Homogeneous spaces and Wadge theory

Sandra Müller

Universität Wien

January 2019

joint work with Raphaël Carroy and Andrea Medini

Arctic Set Theory Workshop 4

- How I got interested in general topology
- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

- How I got interested in general topology
- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

Homogeneous spaces

All our topological spaces will be separable and metrizable. A homeomorphism between two spaces X and Y is a bijective continuous function f such that the inverse f^{-1} is continuous as well.

Definition

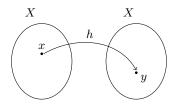
A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

Homogeneous spaces

All our topological spaces will be separable and metrizable. A homeomorphism between two spaces X and Y is a bijective continuous function f such that the inverse f^{-1} is continuous as well.

Definition

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

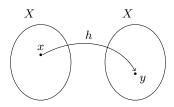


Homogeneous spaces

All our topological spaces will be separable and metrizable. A homeomorphism between two spaces X and Y is a bijective continuous function f such that the inverse f^{-1} is continuous as well.

Definition

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.



• Examples of homogeneous spaces: all discrete spaces, \mathbb{Q} , 2^{ω} , $\omega^{\omega} \approx \mathbb{R} \setminus \mathbb{Q}$, all topological groups.

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

- Examples of homogeneous spaces: all discrete spaces, \mathbb{Q} , 2^{ω} , $\omega^{\omega} \approx \mathbb{R} \setminus \mathbb{Q}$, all topological groups.
- We will focus on zero-dimensional homogeneous spaces, i.e. topological spaces which have a base of clopen sets.

A space X is *homogeneous* if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

- Examples of homogeneous spaces: all discrete spaces, \mathbb{Q} , 2^{ω} , $\omega^{\omega} \approx \mathbb{R} \setminus \mathbb{Q}$, all topological groups.
- We will focus on zero-dimensional homogeneous spaces, i.e. topological spaces which have a base of clopen sets.

Fact

X is a locally compact zero-dimensional homogeneous space iff X is discrete, $X \approx 2^{\omega}$, or $X \approx \omega \times 2^{\omega}$.

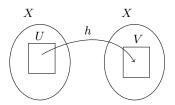
We will therefore focus on non-locally compact (equivalently, nowhere compact) zero-dimensional homogeneous spaces.

A space X is *h*-homogeneous if every non-empty clopen subset U of X (with the subspace topology) is homeomorphic to X.

A space X is *h*-homogeneous if every non-empty clopen subset U of X (with the subspace topology) is homeomorphic to X.

Fact

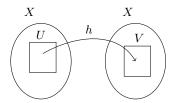
A zero-dimensional space X is h-homogeneous iff for all non-empty clopen proper subsets U, V of X there is a homeomorphism $h: X \to X$ such that h[U] = V.



A space X is *h*-homogeneous if every non-empty clopen subset U of X (with the subspace topology) is homeomorphic to X.

Fact

A zero-dimensional space X is h-homogeneous iff for all non-empty clopen proper subsets U, V of X there is a homeomorphism $h: X \to X$ such that h[U] = V.



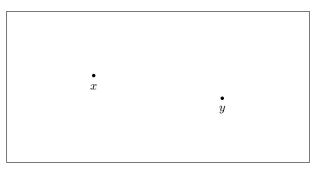
Examples of h-homogeneous spaces: $\mathbb{Q}, 2^{\omega}, \omega^{\omega}$, any product of zero-dimensional h-homogeneous spaces (Medini, 2011)

(4 個) トイヨト イヨト

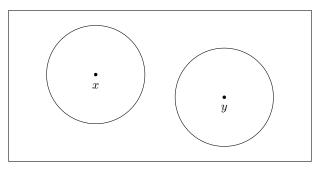
Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

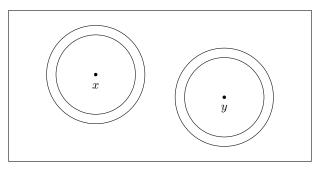
Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.



Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

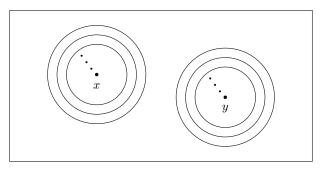


Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.



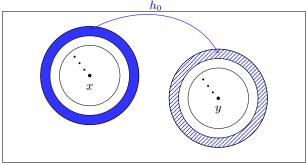
Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

Proof by picture.



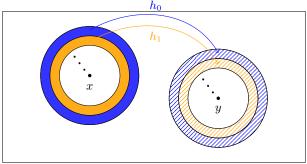
Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

Proof by picture.



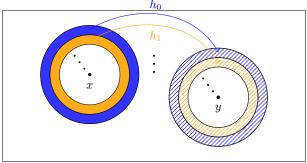
Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

Proof by picture.

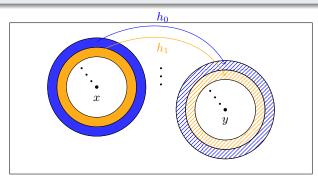


Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

Proof by picture.



Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.



Now $\bigcup_{n \in \omega} (h_n \cup h_n^{-1})$ can be extended to a homeomorphism $h \colon X \to X$ such that h(x) = y and $h^{-1}(y) = x$.

h-homogeneity versus homogeneity

Theorem (Folklore)

Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

But the converse does not hold in general.

Theorem (van Mill, 1992)

(AC) There exists a zero-dimensional homogeneous space that is not *h*-homogeneous.

h-homogeneity versus homogeneity

Theorem (Folklore)

Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

But the converse does not hold in general.

Theorem (van Mill, 1992)

(AC) There exists a zero-dimensional homogeneous space that is not *h*-homogeneous.

Theorem (van Engelen, 1986)

A Borel non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

h-homogeneity versus homogeneity

Theorem (Folklore)

Assume that X is a zero-dimensional space. If X is h-homogeneous, then X is homogeneous.

But the converse does not hold in general.

Theorem (van Mill, 1992)

(AC) There exists a zero-dimensional homogeneous space that is not *h*-homogeneous.

Theorem (van Engelen, 1986)

A Borel non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

Question

Can we say more under projective determinacy (PD) or AD?

Sandra Müller (Universität Wien)

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

Main ideas to extend van Engelen's result beyond Borel spaces:

• The proof relies on an extremely refined classification of subsets of a Polish zero-dimensional space: the Wadge quasi-order.

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

- The proof relies on an extremely refined classification of subsets of a Polish zero-dimensional space: the Wadge quasi-order.
- Need an understanding of the induced Wadge hierarchy in ω^ω beyond Borel classes.

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

- The proof relies on an extremely refined classification of subsets of a Polish zero-dimensional space: the Wadge quasi-order.
- Need an understanding of the induced Wadge hierarchy in ω^ω beyond Borel classes.
- Need a method of transferring these results from ω^{ω} to 2^{ω} .

- (PD) A projective non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.
- (AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

- The proof relies on an extremely refined classification of subsets of a Polish zero-dimensional space: the Wadge quasi-order.
- Need an understanding of the induced Wadge hierarchy in ω^ω beyond Borel classes.
- Need a method of transferring these results from ω^ω to $2^\omega.$
- Want to apply a theorem of Steel in 2^{ω} .

• How I got interested in general topology

- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

Definition

Definition

For $A \subseteq X$ and $B \subseteq Y$, we say that A Wadge (or continuously) reduces to B if there is a continuous function $f: X \to Y$ such that $x \in A \Leftrightarrow f(x) \in B$. For $X = Y = \omega^{\omega}$, we write $A \leq_W B$.

• This is reflexive and transitive, it is a *quasi-order*.

Definition

- This is reflexive and transitive, it is a *quasi-order*.
- $[A]_W = \{B \mid B \leq_W A\}.$

Definition

- This is reflexive and transitive, it is a quasi-order.
- $[A]_W = \{B \mid B \leq_W A\}.$
- A pointclass Γ is a class of subsets closed under continuous preimages.

Definition

- This is reflexive and transitive, it is a *quasi-order*.
- $[A]_W = \{B \mid B \leq_W A\}.$
- A pointclass Γ is a class of subsets closed under continuous preimages.
- A is self-dual if $A \equiv_W A^c$, otherwise it is non-self-dual.

Wadge reducibility

Definition

For $A \subseteq X$ and $B \subseteq Y$, we say that A Wadge (or continuously) reduces to B if there is a continuous function $f: X \to Y$ such that $x \in A \Leftrightarrow f(x) \in B$. For $X = Y = \omega^{\omega}$, we write $A \leq_W B$.

- This is reflexive and transitive, it is a quasi-order.
- $[A]_W = \{B \mid B \leq_W A\}.$
- A pointclass Γ is a class of subsets closed under continuous preimages.
- A is self-dual if $A \equiv_W A^c$, otherwise it is non-self-dual.

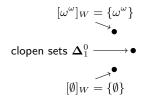
This yields (under AD + DC) a very nice hierarchy of subsets of ω^{ω} .

Theorem (Wadge, Martin – Monk)

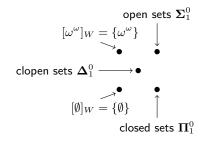
Assuming AD and DC, \leq_W satisfies the semi-well-ordering principle:

- (Wadge) For any $A, B \subseteq \omega^{\omega}$ either $A \leq_W B$ or $B \leq_W \omega^{\omega} \setminus A$.
- (Martin Monk) The quasi-order \leq_W is well-founded.

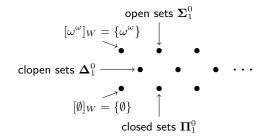
Recall: $A \leq_W B$ iff there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $x \in A \Leftrightarrow f(x) \in B$. Write $[A]_W = \{B \mid B \leq_W A\}$.



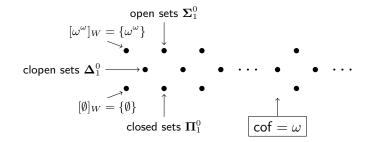
10

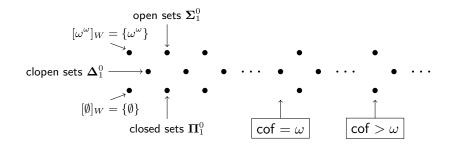


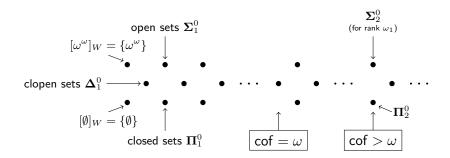
Recall: $A \leq_W B$ iff there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $x \in A \Leftrightarrow f(x) \in B$. Write $[A]_W = \{B \mid B \leq_W A\}$.



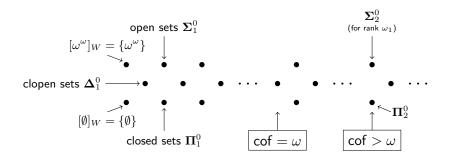
10







Recall: $A \leq_W B$ iff there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $x \in A \Leftrightarrow f(x) \in B$. Write $[A]_W = \{B \mid B \leq_W A\}$.

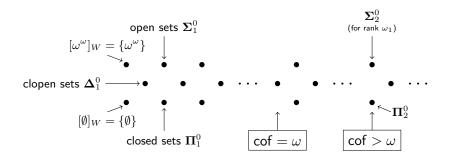


 The length of the Wadge hierarchy of Borel sets is an ordinal of cofinality ω₁ but strictly smaller than ω₂.

Sandra Müller (Universität Wien)

10

Recall: $A \leq_W B$ iff there is a continuous function $f: \omega^{\omega} \to \omega^{\omega}$ such that $x \in A \Leftrightarrow f(x) \in B$. Write $[A]_W = \{B \mid B \leq_W A\}$.



- The length of the Wadge hierarchy of Borel sets is an ordinal of cofinality ω₁ but strictly smaller than ω₂.
- The length of the full Wadge hierarchy is

$$\Theta = \sup\{\alpha \mid \exists f(f \colon \mathbb{R} \twoheadrightarrow \alpha)\}$$

Sandra Müller (Universität Wien)

Levels and expansion

There is a method of *jumping* through the hierarchy.

Levels and expansion

There is a method of *jumping* through the hierarchy. Call $\operatorname{PU}_{\alpha}(\Gamma)$ the class of all sets of the form $\bigcup A_n \cap B_n$, where $A_n \in \Gamma$, and $(B_n)_n$ is a $\Delta^0_{1+\alpha}$ partition.

Definition (Louveau – Saint-Raymond)

The *level* of a pointclass Γ is $\ell(\Gamma) = \sup\{\alpha < \omega_1 \mid \Gamma = PU_{\alpha}(\Gamma)\}.$

Levels and expansion

There is a method of *jumping* through the hierarchy. Call $\operatorname{PU}_{\alpha}(\Gamma)$ the class of all sets of the form $\bigcup A_n \cap B_n$, where $A_n \in \Gamma$, and $(B_n)_n$ is a $\Delta^0_{1+\alpha}$ partition.

Definition (Louveau – Saint-Raymond)

The *level* of a pointclass Γ is $\ell(\Gamma) = \sup\{\alpha < \omega_1 \mid \Gamma = PU_{\alpha}(\Gamma)\}.$

Given a pointclass Γ and a countable ordinal α , the α -expansion $\Gamma^{(\alpha)}$ is the class of all preimages of elements of Γ by $\Sigma^0_{1+\alpha}$ -measurable functions.

Theorem (Expansion Theorem, Saint-Raymond)

(AD + DC) Let Γ be a non-self-dual Wadge pointclass and α a countable ordinal. Then the following are equivalent:

- $\ell(\Gamma) \geq \alpha$,
- **2** $\Gamma = \Lambda^{(\alpha)}$ for some non-self-dual Wadge class Λ .

イロト イヨト イヨト イヨト

- How I got interested in general topology
- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

Some properties:

• If $D = \{(1)^{\omega}\}$, then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0 \cap A_1 \cap \ldots$

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

- If $D=\{(1)^{\omega}\},$ then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0\cap A_1\cap\ldots.$
- If D_n is the set of all $s: \omega \to 2$ such that s(n) = 1 (s(k) for $k \neq n$ arbitrary), then $\mathcal{H}_{D_n}(A_0, A_1, \ldots) = A_n$.

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

- If $D = \{(1)^{\omega}\}$, then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0 \cap A_1 \cap \ldots$.
- If D_n is the set of all $s: \omega \to 2$ such that s(n) = 1 (s(k) for $k \neq n$ arbitrary), then $\mathcal{H}_{D_n}(A_0, A_1, \ldots) = A_n$.
- $\bigcap_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcap_{i \in I} D_i$.

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

- If $D = \{(1)^{\omega}\}$, then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0 \cap A_1 \cap \ldots$.
- If D_n is the set of all $s: \omega \to 2$ such that s(n) = 1 (s(k) for $k \neq n$ arbitrary), then $\mathcal{H}_{D_n}(A_0, A_1, \ldots) = A_n$.
- $\bigcap_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcap_{i \in I} D_i$.
- $\bigcup_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcup_{i \in I} D_i$.

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

- If $D = \{(1)^{\omega}\}$, then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0 \cap A_1 \cap \ldots$.
- If D_n is the set of all $s: \omega \to 2$ such that s(n) = 1 (s(k) for $k \neq n$ arbitrary), then $\mathcal{H}_{D_n}(A_0, A_1, \ldots) = A_n$.
- $\bigcap_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcap_{i \in I} D_i$.
- $\bigcup_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcup_{i \in I} D_i$.
- $X \setminus \mathcal{H}_D(A_0, A_1, \ldots) = \mathcal{H}_{2^{\omega} \setminus D}(A_0, A_1, \ldots).$

Given $D \subseteq 2^{\omega}$ and a sequence of sets $\vec{A} = A_0, A_1, \cdots$, define a set $\mathcal{H}_D(\vec{A})$ as follows:

$$x \in \mathcal{H}_D(\vec{A}) \leftrightarrow \{i \in \omega \mid x \in A_i\} \in D$$

We call \mathcal{H}_D a Hausdorff operation.

Some properties:

- If $D = \{(1)^{\omega}\}$, then $\mathcal{H}_{\{(1)^{\omega}\}}(\vec{A})$ is the countable intersection $A_0 \cap A_1 \cap \ldots$.
- If D_n is the set of all $s: \omega \to 2$ such that s(n) = 1 (s(k) for $k \neq n$ arbitrary), then $\mathcal{H}_{D_n}(A_0, A_1, \ldots) = A_n$.
- $\bigcap_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcap_{i \in I} D_i$.
- $\bigcup_{i \in I} \mathcal{H}_{D_i}(A_0, A_1, \ldots) = \mathcal{H}_D(A_0, A_1, \ldots)$, where $D = \bigcup_{i \in I} D_i$.
- $X \setminus \mathcal{H}_D(A_0, A_1, \ldots) = \mathcal{H}_{2^{\omega} \setminus D}(A_0, A_1, \ldots).$

In particular, every combination of unions, intersections, and complements can be expressed as a Hausdorff operation.

For $D \subseteq 2^{\omega}$, define $\Gamma_D(X)$ as the collection of all subsets of X that are the result of applying \mathcal{H}_D on open sets of X.

Lemma (Relativization Lemma)

Given two spaces X and Y, and $D \subseteq 2^{\omega}$.

- If $f: X \to Y$ is continuous and $A \in \Gamma_D(Y)$ then $f^{-1}[A] \in \Gamma_D(X)$.
- Assume $Y \subseteq X$, then $A \in \Gamma_D(Y)$ if and only if there is $\tilde{A} \in \Gamma_D(X)$ such that $A = \tilde{A} \cap Y$.

For $D \subseteq 2^{\omega}$, define $\Gamma_D(X)$ as the collection of all subsets of X that are the result of applying \mathcal{H}_D on open sets of X.

Lemma (Relativization Lemma)

Given two spaces X and Y, and $D \subseteq 2^{\omega}$.

- If $f: X \to Y$ is continuous and $A \in \Gamma_D(Y)$ then $f^{-1}[A] \in \Gamma_D(X)$.
- Assume $Y \subseteq X$, then $A \in \Gamma_D(Y)$ if and only if there is $\tilde{A} \in \Gamma_D(X)$ such that $A = \tilde{A} \cap Y$.

Theorem (Addison, van Wesep)

(AD + DC) Γ is a non-self-dual Wadge class in 2^{ω} iff $\Gamma = \Gamma_D(2^{\omega})$ for some $D \subseteq 2^{\omega}$.

This in fact works for all Polish zero-dimensional spaces X instead of 2^{ω} .

- 4 同 6 4 日 6 4 日 6

- How I got interested in general topology
- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

Steel's theorem ...

Let $A \subseteq 2^{\omega}$ and let Γ be a pointclass. For $s \in 2^{<\omega}$, let $[s] = \{x \in 2^{\omega} \mid s \subseteq x\}$. Say that

• Γ is reasonably closed if it is closed under $\cap \Pi_2^0$ and $\cup \Sigma_2^0$.

Steel's theorem ...

Let $A \subseteq 2^{\omega}$ and let Γ be a pointclass. For $s \in 2^{<\omega}$, let $[s] = \{x \in 2^{\omega} \mid s \subseteq x\}$. Say that

- Γ is reasonably closed if it is closed under $\cap \Pi_2^0$ and $\cup \Sigma_2^0$.
- A is everywhere properly Γ if for all $s \in 2^{<\omega}$, $A \cap [s] \in \Gamma \setminus \check{\Gamma}$, where $\check{\Gamma} = \{2^{\omega} \setminus X \mid X \in \Gamma\}.$

Let $A \subseteq 2^{\omega}$ and let Γ be a pointclass. For $s \in 2^{<\omega}$, let $[s] = \{x \in 2^{\omega} \mid s \subseteq x\}$. Say that

• Γ is reasonably closed if it is closed under $\cap \Pi_2^0$ and $\cup \Sigma_2^0$.

• A is everywhere properly Γ if for all $s \in 2^{<\omega}$, $A \cap [s] \in \Gamma \setminus \check{\Gamma}$, where $\check{\Gamma} = \{2^{\omega} \setminus X \mid X \in \Gamma\}.$

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X, Y \subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

• • = • • = •

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X, Y \subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X, Y \subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

• Every homogeneous space is either meager or Baire

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X, Y \subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

- Every homogeneous space is either meager or Baire
- So if $X \subseteq 2^{\omega}$ is homogeneous, $\Gamma = [X]_W$ is reasonably closed and X is everywhere properly Γ , then for any $X \cap [s]$ for $s \in 2^{<\omega}$ we can apply Steel's theorem.

一日、

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X, Y \subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

- Every homogeneous space is either meager or Baire
- So if $X \subseteq 2^{\omega}$ is homogeneous, $\Gamma = [X]_W$ is reasonably closed and X is everywhere properly Γ , then for any $X \cap [s]$ for $s \in 2^{<\omega}$ we can apply Steel's theorem.
- I.e. X and X ∩ [s] are homeomorphic. A result of Terada (1993) yields that X is h-homogeneous.

・ロト ・聞ト ・ ヨト

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2^{ω} . Take $X,Y\subseteq 2^{\omega}$ such that

- both X and Y are everywhere properly Γ , and
- either they are both meager, or both Baire.

Then there is a homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that h[X] = Y.

Corollary

(AD + DC) If $X \subseteq 2^{\omega}$ is homogeneous, generates a reasonably closed Wadge class Γ and X is everywhere properly Γ , then X is h-homogeneous.

通 ト イヨ ト イヨト

Good Wadge classes are reasonably closed...

A pointclass Γ in 2^ω is good if

- $\Delta D_{\omega}(\mathbf{\Sigma}_2^0) \subseteq \Gamma$,
- Γ is non-self-dual, and
- $\ell(\Gamma) \geq 1.$

Good Wadge classes are reasonably closed...

A pointclass Γ in 2^ω is good if

- $\Delta D_{\omega}(\mathbf{\Sigma}_2^0) \subseteq \Gamma$,
- Γ is non-self-dual, and
- $\ell(\Gamma) \ge 1$.

Proposition

A good class is reasonably closed.

...and almost all homogeneous spaces are good

A pointclass Γ in 2^ω is good if

- $\Delta D_{\omega}(\mathbf{\Sigma}_2^0) \subseteq \Gamma$,
- Γ is non-self-dual, and
- $\ell(\Gamma) \ge 1.$

Proposition

A good class is reasonably closed.

Theorem

Let $X \subseteq 2^{\omega}$. If $X \notin \Delta D_{\omega}(\Sigma_2^0)$ is homogeneous, then $[X]_W$ is good.

(Recall: The case $X\in \Delta \mathrm{D}_\omega(\mathbf{\Sigma}_2^0)$ was analyzed by van Engelen already.)

...and almost all homogeneous spaces are good

A pointclass Γ in 2^ω is good if

- $\Delta D_{\omega}(\mathbf{\Sigma}_2^0) \subseteq \Gamma$,
- Γ is non-self-dual, and
- $\ell(\Gamma) \ge 1.$

Proposition

A good class is reasonably closed.

Theorem

Let $X \subseteq 2^{\omega}$. If $X \notin \Delta D_{\omega}(\Sigma_2^0)$ is homogeneous, then $[X]_W$ is good.

(Recall: The case $X\in \Delta \mathrm{D}_\omega(\mathbf{\Sigma}_2^0)$ was analyzed by van Engelen already.)

Theorem

(AD+DC) A non-locally-compact subspace of 2^ω is homogeneous if and only if it is h-homogeneous.

Sandra Müller (Universität Wien)

- How I got interested in general topology
- Our main tool: Wadge theory
- The beauty of Hausdorff operations
- Putting everything together
- Open questions and future goals

Van Engelen's characterization of Borel filters

As topological groups, all filters are homogeneous, but there is a characterization for Borel spaces.

Van Engelen's characterization of Borel filters

As topological groups, all filters are homogeneous, but there is a characterization for Borel spaces.

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space. Then the following are equivalent

- X is homeomorphic to a filter.
- X is homogeneous, meager, homeomorphic to its square, and not locally compact.

Van Engelen's characterization of Borel filters

As topological groups, all filters are homogeneous, but there is a characterization for Borel spaces.

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space. Then the following are equivalent

- X is homeomorphic to a filter.
- X is homogeneous, meager, homeomorphic to its square, and not locally compact.

Question

Can this be generalized to

- \bullet all zero-dimensional projective spaces (under PD), or
- all zero-dimensional spaces (under AD + DC)?

< ∃ >

"The Wadge hierarchy is the ultimate analysis of $\mathcal{P}(\omega^{\omega})$ in terms of topological complexity [...]"

(Andretta and Louveau in the Introduction to Cabal Part III)

Thank you for your attention!