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How I got interested in general topology

Our main tool: Wadge theory

The beauty of Hausdorff operations

Putting everything together

Open questions and future goals
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Homogeneous spaces

All our topological spaces will be separable and metrizable. A
homeomorphism between two spaces X and Y is a bijective continuous
function f such that the inverse f−1 is continuous as well.

Definition

A space X is homogeneous if for every x, y ∈ X there exists a
homeomorphism h : X → X such that h(x) = y.

X X

x

y

h

Examples of homogeneous spaces: all discrete spaces, Q, 2ω,
ωω ≈ R \Q, all topological groups.
We will focus on zero-dimensional homogeneous spaces, i.e.
topological spaces which have a base of clopen sets.

Fact

X is a locally compact zero-dimensional homogeneous space iff X is
discrete, X ≈ 2ω, or X ≈ ω × 2ω.

We will therefore focus on non-locally compact (equivalently, nowhere
compact) zero-dimensional homogeneous spaces.
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h-homogeneity

Definition

A space X is h-homogeneous if every non-empty clopen subset U of X
(with the subspace topology) is homeomorphic to X.

Fact

A zero-dimensional space X is h-homogeneous iff for all non-empty clopen
proper subsets U, V of X there is a homeomorphism h : X → X such that
h[U ] = V .

X X

U V
h Examples of h-homogeneous spaces:

Q, 2ω, ωω, any product of
zero-dimensional h-homogeneous
spaces (Medini, 2011)
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h-homogeneity versus homogeneity

Theorem (Folklore)

Assume that X is a zero-dimensional space. If X is h-homogeneous, then
X is homogeneous.

Proof by picture.

x

y

h0

x

y

h1

x

y

Now
⋃
n∈ω(hn ∪ h−1n ) can be extended to a homeomorphism h : X → X

such that h(x) = y and h−1(y) = x.
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h-homogeneity versus homogeneity

Theorem (Folklore)

Assume that X is a zero-dimensional space. If X is h-homogeneous, then
X is homogeneous.

But the converse does not hold in general.

Theorem (van Mill, 1992)

(AC) There exists a zero-dimensional homogeneous space that is not
h-homogeneous.

Theorem (van Engelen, 1986)

A Borel non-locally-compact subspace of 2ω is homogeneous if and only if
it is h-homogeneous.

Question

Can we say more under projective determinacy (PD) or AD?
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Yes!

Theorem (Carroy – Medini – M)

(PD) A projective non-locally-compact subspace of 2ω is
homogeneous if and only if it is h-homogeneous.

(AD+DC) A non-locally-compact subspace of 2ω is homogeneous if
and only if it is h-homogeneous.

Main ideas to extend van Engelen’s result beyond Borel spaces:

The proof relies on an extremely refined classification of subsets of a
Polish zero-dimensional space: the Wadge quasi-order.

Need an understanding of the induced Wadge hierarchy in ωω beyond
Borel classes.

Need a method of transferring these results from ωω to 2ω.

Want to apply a theorem of Steel in 2ω.
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Wadge reducibility

Definition

For A ⊆ X and B ⊆ Y , we say that A Wadge (or continuously) reduces
to B if there is a continuous function f : X → Y such that
x ∈ A⇔ f(x) ∈ B. For X = Y = ωω, we write A ≤W B.

This is reflexive and transitive, it is a quasi-order.

[A]W = {B | B ≤W A}.
A pointclass Γ is a class of subsets closed under continuous preimages.

A is self-dual if A ≡W Ac, otherwise it is non-self-dual.

This yields (under AD + DC) a very nice hierarchy of subsets of ωω.

Theorem (Wadge, Martin – Monk)

Assuming AD and DC, ≤W satisfies the semi-well-ordering principle:

(Wadge) For any A,B ⊆ ωω either A ≤W B or B ≤W ωω \A.

(Martin – Monk) The quasi-order ≤W is well-founded.
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Picture of the Wadge hierarchy

Recall: A ≤W B iff there is a continuous function f : ωω → ωω such that
x ∈ A⇔ f(x) ∈ B. Write [A]W = {B | B ≤W A}.

[∅]W = {∅}

[ωω]W = {ωω}

clopen sets ∆0
1

closed sets Π0
1

open sets Σ0
1

cof = ω cof > ω

Σ0
2

(for rank ω1)

Π0
2

The length of the Wadge hierarchy of Borel sets is an ordinal of
cofinality ω1 but strictly smaller than ω2.
The length of the full Wadge hierarchy is

Θ = sup{α | ∃f(f : R � α)}.
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Levels and expansion

There is a method of jumping through the hierarchy.

Call PUα(Γ) the class of all sets of the form
⋃
An ∩Bn, where An ∈ Γ,

and (Bn)n is a ∆0
1+α partition.

Definition (Louveau – Saint-Raymond)

The level of a pointclass Γ is `(Γ) = sup{α < ω1 | Γ = PUα(Γ)}.

Given a pointclass Γ and a countable ordinal α, the α-expansion Γ(α) is
the class of all preimages of elements of Γ by Σ0

1+α-measurable functions.

Theorem (Expansion Theorem, Saint-Raymond)

(AD + DC) Let Γ be a non-self-dual Wadge pointclass and α a countable
ordinal. Then the following are equivalent:

1 `(Γ) ≥ α,

2 Γ = Λ(α) for some non-self-dual Wadge class Λ.
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How I got interested in general topology

Our main tool: Wadge theory

The beauty of Hausdorff operations

Putting everything together

Open questions and future goals

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 12



Hausdorff operations

Given D ⊆ 2ω and a sequence of sets ~A = A0, A1, · · · , define a set
HD( ~A) as follows:

x ∈ HD( ~A)↔ {i ∈ ω | x ∈ Ai} ∈ D
We call HD a Hausdorff operation.

Some properties:

If D = {(1)ω}, then H{(1)ω}( ~A) is the countable intersection
A0 ∩A1 ∩ . . . .
If Dn is the set of all s : ω → 2 such that s(n) = 1 (s(k) for k 6= n
arbitrary), then HDn(A0, A1, . . .) = An.⋂
i∈I HDi(A0, A1, . . .) = HD(A0, A1, . . .), where D =

⋂
i∈I Di.⋃

i∈I HDi(A0, A1, . . .) = HD(A0, A1, . . .), where D =
⋃
i∈I Di.

X \ HD(A0, A1, . . .) = H2ω\D(A0, A1, . . .).

In particular, every combination of unions, intersections, and complements
can be expressed as a Hausdorff operation.
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From ωω to 2ω

For D ⊆ 2ω, define ΓD(X) as the collection of all subsets of X that are
the result of applying HD on open sets of X.

Lemma (Relativization Lemma)

Given two spaces X and Y , and D ⊆ 2ω.

If f : X → Y is continuous and A ∈ ΓD(Y ) then f−1[A] ∈ ΓD(X).

Assume Y ⊆ X, then A ∈ ΓD(Y ) if and only if there is Ã ∈ ΓD(X)
such that A = Ã ∩ Y .

Theorem (Addison, van Wesep)

(AD + DC) Γ is a non-self-dual Wadge class in 2ω iff Γ = ΓD(2ω) for
some D ⊆ 2ω.

This in fact works for all Polish zero-dimensional spaces X instead of 2ω.
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Steel’s theorem ...

Let A ⊆ 2ω and let Γ be a pointclass. For s ∈ 2<ω, let
[s] = {x ∈ 2ω | s ⊆ x}. Say that

Γ is reasonably closed if it is closed under ∩Π0
2 and ∪Σ0

2.

A is everywhere properly Γ if for all s ∈ 2<ω, A ∩ [s] ∈ Γ \ Γ̌, where
Γ̌ = {2ω \X | X ∈ Γ}.

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .
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... and how we are going to use it

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .

Every homogeneous space is either meager or Baire

So if X ⊆ 2ω is homogeneous, Γ = [X]W is reasonably closed and X
is everywhere properly Γ, then for any X ∩ [s] for s ∈ 2<ω we can
apply Steel’s theorem.

I.e. X and X ∩ [s] are homeomorphic. A result of Terada (1993)
yields that X is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 17



... and how we are going to use it

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .

Every homogeneous space is either meager or Baire

So if X ⊆ 2ω is homogeneous, Γ = [X]W is reasonably closed and X
is everywhere properly Γ, then for any X ∩ [s] for s ∈ 2<ω we can
apply Steel’s theorem.

I.e. X and X ∩ [s] are homeomorphic. A result of Terada (1993)
yields that X is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 17



... and how we are going to use it

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .

Every homogeneous space is either meager or Baire

So if X ⊆ 2ω is homogeneous, Γ = [X]W is reasonably closed and X
is everywhere properly Γ, then for any X ∩ [s] for s ∈ 2<ω we can
apply Steel’s theorem.

I.e. X and X ∩ [s] are homeomorphic. A result of Terada (1993)
yields that X is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 17



... and how we are going to use it

Theorem (Steel, 1980)

(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .

Every homogeneous space is either meager or Baire

So if X ⊆ 2ω is homogeneous, Γ = [X]W is reasonably closed and X
is everywhere properly Γ, then for any X ∩ [s] for s ∈ 2<ω we can
apply Steel’s theorem.

I.e. X and X ∩ [s] are homeomorphic. A result of Terada (1993)
yields that X is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 17



... and how we are going to use it
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(AD + DC) Let Γ be a reasonably closed Wadge class of subsets of 2ω.
Take X,Y ⊆ 2ω such that

both X and Y are everywhere properly Γ, and

either they are both meager, or both Baire.

Then there is a homeomorphism h : 2ω → 2ω such that h[X] = Y .

Corollary

(AD + DC) If X ⊆ 2ω is homogeneous, generates a reasonably closed
Wadge class Γ and X is everywhere properly Γ, then X is h-homogeneous.
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Good Wadge classes are reasonably closed...

A pointclass Γ in 2ω is good if

∆Dω(Σ0
2) ⊆ Γ,

Γ is non-self-dual, and

`(Γ) ≥ 1.

Proposition

A good class is reasonably closed.

Theorem

Let X ⊆ 2ω. If X /∈ ∆Dω(Σ0
2) is homogeneous, then [X]W is good.

(Recall: The case X ∈ ∆Dω(Σ0
2) was analyzed by van Engelen already.)

Theorem

(AD+DC) A non-locally-compact subspace of 2ω is homogeneous if and
only if it is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 18



Good Wadge classes are reasonably closed...

A pointclass Γ in 2ω is good if

∆Dω(Σ0
2) ⊆ Γ,

Γ is non-self-dual, and

`(Γ) ≥ 1.

Proposition

A good class is reasonably closed.

Theorem

Let X ⊆ 2ω. If X /∈ ∆Dω(Σ0
2) is homogeneous, then [X]W is good.

(Recall: The case X ∈ ∆Dω(Σ0
2) was analyzed by van Engelen already.)

Theorem

(AD+DC) A non-locally-compact subspace of 2ω is homogeneous if and
only if it is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 18



...and almost all homogeneous spaces are good

A pointclass Γ in 2ω is good if

∆Dω(Σ0
2) ⊆ Γ,

Γ is non-self-dual, and

`(Γ) ≥ 1.

Proposition

A good class is reasonably closed.

Theorem

Let X ⊆ 2ω. If X /∈ ∆Dω(Σ0
2) is homogeneous, then [X]W is good.

(Recall: The case X ∈ ∆Dω(Σ0
2) was analyzed by van Engelen already.)

Theorem

(AD+DC) A non-locally-compact subspace of 2ω is homogeneous if and
only if it is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 18



...and almost all homogeneous spaces are good

A pointclass Γ in 2ω is good if

∆Dω(Σ0
2) ⊆ Γ,

Γ is non-self-dual, and

`(Γ) ≥ 1.

Proposition

A good class is reasonably closed.

Theorem

Let X ⊆ 2ω. If X /∈ ∆Dω(Σ0
2) is homogeneous, then [X]W is good.

(Recall: The case X ∈ ∆Dω(Σ0
2) was analyzed by van Engelen already.)

Theorem

(AD+DC) A non-locally-compact subspace of 2ω is homogeneous if and
only if it is h-homogeneous.

Sandra Müller (Universität Wien) Homogeneous spaces and Wadge theory January 2019 18



How I got interested in general topology

Our main tool: Wadge theory

The beauty of Hausdorff operations

Putting everything together

Open questions and future goals
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Van Engelen’s characterization of Borel filters

As topological groups, all filters are homogeneous, but there is a
characterization for Borel spaces.

Theorem (van Engelen, 1994)

Let X be a zero-dimensional Borel space. Then the following are
equivalent

X is homeomorphic to a filter.

X is homogeneous, meager, homeomorphic to its square, and not
locally compact.

Question

Can this be generalized to

all zero-dimensional projective spaces (under PD), or

all zero-dimensional spaces (under AD + DC)?
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“The Wadge hierarchy is the ultimate analysis of P(ωω)
in terms of topological complexity [...]”

(Andretta and Louveau in the Introduction to Cabal Part III)

Thank you for your attention!
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