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Axiom I

Axiom Iy(A) is the assertion that thereis a j : L(Viy1) < L(Vi41)
such that crit(j) < .

m It was first proposed and studied by Woodin in the early 80's
and by Laver in the 90’s.

m It is by far (among) the strongest (in terms of consistency
strength) large cardinal axioms unknown to be inconsistent
with ZFC.

m Write Iy(A, X, «) for the relativized (to an X C V) 1) version:
“there is a j : Lo (X, Vat1) < Lo(X, Vay1) with crit(j) < A".
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Supercompact

K is A-supercompact if there is an elementary embedding
j:V — M such that crit(j) = &, j(k) > A and *M C M.

B k is supercompact if it is A\-supercompact for every A > k.

m Supercompactness implies the consistency of most forcing
axioms.

m If Io(\) holds, then X is a limit of very strong large cardinals,
for instance, limit of <A-supercompact cardinals.

m Although the statement Ip(\) is stronger than the existence
of supercompact cardinals in terms of consistency strength,
what it directly implies is not very much beyond the existence
of <A-supercompact cardinals.

m There are a fair number of statements that follow from
supercompactness but are independent of Iy(\).
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Three types of questions

Let ¢ be a combinatorical principle at A™. In this talk, we look
into the compatibility of Io(\) with various ¢'s over the base
theory I' = ZFC + Ip(\). For each ¢, we ask three questions:

m Is ¢ consistent with T'?
m Is —p consistent with I'?

m Is ¢ true in L(Vy41)?
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Combinatorial Principles

The combinatorial principles discussed in this talk include

the existences of (special) AT-Aronszajn tree and of A*-Suslin
tree;

the Uy and the [} principles;

the existence of (good, very good) scale at A™;
stationary reflection at \™;

the &+ principle;

@ GCH (as well as SCH) at .
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AT-Aronszajn tree

B k-tree is a tree on k of size kK whose every level has size <k.

m A k-Aronszajn tree is a k-tree that has no cofinal branch of
length k.

m A k-Aronszajn tree is special if it is union of k-many
antichains.
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AT-Aronszajn tree

B k-tree is a tree on k of size kK whose every level has size <k.

m A k-Aronszajn tree is a k-tree that has no cofinal branch of
length k.

m A k-Aronszajn tree is special if it is union of k-many
antichains.

Assume ZFC + Ig(\). There is no X™ Aronszajn tree in L(Vyy1).
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Proof.
m [o(A) implies that L(Vy,1) = AT is a measurable cardinal.

m Assume towards a contradiction that 7" is a A™-Aronszajn tree
in L(V)\+1).

m Let m: L[T| = M = Ul(L[T], u N L[T]) be the ultrapower
embedding induced by a A*-complete measure p on AT,
Then 7(T) is a w(AT)-Aronszajn tree in M.

m Since crit(7) = AT, we have T'=n“T C 7(T) and
T(AT) > At.

m Any node at the A"-th level of m(T) is a cofinal branch of
7“T =T. Contradiction! Ol

v
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Square Principle

Definition (Jensen-Schimmerling)

Let A be an uncountable cardinal. A [J,; x\-sequence is sequence
(Cq : a € lim(AT)) such that for all & < AT,
each C,, is a nonempty set of club subsets of o, 1 < |C,| < k;

B for all @ € lim(\T), all C € C, and all 8 € lim(C),
otp(C) < XAand CN B e Cs.

m The classical Jensen's “square principle”, [, states that
there exists a [y \-sequence, and

m The “weak square” principle, [J%, states the existence of a
LI, a-sequence.

m Note that [} is equivalent to the existence of a special
AT-Aronszajn tree. (Jensen)
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Failure of square in L(V))

A similar argument gives

Assume ZFC + Io(N). Then L(Vyy1) = —O,.
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Failure of square in L(V))

A similar argument gives

Assume ZFC + Io(N). Then L(Vyy1) = —O,.

REMARK

Although [Jy implies the existence of a AT-Aronszajn tree, this
does not enable us to conclude L(V)y11) | —O, immediately from
Theorem 1, as the construction of a AT-Aronszajn tree uses
AT-DC, which in general is not true in L(Vy,1).
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Independence results

Theorem 3 (ZFC)

Assume Iy(\). Then there is a model in which Iy(\) holds
and there is a special \*-Aronszajn tree, even furthermore a
At -Suslin tree.

Assume Iy(, Vfﬂ,w -2+1), i.e. there is a

E Lw-2+1(Vf+1, Vat1) < Lw-2+1(V)?+1, Vat1)

with crit(j) < A. Then there is a A < A such that In(\) holds
and there is no A\ -Aronszajn tree.

v
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and there is a special \*-Aronszajn tree, even furthermore a
At -Suslin tree.

Assume Iy(, Vfﬂ,w -2+1), i.e. there is a

E Lw-2+1(Vf+1, Vat1) < Lw-2+1(V)?+1, Vat1)

with crit(j) < A. Then there is a A < A such that In(\) holds
and there is no A\ -Aronszajn tree.

v

The hypothesis in 2, by a theorem of Cramer, implies Io(\), for
some A < \.
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Theorem 4 (ZFC)

Con(Iy(X)) implies Con(Ip(N) + Oy).
B Assume Iy(A, V)Ei+17w -2+ 1). Then there is a A < X such

that Io(\) holds and 0I5 fails.
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Scales

Consider [[;,, #i, where each &; is regular and X\ = sup;_,, x;.
Let I = Fin, i.e. the ideal consisting of all finite subsets of w.
Given f,g e [, ki, f<rgiffw\{i]| f(3) <g(i)} € 1.

A sequence (f; : i < ) is a scale of length « in [, x; /T if it
is <r-increasing and cofinal in [], x;/1.

A scale for \ is a pair (R, f), where f is a scale of length A*
in [, ki/I.

ZFC-Fact: There exists a scale for A whenever A is singular.
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Definition

m Suppose (K, f) is a scale for A. A point a < ATt is good for
(R, f) iff there is an unbounded A C o s.t. (fg(n): B € A) is
strictly increasing for sufficiently large n.

m « is very good for (%, f) if A above is a club in a.

m A scale (&, f) for A is good if it is good at every point in
AT N Cof (>w).

m A scale (g, f) for X is very good if it is very good at every
point in AT N Cof (>w).
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Theorem 5 (ZFC)

Assume Io(\). There is no scale at X in L(Vy41).
B Assume Iy(\). Then there is a model of ZFC + Iy()\), in
which there is a very good scale at ).

Assume In(A, V)Ei+17w -2+ 1). Then there is a_5\ < A such
that In(A\) holds and there is no good scale at \.
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Singular limit above supercompacts

(Magidor-Shelah!996) " If 11 is a singular limit of u*-strongly
compact cardinals, then there is no " -Aronszajn tree.

(SOIOVay1978[supercompact], Gregory[strongly compact], Jensen[subcompact],
Brooke-Taylor and Sy Friedman?012).
If x is T -subcompact and p > &, then =0J,,.
(Shelah1979[strongly compact], Brooke-Taylor and Sy Friedman2012).
If x is pT-subcompact and cf (u) < K < p, then -5
(Shelah™). If & is u*-supercompact and cf () < & < g,
then there are scales of length ;™ but none of them are good.
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Singular limit above supercompacts

(Magidor-Shelah'9%6) . If 1 is a singular limit of T -strongly
compact cardinals, then there is no " -Aronszajn tree.

(SOIOVay1978[supercompact], Gregory[strongly compact], Jensen[subcompact],
Brooke-Taylor and Sy Friedman?012).
y y
If x is T -subcompact and p > &, then =0J,,.

(Shelah1979[strongly compact], Brooke-Taylor and Sy Friedman2012).

If x is pT-subcompact and cf (u) < K < p, then -5

(Shelah™). If & is u*-supercompact and cf () < & < g,
then there are scales of length ;™ but none of them are good.

m If K is supercompact, then the hypotheses in (2)-(4) hold at k.
m The hypotheses in (1)-(4) may fail at u = A, kK = crit(j), with
the presence of I(\).
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Stationary Reflection

Let k be uncountable and regular. Let S C k be stationary.

m S reflects at a for v < K with cf(a)) > w if SN« is stationary
in a.

m Stationary Reflection Principle for T', where T' C & is
stationary, says that for every stationary S C T', S reflects at
some o < K.

m SRP,+ denotes the Stationary Reflection Principle for
T = XT.
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Theorem 6 (ZFC)

Assume () is consistent. Then so is In(A) + = SRP+.

B Assume Iy(A, V/\ﬁi_l,w -2+ 1). Then thereis a A < \ such
that Iy holds at A\ and SRPy; is true.

m Due to the lack of choice in this model,! the situation of
SRPy+ in L(Vy41) is unclear.

H(Woodin'9). L(Vai1) = DCoyt (Vag1).
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m We include a scenario where it could be true in L(V)11).

Theorem 7 (ZFC)

Assume L(Vyy1) |E AT is Vi 1-supercompact, i.e. there is a fine,
normal, A\*-complete measure y on P+ (Vyy1)?°.
Then L(Vy41) = SRP+.

“Fineness and completeness have standard meanings.

bIn the context where full AC does not hold, normality is defined as follows:
suppose F : 2,y (Vay1) = Pyt (Vag1) isst. {o: F(o) Co A F(o) £ 0} € p,
then there is some z such that {o: x € F(0)} € i

v
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m We include a scenario where it could be true in L(V)11).

Theorem 7 (ZFC)

Assume L(Vyy1) |E AT is Vi 1-supercompact, i.e. there is a fine,
normal, A\*-complete measure y on P+ (Vyy1)?°.
Then L(Vy41) = SRP+.

“Fineness and completeness have standard meanings.

bIn the context where full AC does not hold, normality is defined as follows:
suppose F : 2,y (Vay1) = Pyt (Vag1) isst. {o: F(o) Co A F(o) £ 0} € p,
then there is some z such that {o : z € F(0)} € p

v

m However, whether the hypothesis is compatible with Ip(\) is
yet unknown.
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Sketch of the proof

Working in L(Vy;1), fix a measure p witnessing that AT is
V+1-supercompact.

For each o € #)+(Vay1), let My = HOD, o} and let
M =1T], M,/p be the p-ultraproduct of the structures Mj's.

tos theorem holds for this ultraproduct.

Let S C AT be stationary and S* = [cg],. Then S*N AT =S
and is stationary (in M). By tos and the normality of ,
there is some a < AT such that

A={o| M, E SNais stationary} € p.
Let C C « be a club in a. By tos and the fineness of p,
B={c|CeM,}€p.

Fixace ANB. Thenin M,, Cisclubin o and SN« is
stationary, hence C NS Na # 0.

By tos, SN« is stationary.
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Definitions from [, theory

Suppose X C V1.
OF =gef {a | L(X, Vat1) = 3 a surjective 7 : Vi1 — a.
An ordinal o < @f\( is X-good if every element of

Lo(X,Vyy1) is definable in Lo (X, Vay1) with parameters in
V)\+1 U {X}
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Definitions from [, theory

Suppose X C Vyyq.
@f\( =def {a | L(X,Vy1) | 3 a surjective 7 : Vi1 — al.
An ordinal o < @f\( is X-good if every element of
Lo(X,Vyy1) is definable in Lo (X, Vay1) with parameters in
Vg1 U {;Xf}.

m Our discussion regarding the GCH at A assumes a stronger
form of Generic absoluteness.
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About proper I, embedding

Foran X C V41, let j : L(X, Vy41) < L(X, V41) be such that
crit(j) < A. Let
U={X € L(X,Vay1) [ jIVa € j(X)}

be the ultrafilter given by j. Define

W = () = JGiGan(m) | 7 € L(X, Vas1) AT : Vags — U}
If j is proper (definition omitted), then

" j=Jju.

m Wis an L(X, V) 1)-ultrafilter over V)41, and

Ult(L(X, Vay1), W) is wellfounded.

m Ut(L(X, Vag1), W) = L(X, Vay1) and the associated map
Jgw  L(X,Vay1) = L(X,Vyy1) is elementary and proper.

m This process can be iterated, so that for all iterates M, of
My = L(X,Vx11) is wellfounded.
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Definition (Woodin?"!!)

Assume j : L(X, Vy41) < L(X, V1) is proper and crit(j) < A.
Let (M., jow) be the w-iterate of (L(X, Vi41),7). Suppose

a < @f and « is X-good. We say that Generic Absoluteness
holds for X at « if the following is true:

Suppose P € jo.,(Vy), G € V is an M,,-generic filter for
P, and cf(\) = w in M,[G]. Then there is some o/ < «
and X' C V.1 such that

La/(X,, Mw[G] N V/\-H) < LQ(X, V)\-i-l)'
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Definition (Woodin?"!!)

Assume j : L(X, Vy41) < L(X, V1) is proper and crit(j) < A.
Let (M., jow) be the w-iterate of (L(X, Vi41),7). Suppose

a < @f and « is X-good. We say that Generic Absoluteness
holds for X at « if the following is true:

Suppose P € jo.,(Vy), G € V is an M,,-generic filter for
P, and cf(\) = w in M,[G]. Then there is some o/ < «
and X' C V.1 such that

La/(X,, Mw[G] M V/\+1) < LQ(X, V)\-H)'

Theorem (Woodin?’!!, Cramer?"!%)

Ip(A) implies that the Generic Absoluteness for X = @ at all .

m It is unclear for arbitrary X.
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Diamond and GCH at A\

Theorem 8 (ZFC)

Assume Iy(\). Then in L(Vy41), there is no A\t -sequence of
distinct members of Vi1, therefore 2* # AT and ~O 4.

B Assume 3\ Io()\) is consistent. Then so are
N (To(A) + 2% = AT) and IX (Tp(N) + Ope).

(Dimonte-Friedman?014). Assume there is a proper

J 1 L(VE 1 Vi) < L(VE L, Vi)

with crit(j) < A and V), = GCH. Suppose a € (@A,G‘A/*n“)
and « is V)?H—good and assume that Generic Absoluteness
holds for V/\ﬁ_H at a.

Then it is consistent that Io(\) holds and 2* > \*.

25/27



m (1) is an analog of the well-known AD-fact, namely: there is
no wi-sequence of distinct reals.

m (2) follows from the fact that <+ can be obtained by forcing
24 = At without adding bounded subsets of A2, therefore
preserves 2<* = X and Ip()).

m For (3), we apply the Generic Absoluteness to Gitik's
one-extender-based Prikry forcing, and show that it is A-good.

A-goodness is a sufficient condition, due to Woodin, for a
forcing notion IP satisfying the conditions in Generic
Absoluteness, i.e. P € jo (V) and there is a M,-generic filter
G C P in V such that M,[G] = cf(N) = w.

This involves a systematic analysis on the ranks of (finite
parts of ) conditions in Gitik's forcing.

2Use Levy collapse Coll(AT, 2*)
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THANK YOU!
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