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Filters

Given a set X , a filter on X is a subset F ⊂ P(X ) with the
following properties

• ∅ /∈ F ,

• X ∈ F ,

• A,B ∈ F implies A ∩ B ∈ F ,

• A ∈ F and A ⊂ B ⊂ X imply B ∈ F .



Ultrafilters

An ultrafilter (on X ) is a filter that is maximal among all filters on
X, using the inclusion order.

Filters on X are free if they extend the Fréchet filter
FrX = {A ⊂ X : X \ A is finite}.

The existence of free ultrafilters follows from the Axiom of Choice.



Positive sets and ideals

Let F be a filter on a set X . Y ⊂ X is positive if for every F ∈ F ,
Y ∩ F 6= ∅.

F+ = {Y ⊂ X : ∀F ∈ F (Y ∩ F 6= ∅)}

The ideal associated to a filter F is the set

F∗ = {A ⊂ X : X \ A ∈ F}.
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Positive sets and ideals

F+ = {Y ⊂ X : ∀F ∈ F (Y ∩ F 6= ∅)}
F∗ = {A ⊂ X : X \ A ∈ F}

P(X )

F F∗

F ⊂ F+

F+ = P(X ) \ F∗



P-filters

Fix an infinite set X .

Given A,B we say that A is almost contained in B if A \B is finite.

A pseudointersection of A ⊂ P(X ) is an inifinite set Y ⊂ X
almost contained in every element of A.

Example: ω is a pseudointersection of Frω.

A filter F on X is a P-filter if every {An : n ∈ ω} ⊂ F has a
pseudointersection A ∈ F .
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P-ultrafillters

P-point ≡ ultrafilter P-filter.

Theorem (Walter Rudin, 1954)

CH implies the existence of P-points on ω.

Theorem (Saharon Shelah, 1978)

There is a model of ZFC with NO P-points on ω.



P-ultrafillters

P-point ≡ ultrafilter P-filter.

Theorem (Walter Rudin, 1954)

CH implies the existence of P-points on ω.

Theorem (Saharon Shelah, 1978)

There is a model of ZFC with NO P-points on ω.



P-ultrafillters

P-point ≡ ultrafilter P-filter.

Theorem (Walter Rudin, 1954)

CH implies the existence of P-points on ω.

Theorem (Saharon Shelah, 1978)

There is a model of ZFC with NO P-points on ω.



Filters as topological spaces

From now on, X will be countable and usually equal to ω.

A filter F on ω is a subset of P(ω).

There is a natural bijection

P(X ) → {0, 1}X
A 7→ χA

that sends each subset of X to its characteristic function.

Thus, F is a subset of the Cantor set.
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Non-meager P-filters

A filter (on ω) is meager if it is first category as a topological
subspace of the Cantor set.

Ultrafilters are non-meager.

The existence of a non-meager P-filters follows from
cof([d]ω,⊂) = d. (If all P-filters are meager, then 0] does not
exist.)
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Countable spaces with one non-isolated point

Given a free filter F on ω, let ξ(F) = ω ∪ {F}.

Declare all points
of ω to be isolated. A neighborhood of F is of the form {F} ∪ F
with F ∈ F .

Every countable space with a unique non-isolated point is
homeomorphic to ξ(F) for some filter F .
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The Menger and Hurewicz properties

A space X is Menger if every time {Un : n ∈ ω} is a sequence of
open covers of X , then for every n ∈ ω there is Fn ∈ [Un]<ω such
that

⋃
{Fn : n ∈ ω} covers X .

A space X is Hurewicz if every time {Un : n ∈ ω} is a sequence of
open covers of X , then for every n ∈ ω there is Fn ∈ [Un]<ω such
that {

⋃
Fn : n ∈ ω} is a γ-cover: for every p ∈ X there is m ∈ ω

such that p ∈
⋃

Fn for every n > m.

σ compact =⇒ Hurewicz =⇒ Menger =⇒ Lindelöf
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Compactifications and Remainders

For every Tychonoff space X there is a compact Hausdorff space
βX (the Čech-Stone compactification) such that X embedds in
βX as a dense subset.

βX \ X is the remainder.

• βX \ X is σ-compact iff X is σ-compact (folklore)

• βX \ X is Lindelöf iff X is of countable type (Henriksen and
Isbell, 1958)

What if βX \ X is Menger or Hurewicz? (Aurichi and Bella, 2015)
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Remainders of groups

Let G be a topological group. What if βG \ G is Menger or
Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016)

If G is a topological group and βG \ G is Hurewicz, then βG \ G is
σ-compact.

Cp(X ) denotes the set of real-valued continuous functions with
domain X with the topology of pointwise convergence.

Question (Bella, Tokgös, Zdomskyy, 2016)

When is βCp(X ) \ Cp(X ) Menger but not σ-compact?



Remainders of groups

Let G be a topological group. What if βG \ G is Menger or
Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016)

If G is a topological group and βG \ G is Hurewicz, then βG \ G is
σ-compact.

Cp(X ) denotes the set of real-valued continuous functions with
domain X with the topology of pointwise convergence.

Question (Bella, Tokgös, Zdomskyy, 2016)

When is βCp(X ) \ Cp(X ) Menger but not σ-compact?



Remainders of groups

Let G be a topological group. What if βG \ G is Menger or
Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016)

If G is a topological group and βG \ G is Hurewicz, then βG \ G is
σ-compact.

Cp(X ) denotes the set of real-valued continuous functions with
domain X with the topology of pointwise convergence.

Question (Bella, Tokgös, Zdomskyy, 2016)

When is βCp(X ) \ Cp(X ) Menger but not σ-compact?



Remainders of groups

Let G be a topological group. What if βG \ G is Menger or
Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016)

If G is a topological group and βG \ G is Hurewicz, then βG \ G is
σ-compact.

Cp(X ) denotes the set of real-valued continuous functions with
domain X with the topology of pointwise convergence.

Question (Bella, Tokgös, Zdomskyy, 2016)

When is βCp(X ) \ Cp(X ) Menger but not σ-compact?



Remainders of Cp(X )

Question (Bella, Tokgös, Zdomskyy, 2016)

When is βCp(X ) \ Cp(X ) Menger but not σ-compact?

(Bella, Tokgös, Zdomskyy) observed that in that case, Cp(X ) is
hereditarily Baire.

Theorem (Marciszewski, 1993)

The following are equivalent for a free filter F on ω.

(a) F is a non-meager P-filter.

(b) F is hereditarily Baire.

(c) Cp(ξ(F)) is hereditarily Baire.
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Menger remainders of Cp(X )

It is known that Cp(X ) is σ-compact if and only if X is countable
and discrete.

Theorem (Bella and HG, 2019?)

Let F be a free filter on ω. Then Cp(ξ(F)) has a Menger
remainder if and only if F+ is a Menger space (with the topology
of the Cantor set).

If U is an ultrafilter on ω, then U+ = U . Thus, any Menger
ultrafilter gives an example to que question of Bella, Tokgös and
Zdomskyy.

Corollary

If there exists a Menger ultrafilter, then there exists a space X
such that βCp(X ) \ Cp(X ) Menger but not σ-compact.
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Menger remainders of Cp(X )

In 2015, Chodounský, Repovš and Zdomskyy proved that a free
filter is Menger if and only if it is Canjar.

A free filter F is Canjar if Mathias forcing with respect to F does
not add dominating reals.

In 1988, Canjar proved that d = c implies there exists a Canjar
ultrafilter.

Corollary

It is consistent with ZFC that there exists a space X such that
βCp(X ) \ Cp(X ) Menger but not σ-compact.
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Final comments

It is known that Canjar ultrafilters are P-points so they might not
exist.

Recall that the filters we are looking for are non-meager P-filters.

Question
Consider the two statements.

(1) There exists a non-meager P-filter.

(2) There is a filter F with F+ a Menger filter.

Does (1) imply (2)? Does the consistency of (1) imply the
consistency of (2)?

Question
Is there a space X with no isolated points such that Cp(X ) has a
Menger remainder?
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Thank you


