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Axiom I0

Definition

Axiom I0(λ) is the assertion that there is a j : L(Vλ+1) ≺ L(Vλ+1)
such that crit(j) < λ.

It was first proposed and studied by Woodin in the early 80’s
and by Laver in the 90’s.

It is by far (among) the strongest (in terms of consistency
strength) large cardinal axioms unknown to be inconsistent
with ZFC.

Write I0(λ,X, α) for the relativized (to an X ⊆ Vλ+1) version:
“there is a j : Lα(X,Vλ+1) ≺ Lα(X,Vλ+1) with crit(j) < λ”.
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Supercompact

Definition

κ is λ-supercompact if there is an elementary embedding
j : V →M such that crit(j) = κ, j(κ) > λ and λM ⊆M .

κ is supercompact if it is λ-supercompact for every λ ≥ κ.

Supercompactness implies the consistency of most forcing
axioms.

If I0(λ) holds, then λ is a limit of very strong large cardinals,
for instance, limit of <λ-supercompact cardinals.

Although the statement I0(λ) is stronger than the existence
of supercompact cardinals in terms of consistency strength,
what it directly implies is not very much beyond the existence
of <λ-supercompact cardinals.

There are a fair number of statements that follow from
supercompactness but are independent of I0(λ).
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Three types of questions

Let ϕ be a combinatorical principle at λ+. In this talk, we look
into the compatibility of I0(λ) with various ϕ’s over the base
theory Γ = ZFC + I0(λ). For each ϕ, we ask three questions:

Is ϕ consistent with Γ?

Is ¬ϕ consistent with Γ?

Is ϕ true in L(Vλ+1)?
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Combinatorial Principles

The combinatorial principles discussed in this talk include

1 the existences of (special) λ+-Aronszajn tree and of λ+-Suslin
tree;

2 the �λ and the �∗λ principles;

3 the existence of (good, very good) scale at λ+;

4 stationary reflection at λ+;

5 the 3λ+ principle;

6 GCH (as well as SCH) at λ.
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λ+-Aronszajn tree

Definition

κ-tree is a tree on κ of size κ whose every level has size <κ.

A κ-Aronszajn tree is a κ-tree that has no cofinal branch of
length κ.

A κ-Aronszajn tree is special if it is union of κ-many
antichains.

Theorem 1

Assume ZFC + I0(λ). There is no λ+ Aronszajn tree in L(Vλ+1).
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Proof.

I0(λ) implies that L(Vλ+1) |= λ+ is a measurable cardinal.

Assume towards a contradiction that T is a λ+-Aronszajn tree
in L(Vλ+1).

Let π : L[T ]→M ∼= Ult(L[T ], µ ∩ L[T ]) be the ultrapower
embedding induced by a λ+-complete measure µ on λ+.
Then π(T ) is a π(λ+)-Aronszajn tree in M .

Since crit(π) = λ+, we have T = π“T ⊂ π(T ) and
π(λ+) > λ+.

Any node at the λ+-th level of π(T ) is a cofinal branch of
π“T = T . Contradiction!
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Square Principle

Definition (Jensen-Schimmerling)

Let λ be an uncountable cardinal. A �κ,λ-sequence is sequence
〈Cα : α ∈ lim(λ+)〉 such that for all α < λ+,

1 each Cα is a nonempty set of club subsets of α, 1 ≤ |Cα| ≤ κ;

2 for all α ∈ lim(λ+), all C ∈ Cα and all β ∈ lim(C),
otp(C) ≤ λ and C ∩ β ∈ Cβ.

The classical Jensen’s “square principle”, �λ, states that
there exists a �1,λ-sequence, and

The “weak square” principle, �∗λ, states the existence of a
�λ,λ-sequence.

Note that �∗λ is equivalent to the existence of a special
λ+-Aronszajn tree. (Jensen)
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Failure of square in L(Vλ+1)

A similar argument gives

Theorem 2

Assume ZFC + I0(λ). Then L(Vλ+1) |= ¬�λ.

Remark

Although �λ implies the existence of a λ+-Aronszajn tree, this
does not enable us to conclude L(Vλ+1) |= ¬�λ immediately from
Theorem 1, as the construction of a λ+-Aronszajn tree uses
λ+-DC, which in general is not true in L(Vλ+1).
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Independence results

Theorem 3 (ZFC)

1 Assume I0(λ). Then there is a model in which I0(λ) holds
and there is a special λ+-Aronszajn tree, even furthermore a
λ+-Suslin tree.

2 Assume I0(λ, V ]
λ+1, ω · 2 + 1), i.e. there is a

j : Lω·2+1(V ]
λ+1, Vλ+1) ≺ Lω·2+1(V ]

λ+1, Vλ+1)

with crit(j) < λ. Then there is a λ̄ < λ such that I0(λ̄) holds
and there is no λ̄+-Aronszajn tree.

The hypothesis in 2, by a theorem of Cramer, implies I0(λ̄), for
some λ̄ < λ.
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Theorem 4 (ZFC)

1 Con(I0(λ)) implies Con(I0(λ) + �λ).

2 Assume I0(λ, V ]
λ+1, ω · 2 + 1). Then there is a λ̄ < λ such

that I0(λ̄) holds and �λ̄ fails.
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Scales

Consider
∏
i<ω κi, where each κi is regular and λ = supi<ω κi.

Let I = Fin, i.e. the ideal consisting of all finite subsets of ω.

Given f, g ∈
∏
i κi, f <I g iff ω \ {i | f(i) < g(i)} ∈ I.

A sequence 〈fi : i < α〉 is a scale of length α in
∏
i κi/I if it

is <I -increasing and cofinal in
∏
i κi/I.

A scale for λ is a pair (κ̄, f̄), where f̄ is a scale of length λ+

in
∏
i κi/I.

ZFC-Fact: There exists a scale for λ whenever λ is singular.
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Definition

Suppose (κ̄, f̄) is a scale for λ. A point α < λ+ is good for
(κ̄, f̄) iff there is an unbounded A ⊂ α s.t. 〈fβ(n) : β ∈ A〉 is
strictly increasing for sufficiently large n.

α is very good for (κ̄, f̄) if A above is a club in α.

A scale (κ̄, f̄) for λ is good if it is good at every point in
λ+ ∩ Cof(>ω).

A scale (κ̄, f̄) for λ is very good if it is very good at every
point in λ+ ∩ Cof(>ω).
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Theorem 5 (ZFC)

1 Assume I0(λ). There is no scale at λ in L(Vλ+1).

2 Assume I0(λ). Then there is a model of ZFC + I0(λ), in
which there is a very good scale at λ.

3 Assume I0(λ, V ]
λ+1, ω · 2 + 1). Then there is a λ̄ < λ such

that I0(λ̄) holds and there is no good scale at λ̄.
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Singular limit above supercompacts

Theorem

1 (Magidor-Shelah1996). If µ is a singular limit of µ+-strongly
compact cardinals, then there is no µ+-Aronszajn tree.

2 (Solovay1978
[supercompact], Gregory[strongly compact], Jensen[subcompact],

Brooke-Taylor and Sy Friedman2012).
If κ is µ+-subcompact and µ ≥ κ, then ¬�µ.

3 (Shelah1979
[strongly compact], Brooke-Taylor and Sy Friedman2012).

If κ is µ+-subcompact and cf(µ) < κ < µ, then ¬�∗µ.

4 (Shelah1979). If κ is µ+-supercompact and cf(µ) < κ < µ,
then there are scales of length µ+ but none of them are good.

If κ is supercompact, then the hypotheses in (2)-(4) hold at κ.

The hypotheses in (1)-(4) may fail at µ = λ, κ = crit(j), with
the presence of I0(λ).
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Stationary Reflection

Definition

Let κ be uncountable and regular. Let S ⊆ κ be stationary.

S reflects at α for α < κ with cf(α) > ω if S ∩ α is stationary
in α.

Stationary Reflection Principle for T , where T ⊆ κ is
stationary, says that for every stationary S ⊆ T , S reflects at
some α < κ.

SRPλ+ denotes the Stationary Reflection Principle for
T = λ+.
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Theorem 6 (ZFC)

1 Assume I0(λ) is consistent. Then so is I0(λ) + ¬SRPλ+ .

2 Assume I0(λ, V ]
λ+1, ω · 2 + 1). Then there is a λ̄ < λ such

that I0 holds at λ̄ and SRPλ̄+ is true.

Due to the lack of choice in this model,1 the situation of
SRPλ+ in L(Vλ+1) is unclear.

1(Woodin1990). L(Vλ+1) |= DC<λ+(Vλ+1).
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We include a scenario where it could be true in L(Vλ+1).

Theorem 7 (ZFC)

Assume L(Vλ+1) |= λ+ is Vλ+1-supercompact, i.e. there is a fine,
normal, λ+-complete measure µ on Pλ+(Vλ+1)ab.
Then L(Vλ+1) |= SRPλ+ .

aFineness and completeness have standard meanings.
bIn the context where full AC does not hold, normality is defined as follows:

suppose F : Pλ+(Vλ+1)→Pλ+(Vλ+1) is s.t. {σ : F (σ) ⊆ σ ∧ F (σ) 6= ∅} ∈ µ,
then there is some x such that {σ : x ∈ F (σ)} ∈ µ

However, whether the hypothesis is compatible with I0(λ) is
yet unknown.
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Sketch of the proof

Working in L(Vλ+1), fix a measure µ witnessing that λ+ is
Vλ+1-supercompact.

For each σ ∈Pλ+(Vλ+1), let Mσ = HODσ∪{σ} and let
M =

∏
σMσ/µ be the µ-ultraproduct of the structures Mσ’s.

 Los theorem holds for this ultraproduct.

Let S ⊆ λ+ be stationary and S∗ = [cS ]µ. Then S∗ ∩ λ+ = S
and is stationary (in M). By  Los and the normality of µ,
there is some α < λ+ such that

A = {σ |Mσ � S ∩ α is stationary} ∈ µ.
Let C ⊆ α be a club in α. By  Los and the fineness of µ,
B = {σ | C ∈Mσ} ∈ µ.

Fix a σ ∈ A ∩B. Then in Mσ, C is club in α and S ∩ α is
stationary, hence C ∩ S ∩ α 6= ∅.
By  Los, S ∩ α is stationary.
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Definitions from I0 theory

Definition

Suppose X ⊆ Vλ+1.

1 ΘX
λ =def {α | L(X,Vλ+1) |= ∃ a surjective π : Vλ+1 → α}.

2 An ordinal α < ΘX
λ is X-good if every element of

Lα(X,Vλ+1) is definable in Lα(X,Vλ+1) with parameters in
Vλ+1 ∪ {X}.

Our discussion regarding the GCH at λ assumes a stronger
form of Generic absoluteness.
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About proper I0 embedding

For an X ⊆ Vλ+1, let j : L(X,Vλ+1) ≺ L(X,Vλ+1) be such that
crit(j) < λ. Let

U = {X ∈ L(X,Vλ+1) | j �Vλ ∈ j(X)}
be the ultrafilter given by j. Define

W = j(U) =
⋃
{j(ran(π)) | π ∈ L(X,Vλ+1) ∧ π : Vλ+1 → U}

If j is proper (definition omitted), then

j = jU .

W is an L(X,Vλ+1)-ultrafilter over Vλ+1, and
Ult(L(X,Vλ+1),W ) is wellfounded.

Ult(L(X,Vλ+1),W ) ∼= L(X,Vλ+1) and the associated map
jW : L(X,Vλ+1)→ L(X,Vλ+1) is elementary and proper.

This process can be iterated, so that for all iterates Mα of
M0 = L(X,Vλ+1) is wellfounded.
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Definition (Woodin2011)

Assume j : L(X,Vλ+1) ≺ L(X,Vλ+1) is proper and crit(j) < λ.
Let (Mω, j0,ω) be the ω-iterate of (L(X,Vλ+1), j). Suppose
α < ΘX

λ and α is X-good. We say that Generic Absoluteness
holds for X at α if the following is true:

Suppose P ∈ j0,ω(Vλ), G ∈ V is an Mω-generic filter for
P, and cf(λ) = ω in Mω[G]. Then there is some α′ ≤ α
and X ′ ⊆ Vλ+1 such that

Lα′(X ′,Mω[G] ∩ Vλ+1) ≺ Lα(X,Vλ+1).

Theorem (Woodin2011, Cramer2015)

I0(λ) implies that the Generic Absoluteness for X = ∅ at all α.

It is unclear for arbitrary X.
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Diamond and GCH at λ+

Theorem 8 (ZFC)

1 Assume I0(λ). Then in L(Vλ+1), there is no λ+-sequence of
distinct members of Vλ+1, therefore 2λ 6= λ+ and ¬3λ+ .

2 Assume ∃λ I0(λ) is consistent. Then so are
∃λ (I0(λ) + 2λ = λ+) and ∃λ (I0(λ) + 3λ+).

3 (Dimonte-Friedman2014). Assume there is a proper

j : L(V ]
λ+1, Vλ+1) ≺ L(V ]

λ+1, Vλ+1)

with crit(j) < λ and Vλ |= GCH. Suppose α ∈ (Θλ,Θ
V ]λ+1

λ )

and α is V ]
λ+1-good and assume that Generic Absoluteness

holds for V ]
λ+1 at α.

Then it is consistent that I0(λ) holds and 2λ > λ+.
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(1) is an analog of the well-known AD-fact, namely: there is
no ω1-sequence of distinct reals.

(2) follows from the fact that 3λ+ can be obtained by forcing
2λ = λ+ without adding bounded subsets of λ2, therefore
preserves 2<λ = λ and I0(λ).

For (3), we apply the Generic Absoluteness to Gitik’s
one-extender-based Prikry forcing, and show that it is λ-good.

λ-goodness is a sufficient condition, due to Woodin, for a
forcing notion P satisfying the conditions in Generic
Absoluteness, i.e. P ∈ j0,ω(Vλ) and there is a Mω-generic filter
G ⊂ P in V such that Mω[G] |= cf(λ) = ω.

This involves a systematic analysis on the ranks of (finite
parts of) conditions in Gitik’s forcing.

2Use Levy collapse Coll(λ+, 2λ)
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Thank you!
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