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Why there are no analytic MAD families

Theorem 1 (Mathias)

There are no analytic MAD families.

I will sketch a proof based on invariance and the fact that analytic sets
are completely Ramsey.

Sketch of proof. Suppose that T is tree on 2× ω such that

A = p[T ]

is an a.d. family.

We show A is not maximal.
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An Invariant Tree

For X ∈ [ω]ω define

TX = {s ∈ T | (∃A ∈ p[Ts]) A ∩X is infinite }

1 X∆Y ∈ Fin ⇒ TX = T Y , i.e, the tree is invariant,

2 TX is a sub-tree of T ,

3 s ∈ TX ⇐⇒ [TX
s ] 6= ∅ (that is, TX is pruned),

4 ∅ /∈ TX ⇐⇒ (∀A ∈ A) A ∩X ∈ Fin ⇐⇒ X is a counterexample
to maximaliy of A.
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The Main Lemma

We need the following crucial lemma.

Main Lemma
Suppose s, t ∈ TX , lh(s) = lh(t) but p(s) 6= p(t).
Then there are s′ ∈ TX

s and t′ ∈ TX
t such that(⋃

p[TX
s′ ]
)
∩
(⋃

p[TX
t′ ]
)
⊆ p(s′) ∩ p(t′).

Proof.
Otherwise, we could construct s = s0 @ s1 @ . . . and t = t0 @ t1 @ . . .
from T such that

p

(⋃
n∈ω

sn

)
∩ p

(⋃
n∈ω

tn

)
/∈ Fin

which contradicts that A is an a.d. family.
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The tilde-operator

Fix a sequence ~A = 〈A0, A1, A2, . . .〉 of distinct elements from
A = p[T ].

Let Âl(m) be the mth element from Al (in its increasing enumeration).

Define a map

∼ : [ω]ω → [ω]ω,

B 7→ B̃

by
B̃ = {Âl(m) | l ∈ B,m = minB \ (l + 1)}.
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Properties of the tilde-operator

1 Given any A ∈ A,

(∀B ∈ [ω]ω)(∃B′ ∈ [B]ω) B̃′ ∩A ∈ Fin.

2 Given any X ∈ [ω]ω,

(∀B ∈ [ω]ω)(∃B′ ∈ [B]ω) B̃′ ⊆ X or B̃′ ⊆ ω \X,

Proof of Item 2: Ramsey’s Theorem for pairs, or directly using the
pigeon hole principle.
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The Argument

1 There is B0 ∈ [ω]ω and T ∗ such that

(∀B ∈ [B0]
ω) T B̃ = T ∗

Proof: Using that analytic sets are Ramsey, make X 7→ T X̃

continuous; by invariance, this map must be constant.

2 We show p[T ∗] ≤ 1.

Proof: Use the Main Lemma and properties of the tilde operator!

3 In fact T ∗ = ∅.

4 Since ∅ /∈ T ∗ = T B̃0 it follows that B̃0 is a counterexample to
maximality of A.
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‘No MAD families’ from regularity

The previous argument can be generalized to show the following:

Theorem 2

Suppose the following hold:
1 Dependent Choice (DC),
2 Every relation can be uniformized on a Ramsey positive set,
3 Every subset of [ω]ω is completely Ramsey.

Then there are no MAD families.

These hypothesis are true, e.g., in Solvay’s model or under AD in
L(R).
There is a projective version of Theorem 2 whose its hypotheses
hold after collapsing an inaccessible, or under PD + DC.
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Sketch of a proof of Theorem 2

Towards a contradiction, suppose uniformization and the Ramsey
property and let A be a MAD family.

Define a relation R ⊆ ([ω]ω)2 as follows:

(X,A) ∈ R ⇐⇒ X̃ ∩A /∈ Fin ∧A ∈ A

By maximality of A, R is total and so by uniformization we can find
B0 ∈ [ω]ω and f : [B0]

ω → [ω]ω such that

(∀B ∈ [B0]
ω) B̃ ∩ f(B) /∈ Fin ∧ f(B) ∈ A

Since every set is Ramsey, by a fusion argument we can assume that
f is continuous on [B0]

ω.

Then A′ = ran(f � [B0]
ω) is an analytic a.d. family maximal in

ran(∼ �[B0]
ω), contradiction.
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The ideal Fin2 on ω2

For I ⊆ ω2, thinking of I as a relation we write

I(m) = {n | (m,n) ∈ I}.

Define the ideal Fin2 on ω2 by

Fin2 = {I ⊆ ω2 | (∀∞m ∈ ω) I(m) ∈ Fin}.

One can define Fin2-MAD families of subsets of ω2 in the obvious way.
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More Theorems

Theorem 3 (Haga-S-Törnquist)

There is no analytic infinite Fin2-MAD family.

Theorem 4

Suppose the following hold:
1 Dependent Choice (DC),
2 Ramsey positive uniformization,
3 Every subset of [ω]ω is completely Ramsey.

Then there are no Fin2-MAD families.

As with Theorem 2, there is a ‘projective’ version of this theorem.
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Thank you in Northern Saami

Giitu!
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