Ramsey regularity, MAD families, and their relatives

David Schrittesser (KGRC)

Joint work with Asger Törnquist

Arctic Set Theory 4 January 22, 2019

Theorem 1 (Mathias)

There are no analytic MAD families.

• • • • • • • • • • • • • •

Theorem 1 (Mathias)

There are no analytic MAD families.

I will sketch a proof based on *invariance* and the fact that analytic sets are completely Ramsey.

Theorem 1 (Mathias)

There are no analytic MAD families.

I will sketch a proof based on *invariance* and the fact that analytic sets are completely Ramsey.

Sketch of proof. Suppose that T is tree on $2 \times \omega$ such that

$$\mathcal{A} = p[T]$$

is an a.d. family.

We show \mathcal{A} is not maximal.

An Invariant Tree

For $X\in [\omega]^\omega$ define

$$T^X = \{s \in T \mid (\exists A \in p[T_s]) \ A \cap X \text{ is infinite } \}$$

イロト イ団ト イヨト イヨ

An Invariant Tree

For $X\in [\omega]^\omega$ define

$T^X = \{s \in T \mid (\exists A \in p[T_s]) \ A \cap X \text{ is infinite } \}$

• $X\Delta Y \in Fin \Rightarrow T^X = T^Y$, i.e, the tree is *invariant*,

- **→ → →**

An Invariant Tree

For $X\in [\omega]^\omega$ define

$$T^X = \{s \in T \mid (\exists A \in p[T_s]) \ A \cap X \text{ is infinite } \}$$

- $X\Delta Y \in Fin \Rightarrow T^X = T^Y$, i.e, the tree is *invariant*,
- 2 T^X is a sub-tree of T,

For $X\in [\omega]^\omega$ define

$$T^X = \{s \in T \mid (\exists A \in p[T_s]) \ A \cap X \text{ is infinite } \}$$

•
$$X\Delta Y \in Fin \Rightarrow T^X = T^Y$$
, i.e, the tree is *invariant*,

2 T^X is a sub-tree of T,

$$\bullet$$
 $s \in T^X \iff [T_s^X] \neq \emptyset$ (that is, T^X is pruned),

- E - N

For $X\in [\omega]^\omega$ define

$$T^X = \{s \in T \mid (\exists A \in p[T_s]) \ A \cap X \text{ is infinite } \}$$

- $X\Delta Y \in Fin \Rightarrow T^X = T^Y$, i.e, the tree is *invariant*,
- 2 T^X is a sub-tree of T,
- $\ \, {\bf 3} \ \, s \in T^X \iff [T^X_s] \neq \emptyset \text{ (that is, } T^X \text{ is pruned),}$
- $\ \ \, \emptyset \notin T^X \iff (\forall A \in \mathcal{A}) \ A \cap X \in \mathsf{Fin} \iff X \text{ is a counterexample} \\ \text{ to maximaliy of } \mathcal{A}.$

The Main Lemma

We need the following crucial lemma.

The Main Lemma

We need the following crucial lemma.

Main Lemma

Suppose $s, t \in T^X$, h(s) = h(t) but $p(s) \neq p(t)$.

The Main Lemma

We need the following crucial lemma.

Main Lemma

Suppose
$$s, t \in T^X$$
, $h(s) = h(t)$ but $p(s) \neq p(t)$.
Then there are $s' \in T_s^X$ and $t' \in T_t^X$ such that

$$\left(\bigcup p[T_{s'}^X]\right) \cap \left(\bigcup p[T_{t'}^X]\right) \subseteq p(s') \cap p(t').$$

Proof.

Otherwise, we could construct $s = s_0 \sqsubset s_1 \sqsubset \ldots$ and $t = t_0 \sqsubset t_1 \sqsubset \ldots$ from *T* such that

$$p\left(\bigcup_{n\in\omega}s_n\right)\cap p\left(\bigcup_{n\in\omega}t_n\right)\notin\mathsf{Fin}$$

which contradicts that $\ensuremath{\mathcal{A}}$ is an a.d. family.

The tilde-operator

Fix a sequence $\vec{A} = \langle A^0, A^1, A^2, \ldots \rangle$ of distinct elements from $\mathcal{A} = p[T]$.

Fix a sequence $\vec{A} = \langle A^0, A^1, A^2, \ldots \rangle$ of distinct elements from $\mathcal{A} = p[T]$.

Let $\hat{A}^{l}(m)$ be the *m*th element from A^{l} (in its increasing enumeration).

Fix a sequence $\vec{A} = \langle A^0, A^1, A^2, \ldots \rangle$ of distinct elements from $\mathcal{A} = p[T]$.

Let $\hat{A}^{l}(m)$ be the *m*th element from A^{l} (in its increasing enumeration). Define a map

$$\sim : [\omega]^{\omega} \to [\omega]^{\omega},$$
$$B \mapsto \tilde{B}$$

by

$$\tilde{B} = \{ \hat{A}^l(m) \mid l \in B, m = \min B \setminus (l+1) \}.$$

.

• Given any
$$A \in \mathcal{A}$$
,

 $(\forall B \in [\omega]^{\omega})(\exists B' \in [B]^{\omega}) \; \tilde{B}' \cap A \in \mathsf{Fin}.$

• • • • • • • • • • • •

1 Given any
$$A \in \mathcal{A}$$
,

$$(\forall B \in [\omega]^{\omega})(\exists B' \in [B]^{\omega}) \ \tilde{B}' \cap A \in \mathsf{Fin}.$$

2 Given any $X \in [\omega]^{\omega}$,

 $(\forall B \in [\omega]^{\omega})(\exists B' \in [B]^{\omega}) \ \tilde{B}' \subseteq X \text{ or } \tilde{B}' \subseteq \omega \setminus X,$

) Given any
$$A \in \mathcal{A}$$
,

$$(\forall B \in [\omega]^{\omega})(\exists B' \in [B]^{\omega}) \ \tilde{B}' \cap A \in \mathsf{Fin}.$$

2 Given any
$$X \in [\omega]^{\omega}$$
,

$$(\forall B \in [\omega]^{\omega})(\exists B' \in [B]^{\omega}) \ \tilde{B}' \subseteq X \text{ or } \tilde{B}' \subseteq \omega \setminus X,$$

Proof of Item 2: Ramsey's Theorem for pairs, or directly using the pigeon hole principle.

$$(\forall B \in [B_0]^{\omega}) T^{\tilde{B}} = T^*$$

Proof: Using that analytic sets are Ramsey, make $X \mapsto T^{\bar{X}}$ continuous; by invariance, this map must be constant.

The Argument

There is $B_0 \in [\omega]^{\omega}$ and T^* such that

$$(\forall B \in [B_0]^{\omega}) \ T^{\tilde{B}} = T^*$$

Proof: Using that analytic sets are Ramsey, make $X \mapsto T^{\bar{X}}$ continuous; by invariance, this map must be constant.

2 We show
$$p[T^*] \leq 1$$
.

$$(\forall B \in [B_0]^{\omega}) \ T^{\tilde{B}} = T^*$$

Proof: Using that analytic sets are Ramsey, make $X \mapsto T^{\bar{X}}$ continuous; by invariance, this map must be constant.

2 We show $p[T^*] \leq 1$.

Proof: Use the Main Lemma and properties of the tilde operator!

$$(\forall B \in [B_0]^{\omega}) \ T^{\tilde{B}} = T^*$$

Proof: Using that analytic sets are Ramsey, make $X \mapsto T^{\bar{X}}$ continuous; by invariance, this map must be constant.

2 We show $p[T^*] \leq 1$.

Proof: Use the Main Lemma and properties of the tilde operator!

In fact
$$T^* = \emptyset$$
.

$$(\forall B \in [B_0]^{\omega}) \ T^{\tilde{B}} = T^*$$

Proof: Using that analytic sets are Ramsey, make $X \mapsto T^{\bar{X}}$ continuous; by invariance, this map must be constant.

2 We show $p[T^*] \leq 1$.

Proof: Use the Main Lemma and properties of the tilde operator!

- In fact $T^* = \emptyset$.
- Since $\emptyset \notin T^* = T^{\tilde{B}_0}$ it follows that \tilde{B}_0 is a counterexample to maximality of \mathcal{A} .

The previous argument can be generalized to show the following:

Theorem 2

Suppose the following hold:

- Dependent Choice (DC),
- Every relation can be uniformized on a Ramsey positive set,
- **③** Every subset of $[\omega]^{\omega}$ is completely Ramsey.

Then there are no MAD families.

The previous argument can be generalized to show the following:

Theorem 2

Suppose the following hold:

- Dependent Choice (DC),
- Every relation can be uniformized on a Ramsey positive set,
- **③** Every subset of $[\omega]^{\omega}$ is completely Ramsey.

Then there are no MAD families.

• These hypothesis are true, e.g., in Solvay's model or under AD in $\mathbf{L}(\mathbb{R}).$

The previous argument can be generalized to show the following:

Theorem 2

Suppose the following hold:

- Dependent Choice (DC),
- Every relation can be uniformized on a Ramsey positive set,
- **③** Every subset of $[\omega]^{\omega}$ is completely Ramsey.

Then there are no MAD families.

- These hypothesis are true, e.g., in Solvay's model or under AD in $\mathbf{L}(\mathbb{R}).$
- There is a projective version of Theorem 2 whose its hypotheses hold after collapsing an inaccessible, or under PD + DC.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Towards a contradiction, suppose uniformization and the Ramsey property and let \mathcal{A} be a MAD family.

Towards a contradiction, suppose uniformization and the Ramsey property and let A be a MAD family.

Define a relation $R \subseteq ([\omega]^{\omega})^2$ as follows:

$$(X,A) \in R \iff \tilde{X} \cap A \notin \mathsf{Fin} \land A \in \mathcal{A}$$

Towards a contradiction, suppose uniformization and the Ramsey property and let A be a MAD family.

Define a relation $R \subseteq ([\omega]^{\omega})^2$ as follows:

$$(X,A) \in R \iff \tilde{X} \cap A \notin \mathsf{Fin} \land A \in \mathcal{A}$$

By maximality of \mathcal{A} , R is total and so by uniformization we can find $B_0 \in [\omega]^{\omega}$ and $f : [B_0]^{\omega} \to [\omega]^{\omega}$ such that

$$(\forall B \in [B_0]^{\omega}) \; \tilde{B} \cap f(B) \notin \mathsf{Fin} \land f(B) \in \mathcal{A}$$

Towards a contradiction, suppose uniformization and the Ramsey property and let A be a MAD family.

Define a relation $R \subseteq ([\omega]^{\omega})^2$ as follows:

$$(X,A) \in R \iff \tilde{X} \cap A \notin \mathsf{Fin} \land A \in \mathcal{A}$$

By maximality of \mathcal{A} , R is total and so by uniformization we can find $B_0 \in [\omega]^{\omega}$ and $f : [B_0]^{\omega} \to [\omega]^{\omega}$ such that

$$(\forall B \in [B_0]^{\omega}) \ \tilde{B} \cap f(B) \notin \mathsf{Fin} \land f(B) \in \mathcal{A}$$

Since every set is Ramsey, by a fusion argument we can assume that f is continuous on $[B_0]^{\omega}$.

Towards a contradiction, suppose uniformization and the Ramsey property and let A be a MAD family.

Define a relation $R \subseteq ([\omega]^{\omega})^2$ as follows:

$$(X,A) \in R \iff \tilde{X} \cap A \notin \mathsf{Fin} \land A \in \mathcal{A}$$

By maximality of \mathcal{A} , R is total and so by uniformization we can find $B_0 \in [\omega]^{\omega}$ and $f : [B_0]^{\omega} \to [\omega]^{\omega}$ such that

$$(\forall B \in [B_0]^{\omega}) \ \tilde{B} \cap f(B) \notin \mathsf{Fin} \land f(B) \in \mathcal{A}$$

Since every set is Ramsey, by a fusion argument we can assume that f is continuous on $[B_0]^{\omega}$.

Then $\mathcal{A}' = \operatorname{ran}(f \upharpoonright [B_0]^{\omega})$ is an analytic a.d. family maximal in $\operatorname{ran}(\sim \upharpoonright [B_0]^{\omega})$, contradiction.

For $I \subseteq \omega^2$, thinking of I as a relation we write

$$I(m)=\{n\mid (m,n)\in I\}.$$

For $I \subseteq \omega^2$, thinking of I as a relation we write

$$I(m) = \{n \mid (m,n) \in I\}.$$

Define the ideal Fin^2 on ω^2 by

$$\mathsf{Fin}^2 = \{I \subseteq \omega^2 \mid (\forall^\infty m \in \omega) \ I(m) \in \mathsf{Fin}\}.$$

David Schrittesser (KGRC)

Regularity and MAD families

For $I \subseteq \omega^2$, thinking of I as a relation we write

$$I(m) = \{n \mid (m, n) \in I\}.$$

Define the ideal Fin^2 on ω^2 by

$$\mathsf{Fin}^2 = \{ I \subseteq \omega^2 \mid (\forall^{\infty} m \in \omega) \ I(m) \in \mathsf{Fin} \}.$$

One can define Fin²-MAD families of subsets of ω^2 in the obvious way.

David Schrittesser (KGRC)

Regularity and MAD families

Theorem 3 (Haga-S-Törnquist)

There is no analytic infinite Fin²-MAD family.

Theorem 4

Suppose the following hold:

- Dependent Choice (DC),
- 8 Ramsey positive uniformization,
- Solution $[\omega]^{\omega}$ is completely Ramsey.

Then there are no Fin²-MAD families.

Theorem 3 (Haga-S-Törnquist)

There is no analytic infinite Fin²-MAD family.

Theorem 4

Suppose the following hold:

- Dependent Choice (DC),
- In the second second
- Solution \mathbb{E} Subset of $[\omega]^{\omega}$ is completely Ramsey.

Then there are no Fin²-MAD families.

As with Theorem 2, there is a 'projective' version of this theorem.

Giitu!

David Schrittesser (KGRC)

Regularity and MAD families

Arctic 4 12/12