$I_0(\lambda)$ and Combinatorics at λ^+

Xianghui Shi Beijing Normal University

The 4th Arctic Set Theory Workshop January 21-26, 2019 @ Kilpisjärvi

This is a joint work with Nam Trang.

1 Introduction

- **2** Aronszajn tree and squares
- **3** Scales in PCF theory
- **4** Stationary Reflection
- **5** Diamond and GCH

Axiom I_0

Definition

Axiom $I_0(\lambda)$ is the assertion that there is a $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ such that $\operatorname{crit}(j) < \lambda$.

- It was first proposed and studied by Woodin in the early 80's and by Laver in the 90's.
- It is by far (among) the strongest (in terms of consistency strength) large cardinal axioms unknown to be inconsistent with ZFC.
- Write $I_0(\lambda, X, \alpha)$ for the relativized (to an $X \subseteq V_{\lambda+1}$) version: "there is a $j: L_{\alpha}(X, V_{\lambda+1}) \prec L_{\alpha}(X, V_{\lambda+1})$ with $\operatorname{crit}(j) < \lambda$ ".

Supercompact

Definition

- κ is λ -supercompact if there is an elementary embedding $j: V \to M$ such that $\operatorname{crit}(j) = \kappa, \ j(\kappa) > \lambda$ and $^{\lambda}M \subseteq M$.
- κ is supercompact if it is λ -supercompact for every $\lambda \geq \kappa$.
- Supercompactness implies the consistency of most forcing axioms.
- If $I_0(\lambda)$ holds, then λ is a limit of very strong large cardinals, for instance, limit of $<\lambda$ -supercompact cardinals.
- Although the statement I₀(λ) is stronger than the existence of supercompact cardinals in terms of consistency strength, what it directly implies is not very much beyond the existence of <λ-supercompact cardinals.</p>
- There are a fair number of statements that follow from supercompactness but are independent of $I_0(\lambda)$.

Three types of questions

Let φ be a combinatorical principle at λ^+ . In this talk, we look into the compatibility of $I_0(\lambda)$ with various φ 's over the base theory $\Gamma = \mathsf{ZFC} + I_0(\lambda)$. For each φ , we ask three questions:

- Is φ consistent with Γ ?
- Is $\neg \varphi$ consistent with Γ ?
- Is φ true in $L(V_{\lambda+1})$?

Combinatorial Principles

The combinatorial principles discussed in this talk include

- 1 the existences of (special) λ^+ -Aronszajn tree and of λ^+ -Suslin tree;
- **2** the \Box_{λ} and the \Box_{λ}^* principles;
- **3** the existence of (good, very good) scale at λ^+ ;
- 4 stationary reflection at λ^+ ;
- 5 the \diamond_{λ^+} principle;
- **6** GCH (as well as SCH) at λ .

λ^+ -Aronszajn tree

Definition

- κ -tree is a tree on κ of size κ whose every level has size $<\kappa$.
- A κ-Aronszajn tree is a κ-tree that has no cofinal branch of length κ.
- A κ-Aronszajn tree is special if it is union of κ-many antichains.

λ^+ -Aronszajn tree

Definition

- κ -tree is a tree on κ of size κ whose every level has size $<\kappa$.
- A κ-Aronszajn tree is a κ-tree that has no cofinal branch of length κ.
- A κ-Aronszajn tree is special if it is union of κ-many antichains.

Theorem 1

Assume ZFC + $I_0(\lambda)$. There is no λ^+ Aronszajn tree in $L(V_{\lambda+1})$.

Proof.

- $I_0(\lambda)$ implies that $L(V_{\lambda+1}) \models \lambda^+$ is a measurable cardinal.
- Assume towards a contradiction that T is a λ^+ -Aronszajn tree in $L(V_{\lambda+1})$.
- Let $\pi: L[T] \to M \cong \text{Ult}(L[T], \mu \cap L[T])$ be the ultrapower embedding induced by a λ^+ -complete measure μ on λ^+ . Then $\pi(T)$ is a $\pi(\lambda^+)$ -Aronszajn tree in M.
- Since $\operatorname{crit}(\pi) = \lambda^+$, we have $T = \pi^{``} T \subset \pi(T)$ and $\pi(\lambda^+) > \lambda^+$.
- Any node at the λ^+ -th level of $\pi(T)$ is a cofinal branch of $\pi^{"}T = T$. Contradiction!

Square Principle

Definition (Jensen-Schimmerling)

Let λ be an uncountable cardinal. A $\Box_{\kappa,\lambda}$ -sequence is sequence $\langle C_{\alpha} : \alpha \in \lim(\lambda^+) \rangle$ such that for all $\alpha < \lambda^+$,

- **1** each C_{α} is a nonempty set of club subsets of α , $1 \leq |C_{\alpha}| \leq \kappa$;
- 2 for all $\alpha \in \lim(\lambda^+)$, all $C \in C_{\alpha}$ and all $\beta \in \lim(C)$, otp $(C) \leq \lambda$ and $C \cap \beta \in C_{\beta}$.
- The classical Jensen's "square principle", □_λ, states that there exists a □_{1,λ}-sequence, and
- The "weak square" principle, \Box_{λ}^* , states the existence of a $\Box_{\lambda,\lambda}$ -sequence.
- Note that \Box^*_{λ} is equivalent to the existence of a special λ^+ -Aronszajn tree. (Jensen)

Failure of square in $L(V_{\lambda+1})$

A similar argument gives

Theorem 2

Assume $\mathsf{ZFC} + I_0(\lambda)$. Then $L(V_{\lambda+1}) \models \neg \Box_{\lambda}$.

Failure of square in $L(V_{\lambda+1})$

A similar argument gives

Theorem 2

Assume $\mathsf{ZFC} + I_0(\lambda)$. Then $L(V_{\lambda+1}) \models \neg \Box_{\lambda}$.

Remark

Although \Box_{λ} implies the existence of a λ^+ -Aronszajn tree, this does not enable us to conclude $L(V_{\lambda+1}) \models \neg \Box_{\lambda}$ immediately from Theorem 1, as the construction of a λ^+ -Aronszajn tree uses λ^+ -DC, which in general is not true in $L(V_{\lambda+1})$.

Independence results

Theorem 3 (ZFC)

1 Assume $I_0(\lambda)$. Then there is a model in which $I_0(\lambda)$ holds and there is a special λ^+ -Aronszajn tree, even furthermore a λ^+ -Suslin tree.

2 Assume
$$I_0(\lambda, V_{\lambda+1}^{\sharp}, \omega \cdot 2 + 1)$$
, i.e. there is a

$$j: L_{\omega \cdot 2+1}(V_{\lambda+1}^{\sharp}, V_{\lambda+1}) \prec L_{\omega \cdot 2+1}(V_{\lambda+1}^{\sharp}, V_{\lambda+1})$$

with $\operatorname{crit}(j) < \lambda$. Then there is a $\overline{\lambda} < \lambda$ such that $I_0(\overline{\lambda})$ holds and there is no $\overline{\lambda}^+$ -Aronszajn tree.

Independence results

Theorem 3 (ZFC)

1 Assume $I_0(\lambda)$. Then there is a model in which $I_0(\lambda)$ holds and there is a special λ^+ -Aronszajn tree, even furthermore a λ^+ -Suslin tree.

2 Assume
$$I_0(\lambda, V_{\lambda+1}^{\sharp}, \omega \cdot 2 + 1)$$
, i.e. there is a

$$j: L_{\omega \cdot 2+1}(V_{\lambda+1}^{\sharp}, V_{\lambda+1}) \prec L_{\omega \cdot 2+1}(V_{\lambda+1}^{\sharp}, V_{\lambda+1})$$

with $\operatorname{crit}(j) < \lambda$. Then there is a $\overline{\lambda} < \lambda$ such that $I_0(\overline{\lambda})$ holds and there is no $\overline{\lambda}^+$ -Aronszajn tree.

The hypothesis in 2, by a theorem of Cramer, implies $I_0(\bar{\lambda})$, for some $\bar{\lambda} < \lambda$.

Theorem 4 (ZFC)

- 1 $\operatorname{Con}(I_0(\lambda))$ implies $\operatorname{Con}(I_0(\lambda) + \Box_{\lambda})$.
- 2 Assume $I_0(\lambda, V_{\lambda+1}^{\sharp}, \omega \cdot 2 + 1)$. Then there is a $\overline{\lambda} < \lambda$ such that $I_0(\overline{\lambda})$ holds and $\Box_{\overline{\lambda}}$ fails.

Scales

- Consider $\prod_{i < \omega} \kappa_i$, where each κ_i is regular and $\lambda = \sup_{i < \omega} \kappa_i$.
- Let I = Fin, i.e. the ideal consisting of all finite subsets of ω .
- Given $f, g \in \prod_i \kappa_i$, $f <_I g$ iff $\omega \setminus \{i \mid f(i) < g(i)\} \in I$.
- A sequence $\langle f_i : i < \alpha \rangle$ is a scale of length α in $\prod_i \kappa_i / I$ if it is $<_I$ -increasing and cofinal in $\prod_i \kappa_i / I$.
- A scale for λ is a pair $(\bar{\kappa}, \bar{f})$, where \bar{f} is a scale of length λ^+ in $\prod_i \kappa_i / I$.
- **ZFC-Fact**: There exists a scale for λ whenever λ is singular.

Definition

- Suppose $(\bar{\kappa}, \bar{f})$ is a scale for λ . A point $\alpha < \lambda^+$ is good for $(\bar{\kappa}, \bar{f})$ iff there is an unbounded $A \subset \alpha$ s.t. $\langle f_{\beta}(n) : \beta \in A \rangle$ is strictly increasing for sufficiently large n.
- α is very good for $(\bar{\kappa}, \bar{f})$ if A above is a club in α .
- A scale $(\bar{\kappa}, \bar{f})$ for λ is good if it is good at every point in $\lambda^+ \cap \operatorname{Cof}(>\omega)$.
- A scale $(\bar{\kappa}, \bar{f})$ for λ is very good if it is very good at every point in $\lambda^+ \cap \operatorname{Cof}(>\omega)$.

Theorem 5 (ZFC)

- **1** Assume $I_0(\lambda)$. There is no scale at λ in $L(V_{\lambda+1})$.
- **2** Assume $I_0(\lambda)$. Then there is a model of ZFC + $I_0(\lambda)$, in which there is a very good scale at λ .
- **3** Assume $I_0(\lambda, V_{\lambda+1}^{\sharp}, \omega \cdot 2 + 1)$. Then there is a $\overline{\lambda} < \lambda$ such that $I_0(\overline{\lambda})$ holds and there is no good scale at $\overline{\lambda}$.

Singular limit above supercompacts

Theorem

- **1** (Magidor-Shelah¹⁹⁹⁶). If μ is a singular limit of μ^+ -strongly compact cardinals, then there is no μ^+ -Aronszajn tree.
- 2 (Solovay¹⁹⁷⁸[supercompact], Gregory[strongly compact], Jensen[subcompact], Brooke-Taylor and Sy Friedman²⁰¹²). If κ is μ^+ -subcompact and $\mu \ge \kappa$, then $\neg \Box_{\mu}$.
- 3 (Shelah¹⁹⁷⁹[strongly compact], Brooke-Taylor and Sy Friedman²⁰¹²). If κ is μ^+ -subcompact and $cf(\mu) < \kappa < \mu$, then $\neg \Box^*_{\mu}$.
- 4 (Shelah¹⁹⁷⁹). If κ is μ^+ -supercompact and $cf(\mu) < \kappa < \mu$, then there are scales of length μ^+ but none of them are good.

Singular limit above supercompacts

Theorem

- **1** (Magidor-Shelah¹⁹⁹⁶). If μ is a singular limit of μ^+ -strongly compact cardinals, then there is no μ^+ -Aronszajn tree.
- 2 (Solovay¹⁹⁷⁸[supercompact], Gregory[strongly compact], Jensen[subcompact], Brooke-Taylor and Sy Friedman²⁰¹²). If κ is μ^+ -subcompact and $\mu \ge \kappa$, then $\neg \Box_{\mu}$.
- 3 (Shelah¹⁹⁷⁹[strongly compact], Brooke-Taylor and Sy Friedman²⁰¹²). If κ is μ^+ -subcompact and $cf(\mu) < \kappa < \mu$, then $\neg \Box^*_{\mu}$.
- 4 (Shelah¹⁹⁷⁹). If κ is μ^+ -supercompact and $cf(\mu) < \kappa < \mu$, then there are scales of length μ^+ but none of them are good.
- If κ is supercompact, then the hypotheses in (2)-(4) hold at κ .
- The hypotheses in (1)-(4) may fail at μ = λ, κ = crit(j), with the presence of I₀(λ).

Stationary Reflection

Definition

Let κ be uncountable and regular. Let $S \subseteq \kappa$ be stationary.

- S reflects at α for $\alpha < \kappa$ with $cf(\alpha) > \omega$ if $S \cap \alpha$ is stationary in α .
- Stationary Reflection Principle for T, where $T \subseteq \kappa$ is stationary, says that for every stationary $S \subseteq T$, S reflects at some $\alpha < \kappa$.
- $\operatorname{SRP}_{\lambda^+}$ denotes the Stationary Reflection Principle for $T = \lambda^+$.

Theorem 6 (ZFC)

- **1** Assume $I_0(\lambda)$ is consistent. Then so is $I_0(\lambda) + \neg \operatorname{SRP}_{\lambda^+}$.
- 2 Assume $I_0(\lambda, V_{\lambda\pm 1}^{\sharp}, \omega \cdot 2 + 1)$. Then there is a $\overline{\lambda} < \lambda$ such that I_0 holds at λ and $SRP_{\overline{\lambda}^+}$ is true.
- Due to the lack of choice in this model,¹ the situation of SRP_{λ+} in L(V_{λ+1}) is unclear.

¹(Woodin¹⁹⁹⁰). $L(V_{\lambda+1}) \models \mathsf{DC}_{<\lambda^+}(V_{\lambda+1}).$

• We include a scenario where it could be true in $L(V_{\lambda+1})$.

Theorem 7 (ZFC)

Assume $L(V_{\lambda+1}) \models \lambda^+$ is $V_{\lambda+1}$ -supercompact, i.e. there is a fine, normal, λ^+ -complete measure μ on $\mathscr{P}_{\lambda^+}(V_{\lambda+1})^{ab}$. Then $L(V_{\lambda+1}) \models SRP_{\lambda^+}$.

^aFineness and completeness have standard meanings.

^bIn the context where full AC does not hold, normality is defined as follows: suppose $F: \mathscr{P}_{\lambda^+}(V_{\lambda+1}) \to \mathscr{P}_{\lambda^+}(V_{\lambda+1})$ is s.t. $\{\sigma: F(\sigma) \subseteq \sigma \land F(\sigma) \neq \emptyset\} \in \mu$, then there is some x such that $\{\sigma: x \in F(\sigma)\} \in \mu$ • We include a scenario where it could be true in $L(V_{\lambda+1})$.

Theorem 7 (ZFC)

Assume $L(V_{\lambda+1}) \models \lambda^+$ is $V_{\lambda+1}$ -supercompact, i.e. there is a fine, normal, λ^+ -complete measure μ on $\mathscr{P}_{\lambda^+}(V_{\lambda+1})^{ab}$. Then $L(V_{\lambda+1}) \models SRP_{\lambda^+}$.

^aFineness and completeness have standard meanings.

^bIn the context where full AC does not hold, normality is defined as follows: suppose $F: \mathscr{P}_{\lambda^+}(V_{\lambda+1}) \to \mathscr{P}_{\lambda^+}(V_{\lambda+1})$ is s.t. $\{\sigma: F(\sigma) \subseteq \sigma \land F(\sigma) \neq \emptyset\} \in \mu$, then there is some x such that $\{\sigma: x \in F(\sigma)\} \in \mu$

However, whether the hypothesis is compatible with I₀(λ) is yet unknown.

Sketch of the proof

- Working in $L(V_{\lambda+1})$, fix a measure μ witnessing that λ^+ is $V_{\lambda+1}$ -supercompact.
- For each $\sigma \in \mathscr{P}_{\lambda^+}(V_{\lambda+1})$, let $M_{\sigma} = \text{HOD}_{\sigma \cup \{\sigma\}}$ and let $M = \prod_{\sigma} M_{\sigma} / \mu$ be the μ -ultraproduct of the structures M_{σ} 's.
- Los theorem holds for this ultraproduct.
- Let $S \subseteq \lambda^+$ be stationary and $S^* = [c_S]_{\mu}$. Then $S^* \cap \lambda^+ = S$ and is stationary (in M). By Los and the normality of μ , there is some $\alpha < \lambda^+$ such that

 $A = \{ \sigma \mid M_{\sigma} \vDash S \cap \alpha \text{ is stationary} \} \in \mu.$

- Let $C \subseteq \alpha$ be a club in α . By Łos and the fineness of μ , $B = \{\sigma \mid C \in M_{\sigma}\} \in \mu$.
- Fix a $\sigma \in A \cap B$. Then in M_{σ} , C is club in α and $S \cap \alpha$ is stationary, hence $C \cap S \cap \alpha \neq \emptyset$.
- By Łos, $S \cap \alpha$ is stationary.

Definitions from I_0 theory

Definition

Suppose $X \subseteq V_{\lambda+1}$. **1** $\Theta_{\lambda}^{X} =_{def} \{ \alpha \mid L(X, V_{\lambda+1}) \models \exists \text{ a surjective } \pi : V_{\lambda+1} \rightarrow \alpha \}.$ **2** An ordinal $\alpha < \Theta_{\lambda}^{X}$ is X-good if every element of $L_{\alpha}(X, V_{\lambda+1})$ is definable in $L_{\alpha}(X, V_{\lambda+1})$ with parameters in $V_{\lambda+1} \cup \{X\}.$

Definitions from I_0 theory

Definition

Suppose $X \subseteq V_{\lambda+1}$. 1 $\Theta_{\lambda}^{X} =_{def} \{ \alpha \mid L(X, V_{\lambda+1}) \models \exists \text{ a surjective } \pi : V_{\lambda+1} \rightarrow \alpha \}.$ 2 An ordinal $\alpha < \Theta_{\lambda}^{X}$ is X-good if every element of $L_{\alpha}(X, V_{\lambda+1})$ is definable in $L_{\alpha}(X, V_{\lambda+1})$ with parameters in $V_{\lambda+1} \cup \{X\}.$

 Our discussion regarding the GCH at λ assumes a stronger form of Generic absoluteness.

About proper I_0 embedding

For an $X \subseteq V_{\lambda+1}$, let $j: L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ be such that $\operatorname{crit}(j) < \lambda$. Let

$$U = \{ X \in L(X, V_{\lambda+1}) \mid j \upharpoonright V_{\lambda} \in j(X) \}$$

be the ultrafilter given by $j. \ \mbox{Define}$

$$W = j(U) = \bigcup \{ j(\operatorname{ran}(\pi)) \mid \pi \in L(X, V_{\lambda+1}) \land \pi : V_{\lambda+1} \to U \}$$

If j is proper (definition omitted), then

$$j = j_U.$$

- W is an $L(X, V_{\lambda+1})$ -ultrafilter over $V_{\lambda+1}$, and $\text{Ult}(L(X, V_{\lambda+1}), W)$ is wellfounded.
- $\operatorname{Ult}(L(X, V_{\lambda+1}), W) \cong L(X, V_{\lambda+1})$ and the associated map $j_W : L(X, V_{\lambda+1}) \to L(X, V_{\lambda+1})$ is elementary and proper.
- This process can be iterated, so that for all iterates M_{α} of $M_0 = L(X, V_{\lambda+1})$ is wellfounded.

Definition (Woodin²⁰¹¹)

Assume $j: L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ is proper and $\operatorname{crit}(j) < \lambda$. Let $(M_{\omega}, j_{0,\omega})$ be the ω -iterate of $(L(X, V_{\lambda+1}), j)$. Suppose $\alpha < \Theta_{\lambda}^{X}$ and α is X-good. We say that Generic Absoluteness holds for X at α if the following is true:

Suppose $\mathbb{P} \in j_{0,\omega}(V_{\lambda})$, $G \in V$ is an M_{ω} -generic filter for \mathbb{P} , and $\operatorname{cf}(\lambda) = \omega$ in $M_{\omega}[G]$. Then there is some $\alpha' \leq \alpha$ and $X' \subseteq V_{\lambda+1}$ such that

 $L_{\alpha'}(X', M_{\omega}[G] \cap V_{\lambda+1}) \prec L_{\alpha}(X, V_{\lambda+1}).$

Definition (Woodin²⁰¹¹)

Assume $j: L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ is proper and $\operatorname{crit}(j) < \lambda$. Let $(M_{\omega}, j_{0,\omega})$ be the ω -iterate of $(L(X, V_{\lambda+1}), j)$. Suppose $\alpha < \Theta_{\lambda}^{X}$ and α is X-good. We say that Generic Absoluteness holds for X at α if the following is true:

Suppose $\mathbb{P} \in j_{0,\omega}(V_{\lambda})$, $G \in V$ is an M_{ω} -generic filter for \mathbb{P} , and $\operatorname{cf}(\lambda) = \omega$ in $M_{\omega}[G]$. Then there is some $\alpha' \leq \alpha$ and $X' \subseteq V_{\lambda+1}$ such that

 $L_{\alpha'}(X', M_{\omega}[G] \cap V_{\lambda+1}) \prec L_{\alpha}(X, V_{\lambda+1}).$

Theorem (Woodin²⁰¹¹, Cramer²⁰¹⁵)

 $I_0(\lambda)$ implies that the Generic Absoluteness for $X = \emptyset$ at all α .

Definition (Woodin²⁰¹¹)

Assume $j: L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ is proper and $\operatorname{crit}(j) < \lambda$. Let $(M_{\omega}, j_{0,\omega})$ be the ω -iterate of $(L(X, V_{\lambda+1}), j)$. Suppose $\alpha < \Theta_{\lambda}^{X}$ and α is X-good. We say that Generic Absoluteness holds for X at α if the following is true:

Suppose $\mathbb{P} \in j_{0,\omega}(V_{\lambda})$, $G \in V$ is an M_{ω} -generic filter for \mathbb{P} , and $\operatorname{cf}(\lambda) = \omega$ in $M_{\omega}[G]$. Then there is some $\alpha' \leq \alpha$ and $X' \subseteq V_{\lambda+1}$ such that

 $L_{\alpha'}(X', M_{\omega}[G] \cap V_{\lambda+1}) \prec L_{\alpha}(X, V_{\lambda+1}).$

Theorem (Woodin²⁰¹¹, Cramer²⁰¹⁵)

 $I_0(\lambda)$ implies that the Generic Absoluteness for $X = \emptyset$ at all α .

■ It is unclear for arbitrary X.

Diamond and GCH at λ^+

Theorem 8 (ZFC)

- **1** Assume $I_0(\lambda)$. Then in $L(V_{\lambda+1})$, there is no λ^+ -sequence of distinct members of $V_{\lambda+1}$, therefore $2^{\lambda} \neq \lambda^+$ and $\neg \diamondsuit_{\lambda^+}$.
- **2** Assume $\exists \lambda I_0(\lambda)$ is consistent. Then so are $\exists \lambda (I_0(\lambda) + 2^{\lambda} = \lambda^+)$ and $\exists \lambda (I_0(\lambda) + \diamond_{\lambda^+})$.
- **B** (Dimonte-Friedman²⁰¹⁴). Assume there is a proper

$$j: L(V_{\lambda+1}^{\sharp}, V_{\lambda+1}) \prec L(V_{\lambda+1}^{\sharp}, V_{\lambda+1})$$

with $\operatorname{crit}(j) < \lambda$ and $V_{\lambda} \models \operatorname{GCH}$. Suppose $\alpha \in (\Theta_{\lambda}, \Theta_{\lambda}^{V_{\lambda+1}^{\sharp}})$ and α is $V_{\lambda+1}^{\sharp}$ -good and assume that Generic Absoluteness holds for $V_{\lambda+1}^{\sharp}$ at α . Then it is consistent that $I_0(\lambda)$ holds and $2^{\lambda} > \lambda^+$.

- (1) is an analog of the well-known AD-fact, namely: there is no ω_1 -sequence of distinct reals.
- (2) follows from the fact that \diamond_{λ^+} can be obtained by forcing $2^{\lambda} = \lambda^+$ without adding bounded subsets of λ^2 , therefore preserves $2^{<\lambda} = \lambda$ and $I_0(\lambda)$.
- For (3), we apply the Generic Absoluteness to Gitik's one-extender-based Prikry forcing, and show that it is λ-good.

 λ -goodness is a sufficient condition, due to Woodin, for a forcing notion \mathbb{P} satisfying the conditions in Generic Absoluteness, i.e. $\mathbb{P} \in j_{0,\omega}(V_{\lambda})$ and there is a M_{ω} -generic filter $G \subset \mathbb{P}$ in V such that $M_{\omega}[G] \models cf(\lambda) = \omega$.

This involves a systematic analysis on the ranks of (finite parts of) conditions in Gitik's forcing.

²Use Levy collapse $Coll(\lambda^+, 2^{\lambda})$

THANK YOU!