \in E : [\xi, s_E(\xi)) \subseteq A\}$ and $\{\xi \in E : [\xi, s_E(\xi)) \cap A = \emptyset\}$

have size κ . That is, there is no A, which interval-splits all clubs E.

Higher analogues: $\mathfrak{fr}_{\sigma}(\kappa)$, Strong club unsplitting

Definition

For κ regular uncountable, let $\mathfrak{fr}_{\sigma}(\kappa)$ denote the minimal size of a family \mathscr{E} of clubs so that there is no countable $\mathscr{A} \subseteq [\kappa]^{\kappa}$ with the property that every $E \in \mathscr{E}$ is interval-split by a member of \mathscr{A} .

글 노 네 글

< A > <

Higher analogues: $\mathfrak{fr}_{\sigma}(\kappa)$, Strong club unsplitting

Definition

For κ regular uncountable, let $\mathfrak{fr}_{\sigma}(\kappa)$ denote the minimal size of a family \mathscr{E} of clubs so that there is no countable $\mathscr{A} \subseteq [\kappa]^{\kappa}$ with the property that every $E \in \mathscr{E}$ is interval-split by a member of \mathscr{A} . That is, there is no countable $\mathscr{A} \subseteq [\kappa]^{\kappa}$ with the property that for each $E \in \mathscr{E}$ there is $A \in \mathscr{A}$ with the property that both

$$\{\xi \in E : [\xi, s_E(\xi)) \subseteq A\}$$
 and $\{\xi \in E : [\xi, s_E(\xi)) \cap A = \emptyset\}$

have size κ .

< ロ > < 同 > < 回 > < 回 >

Refining and Domination

Characterization of $\mathfrak{d}(\kappa)$: Strong club unsplitting

Theorem (F., D. Soukup, 2018)

Let κ be a regular uncountable. Then $\mathfrak{d}(\kappa) = \mathfrak{fr}_{\sigma}(\kappa)$.

Vera Fischer (University of Vienna)

More ZFC inequalities

January 2019 44 / 46

3 N

Image: A mage: A ma

On cofinalities

Remark

It is a long-standing open problem if $\mathfrak r$ can be of countable cofinality. However, if cf(\mathfrak r) = ω then $\mathfrak d \leq \mathfrak r.$

Theorem (F., Soukup, 2018)

If κ is regular, uncountable and $cf(\mathfrak{r}(\kappa)) \leq \kappa$ then $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

B → < B

• • • • • • • • •

Questions

- (Cummings-Shelah) Does ∂(κ) = ∂_{Cl}(κ) for all regular uncountable κ?
- (Raghavan-Shelah) Does $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for all regular uncountable κ ?

글 노 네 글

Image: A matrix a

Questions

- (Cummings-Shelah) Does ∂(κ) = ∂_{cl}(κ) for all regular uncountable κ?
- (Raghavan-Shelah) Does ∂(κ) ≤ r(κ) for all regular uncountable κ?

Thank you!

Vera Fischer (University of Vienna)

- A - E

Image: A matrix a