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Colin McLarty
Fermat’s Last Theorem is just about numbers, so it seems like we
ought to be able to prove it by just talking about numbers.

1 23



M. Nathanson, Elementary Methods in Number Theory
(2000)
The theorems in this book are simple statements about integers,
but the standard proofs require contour integration, modular
functions, estimates of exponential sums, and other tools of
complex analysis. This is not unfair. In mathematics, when we
want to prove a theorem, we may use any method. The rule is
“no holds barred.” It is OK to use complex variables, algebraic
geometry, cohomology theory, and the kitchen sink to obtain a
proof. But once a theorem is proved, once we know that it is
true, particularly if it is a simply stated and easily understood
fact about the natural numbers, then we may want to �nd
another proof, one that uses only “elementary arguments” from
number theory. Elementary proofs are not better than other
proofs, nor are they necessarily easy. Indeed, they are often
technically di�cult, but they do satisfy the aesthetic boundary
condition that they use only arithmetic arguments.
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During the nineteenth century, algebraic geometers became
interested in the following question: given an algebraic surface,
characterize the families of surfaces that intersect the given
surface in curves of particular kinds.

Geometers made progress on the case when these families of
surfaces formed a kind of linearly dependent system.

In 1905 Enriques gave a complete characterization of such
families of surfaces intersecting a given smooth algebraic
surface in an irreducible and continuous system of curves.
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Castelnuovo and Enriques, appendix to Théorie des
fonctions algébriques de deux variables indépendantes by
E. Picard and G. Simart (1906)
We have not succeeded in demonstrating this theorem using
geometric methods. . . This result is therefore the fruit of a long
series of researches, to which the transcendental methods of M.
Picard and the geometrical methods used in Italy contributed
equally.
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In fact, Enriques had not succeeded even in that; his proof was
wrong, as discovered by Severi in 1921, who then gave a new
proof that was quickly seen to be incorrect.

A correct proof, entirely transcendental, had in the meantime
been given by Poincaré.

Castelnuovo, letter to Segre, December 18, 1945
We would need to have a fully satisfying geometrical
demonstration.
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A. Brigaglia and C. Cilberto, Italian algebraic geometry
between the two world wars (1995)
In fact, for Enriques and Severi, who were postulating a central
role for the projective algebro-geometric methods in
mathematics, the missing resolution of such an essential
problem in the theory of surfaces—which they considered as
their creation—was always an unacceptable humiliation. Thus
they repeatedly returned to the consideration of this problem,
even if they never were de�nitively successful in resolving it.

In 1966 D. Mumford gave a purely algebraic-geometric proof of
the result, using methods developed by Serre, Grothendieck, and
Kodaira.
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Briançon-Skoda Theorem (1974)
Let R be either the formal or convergent power series ring in d
variables and let I be an ideal of R. Then Id ⊆ I, where Ī is the
integral closure of an ideal I.

Lipman & Teissier, “Pseudo-rational local rings and a
theorem of Briançon-Skoda about integral closures of
ideals”, Michigan Mathematical Journal (1981)
The proof given by Briançon and Skoda of this completely
algebraic statement is based on a quite transcendental deep
result of Skoda. . . . The absence of an algebraic proof has been
for algebraists something of a scandal—perhaps even an
insult—and certainly a challenge.

Lipman & Tessier then give such an algebraic proof.
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What is this “scandal", this “challenge"?

It is common nowadays to formulate the issues raised here in
terms of purity of methods.

Roughly, a solution to a problem, or a proof of a theorem, is pure
if it draws only on what is “close" or “intrinsic” to that problem
or theorem.

Other common language: avoids what is “extrinsic",
“extraneous", “distant", “remote", “alien" or “foreign" to the
problem or theorem.
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Aristotle, Posterior Analytics
We cannot, in demonstrating, pass from one kind to another. We
cannot, for instance, prove geometrical truths by arithmetic.
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After noting that the planar Desargues theorem is typically
proved using space, Hilbert remarks:

Hilbert, “Lectures on Euclidean Geometry”, 1898–1899
Therefore we are for the �rst time in a position to put into
practice a critique of means of proof. In modern mathematics
such criticism is raised very often, where the aim is to preserve
the purity of method, i.e. to prove theorems if possible using
means that are suggested by the content [Inhalt] of the theorem.
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Call everything that belongs to the content of a statement, the
topic of that statement: de�nitions, axioms, inferences, etc.

A proof of a theorem is topically pure when it draws only on what
belongs to the theorem’s topic.

For example, it doesn’t seem that set theory belongs to the topic
of FLT.
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Hilbert later revised the connection between purity and content.

He came to describe some parts of mathematics as being
contentual, and others not, but rather ideal.

Non contentual mathematics includes complex numbers,
projective points, and in�nite sets.
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While it is in practice necessary to use non contentual methods
in order to simplify our reasoning (“the boxer’s gloves”), only
contentual reasoning provides for knowledge.

Thus everything provable by contentual methods must also be
provable by contentual reasoning.

Indeed, that non contentual reasoning is always eliminable must
itself be proved by contentual reasoning: this is where Gödelian
problems intercede.
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Hilbert & Bernays, Grundlagen der Mathematik, Vol. 1 (1934)
Our treatment of the basics of number theory and algebra was
meant to demonstrate how to apply and implement direct
contentual inference that takes place in thought experiments on
intuitively conceived objects and is free of axiomatic
assumptions. Let us call this kind of inference “�nitist” inference
for short, and likewise the methodological attitude underlying
this kind of inference as the “�nitist” attitude or the “�nitist”
standpoint.. . .With each use of the word “�nitist”, we convey the
idea that the relevant consideration, assertion, or de�nition is
con�ned to objects that are conceivable in principle, and
processes that can be e�ectively executed in principle, and thus
it remains within the scope of a concrete treatment.
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Hilbert, “Die Grundlagen Der Elementaren Zahlentheorie”
(1931)
This is the fundamental mode of thought that I hold to be
necessary for mathematics and for all scienti�c thought,
understanding, and communication, and without which mental
activity is not possible at all.

Tait, “Finitism” (1981)
[Finitistically acceptable reasoning] is a minimal kind of
reasoning presupposed by all non-trivial mathematical
reasoning about numbers.
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In�nitude of primes (IP). For every natural number, there is a
greater prime number.

Euclidean solution: if a = 1, then since 2 = S(1) is prime, we
know that there is a prime greater than a = 1. So suppose that
a > 1. Let p1,p2, . . . ,pn be all the primes less than or equal to a,
and let Q = S(p1 · p2 · · ·pn). Then Q has a prime divisor b that is
not equal to any of the pi, and so b > a.

Is it pure?
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Finitary arithmetic (PRA , via Tait). Euclidean proof works.

Feasible arithmetic try 1 (I∆0). Open problem whether IP can be
proved purely; Euclidean proof fails since I∆0 does not prove
that every product of primes exists.

Feasible arithmetic try 2 (EFA=I∆0(exp)). Euclidean solution
works.

Feasible arithmetic try 3 (I∆0 + PHP, via Paris, Wilkie, Woods).
Weaker than EFA. IP is provable here by a di�erent proof, due to
Sylvester.
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The �nitary / in�nitary divide is one way to see purity in number
theory.

Another is the use of complex analysis.

This divide between the “elementary” and not arose with the
complex analytic proofs of the prime number theorem by
Hadamard and de la Vallée Poussin in 1896.

The prime number theorem: the number of primes up to n is
approximately n

log n .
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Ingham, The Distribution of Prime Numbers, 1932
The solution just outlined may be held to be unsatisfactory in
that it introduces ideas very remote from the original problem,
and it is natural to ask for a proof of the prime number theorem
not depending on the theory of a complex variable.

In 1949, Selberg and Erdős independently found such proofs (a
chief reason for Selbert’s Fields Medal).
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Takeuti showed that the proofs of classical analytic number
theory can be carried out in a formalization of complex analysis
he calls elementary complex analysis (ECA).

In particular the PNT can be expressed in LECA, and the HdlVP
proof can be formalized in ECA.

Takeuti (1978): ECA is a conservative extension of PA.

Thus PNTPA is a theorem of PA.

Sudac (2001): the HdlVP proof can be formalized in IΣ1.

Cornaros and Dimitracopoulos (1994) formalized Selberg’s proof
in EFA.
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Ingham (1932): “an argument which makes no explicit mention of
analytic functions may nevertheless involve closely related
ideas”.

The PNT had been shown equivalent to the non-existence of
zeros of the Riemann zeta function on the line Re(s) = 1.

Granville, “Analytic Number Theory” in The Princeton
Companion to Mathematics, 2008
One might argue that it is inevitable that complex analysis must
be involved [in a proof of the PNT].. . .Of course [Selberg and
Erdős’] proof must somehow show that there is no zero on the
line Re(s) = 1, and indeed their combinatorics cunningly masks a
subtle complex analysis proof beneath the surface.

This raises subtle questions about “tacit” or “hidden”
complex-analytic content of arithmetical sentences.
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Here are some reasons to value purity.

Comprehension requires minimal resources

Transmission requires minimal resources

It induces a smaller search space

Searching for pure proofs helps discipline or train the mind

Knowing more about a single subject puts us in a better
position for learning more about it later

There is a natural order of truths, and pure proofs best track
that order.

Pure proofs explain their theorems

Pure proofs provide for enduring, stable knowledge of their
conclusions.
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The desire for purity and the desire for impurity would only be in
con�ict if we could only give one proof of each theorem.

Rather, we should see purity and impurity as distinct epistemic
values in mathematics.

It is important to cultivate a plurality of epistemic values in
order to succeed as a mathematical knower, because to know
requires knowing in as many di�erent ways as we can.

Nietzsche, On the Genealogy of Morals
There is only a perspectival seeing, only a perspectival
“knowing”; and the more a�ects we allow to speak about a
matter, the more eyes, di�erent eyes, we know how to bring to
bear on one and the same matter, that much more complete will
our “concept” of this matter, our “objectivity” be.
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