Filters and remainders of topological groups Arctic Set Theory Workshop 4

> Rodrigo Hernández Gutiérrez rod@xanum.uam.mx

> > UAM-Iztapalapa

January 23, 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Filters

Given a set X, a *filter* on X is a subset $\mathcal{F} \subset \mathcal{P}(X)$ with the following properties

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\emptyset \notin \mathcal{F}$,
- $X \in \mathcal{F}$,
- $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,
- $A \in \mathcal{F}$ and $A \subset B \subset X$ imply $B \in \mathcal{F}$.

Ultrafilters

An *ultrafilter* (on X) is a filter that is maximal among all filters on X, using the inclusion order.

Filters on X are *free* if they extend the Fréchet filter $\mathfrak{Fr}_X = \{A \subset X : X \setminus A \text{ is finite}\}.$

The existence of free ultrafilters follows from the Axiom of Choice.

Let \mathcal{F} be a filter on a set X. $Y \subset X$ is *positive* if for every $F \in \mathcal{F}$, $Y \cap F \neq \emptyset$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathcal{F} be a filter on a set X. $Y \subset X$ is *positive* if for every $F \in \mathcal{F}$, $Y \cap F \neq \emptyset$.

$$\mathcal{F}^+ = \{ Y \subset X : orall F \in \mathcal{F} \; (Y \cap F
eq \emptyset) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathcal{F} be a filter on a set X. $Y \subset X$ is *positive* if for every $F \in \mathcal{F}$, $Y \cap F \neq \emptyset$.

$$\mathcal{F}^+ = \{ Y \subset X : \forall F \in \mathcal{F} \ (Y \cap F \neq \emptyset) \}$$

The *ideal associated* to a filter \mathcal{F} is the set

$$\mathcal{F}^* = \{A \subset X : X \setminus A \in \mathcal{F}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\begin{array}{rcl} \mathcal{F}^+ &=& \{Y \subset X : \forall F \in \mathcal{F} \; (Y \cap F \neq \emptyset)\} \\ \mathcal{F}^* &=& \{A \subset X : X \setminus A \in \mathcal{F}\} \end{array}$$
$$\begin{array}{rcl} \mathcal{P}(X) \\ & & & \\ &$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Fix an infinite set X.

Fix an infinite set X.

Given A, B we say that A is almost contained in B if $A \setminus B$ is finite.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fix an infinite set X.

Given A, B we say that A is almost contained in B if $A \setminus B$ is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A pseudointersection of $\mathcal{A} \subset \mathcal{P}(X)$ is an inifinite set $Y \subset X$ almost contained in every element of \mathcal{A} .

Fix an infinite set X.

Given A, B we say that A is almost contained in B if $A \setminus B$ is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A pseudointersection of $\mathcal{A} \subset \mathcal{P}(X)$ is an inifinite set $Y \subset X$ almost contained in every element of \mathcal{A} .

Example: ω is a pseudointersection of \mathfrak{Fr}_{ω} .

Fix an infinite set X.

Given A, B we say that A is almost contained in B if $A \setminus B$ is finite.

A pseudointersection of $\mathcal{A} \subset \mathcal{P}(X)$ is an inifinite set $Y \subset X$ almost contained in every element of \mathcal{A} .

Example: ω is a pseudointersection of \mathfrak{Fr}_{ω} .

A filter \mathcal{F} on X is a P-filter if every $\{A_n : n \in \omega\} \subset \mathcal{F}$ has a pseudointersection $A \in \mathcal{F}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

P-ultrafillters

P-point \equiv ultrafilter P-filter.

P-ultrafillters

P-point \equiv ultrafilter P-filter.

Theorem (Walter Rudin, 1954) CH implies the existence of P-points on ω .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

P-ultrafillters

P-point \equiv ultrafilter P-filter.

Theorem (Walter Rudin, 1954)

CH implies the existence of P-points on ω .

Theorem (Saharon Shelah, 1978)

There is a model of ZFC with **NO** P-points on ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From now on, X will be countable and usually equal to ω .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

From now on, X will be countable and usually equal to ω .

A filter \mathcal{F} on ω is a subset of $\mathcal{P}(\omega)$.

From now on, X will be countable and usually equal to ω .

A filter \mathcal{F} on ω is a subset of $\mathcal{P}(\omega)$.

There is a natural bijection

that sends each subset of X to its characteristic function.

From now on, X will be countable and usually equal to ω .

A filter \mathcal{F} on ω is a subset of $\mathcal{P}(\omega)$.

There is a natural bijection

$$egin{array}{rcl} \mathcal{P}(X) & o & \{0,1\}^X \ \mathcal{A} & \mapsto & \chi_\mathcal{A} \end{array}$$

that sends each subset of X to its characteristic function.

Thus, \mathcal{F} is a subset of the Cantor set.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ultrafilters are non-meager.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ultrafilters are non-meager.

The existence of a non-meager *P*-filters follows from $cof([\mathfrak{d}]^{\omega}, \subset) = \mathfrak{d}$.

Ultrafilters are non-meager.

The existence of a non-meager *P*-filters follows from $cof([\mathfrak{d}]^{\omega}, \subset) = \mathfrak{d}$. (If all *P*-filters are meager, then 0^{\sharp} does not exist.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a free filter \mathcal{F} on ω , let $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$.

Given a free filter \mathcal{F} on ω , let $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$. Declare all points of ω to be isolated.

Given a free filter \mathcal{F} on ω , let $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$. Declare all points of ω to be isolated. A neighborhood of \mathcal{F} is of the form $\{\mathcal{F}\} \cup \mathcal{F}$ with $\mathcal{F} \in \mathcal{F}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Given a free filter \mathcal{F} on ω , let $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$. Declare all points of ω to be isolated. A neighborhood of \mathcal{F} is of the form $\{\mathcal{F}\} \cup \mathcal{F}$ with $\mathcal{F} \in \mathcal{F}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Every countable space with a unique non-isolated point is homeomorphic to $\xi(\mathcal{F})$ for some filter \mathcal{F} .

The Menger and Hurewicz properties

A space X is *Menger* if every time $\{\mathcal{U}_n : n \in \omega\}$ is a sequence of open covers of X, then for every $n \in \omega$ there is $F_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{F_n : n \in \omega\}$ covers X.

A space X is *Hurewicz* if every time $\{\mathcal{U}_n : n \in \omega\}$ is a sequence of open covers of X, then for every $n \in \omega$ there is $F_n \in [\mathcal{U}_n]^{<\omega}$ such that $\{\bigcup F_n : n \in \omega\}$ is a γ -cover: for every $p \in X$ there is $m \in \omega$ such that $p \in \bigcup F_n$ for every n > m.

A D N A 目 N A E N A E N A B N A C N

The Menger and Hurewicz properties

A space X is *Menger* if every time $\{\mathcal{U}_n : n \in \omega\}$ is a sequence of open covers of X, then for every $n \in \omega$ there is $F_n \in [\mathcal{U}_n]^{<\omega}$ such that $\bigcup \{F_n : n \in \omega\}$ covers X.

A space X is *Hurewicz* if every time $\{\mathcal{U}_n : n \in \omega\}$ is a sequence of open covers of X, then for every $n \in \omega$ there is $F_n \in [\mathcal{U}_n]^{<\omega}$ such that $\{\bigcup F_n : n \in \omega\}$ is a γ -cover: for every $p \in X$ there is $m \in \omega$ such that $p \in \bigcup F_n$ for every n > m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\sigma \text{ compact } \Longrightarrow \text{ Hurewicz } \Longrightarrow \text{ Menger } \Longrightarrow \text{ Lindelöf}$

For every Tychonoff space X there is a compact Hausdorff space βX (the Čech-Stone compactification) such that X embedds in βX as a dense subset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For every Tychonoff space X there is a compact Hausdorff space βX (the Čech-Stone compactification) such that X embedds in βX as a dense subset. $\beta X \setminus X$ is the remainder.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For every Tychonoff space X there is a compact Hausdorff space βX (the Čech-Stone compactification) such that X embedds in βX as a dense subset. $\beta X \setminus X$ is the remainder.

- $\beta X \setminus X$ is σ -compact iff X is σ -compact (folklore)
- βX \ X is Lindelöf iff X is of countable type (Henriksen and Isbell, 1958)

- ロ ト - 4 回 ト - 4 □

For every Tychonoff space X there is a compact Hausdorff space βX (the Čech-Stone compactification) such that X embedds in βX as a dense subset. $\beta X \setminus X$ is the remainder.

- $\beta X \setminus X$ is σ -compact iff X is σ -compact (folklore)
- βX \ X is Lindelöf iff X is of countable type (Henriksen and Isbell, 1958)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What if $\beta X \setminus X$ is Menger or Hurewicz?

For every Tychonoff space X there is a compact Hausdorff space βX (the Čech-Stone compactification) such that X embedds in βX as a dense subset. $\beta X \setminus X$ is the remainder.

- $\beta X \setminus X$ is σ -compact iff X is σ -compact (folklore)
- βX \ X is Lindelöf iff X is of countable type (Henriksen and Isbell, 1958)

What if $\beta X \setminus X$ is Menger or Hurewicz? (Aurichi and Bella, 2015)

- ロ ト - 4 回 ト - 4 □

Remainders of groups

Let G be a topological group. What if $\beta G \setminus G$ is Menger or Hurewicz?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remainders of groups

Let G be a topological group. What if $\beta G \setminus G$ is Menger or Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016) If G is a topological group and $\beta G \setminus G$ is Hurewicz, then $\beta G \setminus G$ is σ -compact.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remainders of groups

Let G be a topological group. What if $\beta G \setminus G$ is Menger or Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016) If G is a topological group and $\beta G \setminus G$ is Hurewicz, then $\beta G \setminus G$ is σ -compact.

 $C_p(X)$ denotes the set of real-valued continuous functions with domain X with the topology of pointwise convergence.

Remainders of groups

Let G be a topological group. What if $\beta G \setminus G$ is Menger or Hurewicz?

Theorem (Bella, Tokgös, Zdomskyy, 2016) If G is a topological group and $\beta G \setminus G$ is Hurewicz, then $\beta G \setminus G$ is σ -compact.

 $C_p(X)$ denotes the set of real-valued continuous functions with domain X with the topology of pointwise convergence.

Question (Bella, Tokgös, Zdomskyy, 2016) When is $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact?

Remainders of $C_p(X)$

Question (Bella, Tokgös, Zdomskyy, 2016) When is $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remainders of $C_p(X)$

Question (Bella, Tokgös, Zdomskyy, 2016) When is $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact?

(Bella, Tokgös, Zdomskyy) observed that in that case, $C_p(X)$ is hereditarily Baire.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remainders of $C_p(X)$

Question (Bella, Tokgös, Zdomskyy, 2016) When is $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact?

(Bella, Tokgös, Zdomskyy) observed that in that case, $C_p(X)$ is hereditarily Baire.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Marciszewski, 1993)

The following are equivalent for a free filter \mathcal{F} on ω .

- (a) \mathcal{F} is a non-meager P-filter.
- (b) \mathcal{F} is hereditarily Baire.
- (c) $C_p(\xi(\mathcal{F}))$ is hereditarily Baire.

It is known that $C_p(X)$ is σ -compact if and only if X is countable and discrete.

It is known that $C_p(X)$ is σ -compact if and only if X is countable and discrete.

Theorem (Bella and HG, 2019?)

Let \mathcal{F} be a free filter on ω . Then $C_p(\xi(\mathcal{F}))$ has a Menger remainder if and only if \mathcal{F}^+ is a Menger space (with the topology of the Cantor set).

It is known that $C_p(X)$ is σ -compact if and only if X is countable and discrete.

Theorem (Bella and HG, 2019?)

Let \mathcal{F} be a free filter on ω . Then $C_p(\xi(\mathcal{F}))$ has a Menger remainder if and only if \mathcal{F}^+ is a Menger space (with the topology of the Cantor set).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If \mathcal{U} is an ultrafilter on ω , then $\mathcal{U}^+ = \mathcal{U}$.

It is known that $C_p(X)$ is σ -compact if and only if X is countable and discrete.

Theorem (Bella and HG, 2019?)

Let \mathcal{F} be a free filter on ω . Then $C_p(\xi(\mathcal{F}))$ has a Menger remainder if and only if \mathcal{F}^+ is a Menger space (with the topology of the Cantor set).

If \mathcal{U} is an ultrafilter on ω , then $\mathcal{U}^+ = \mathcal{U}$. Thus, any Menger ultrafilter gives an example to que question of Bella, Tokgös and Zdomskyy.

It is known that $C_p(X)$ is σ -compact if and only if X is countable and discrete.

Theorem (Bella and HG, 2019?)

Let \mathcal{F} be a free filter on ω . Then $C_p(\xi(\mathcal{F}))$ has a Menger remainder if and only if \mathcal{F}^+ is a Menger space (with the topology of the Cantor set).

If \mathcal{U} is an ultrafilter on ω , then $\mathcal{U}^+ = \mathcal{U}$. Thus, any Menger ultrafilter gives an example to que question of Bella, Tokgös and Zdomskyy.

Corollary

If there exists a Menger ultrafilter, then there exists a space X such that $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact.

In 2015, Chodounský, Repovš and Zdomskyy proved that a free filter is Menger if and only if it is Canjar.

・ロト・西ト・山田・山田・山口・

In 2015, Chodounský, Repovš and Zdomskyy proved that a free filter is Menger if and only if it is Canjar.

A free filter ${\cal F}$ is Canjar if Mathias forcing with respect to ${\cal F}$ does not add dominating reals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In 2015, Chodounský, Repovš and Zdomskyy proved that a free filter is Menger if and only if it is Canjar.

A free filter ${\cal F}$ is Canjar if Mathias forcing with respect to ${\cal F}$ does not add dominating reals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In 1988, Canjar proved that $\mathfrak{d}=\mathfrak{c}$ implies there exists a Canjar ultrafilter.

In 2015, Chodounský, Repovš and Zdomskyy proved that a free filter is Menger if and only if it is Canjar.

A free filter ${\cal F}$ is Canjar if Mathias forcing with respect to ${\cal F}$ does not add dominating reals.

In 1988, Canjar proved that $\mathfrak{d}=\mathfrak{c}$ implies there exists a Canjar ultrafilter.

Corollary

It is consistent with ZFC that there exists a space X such that $\beta C_p(X) \setminus C_p(X)$ Menger but not σ -compact.

It is known that Canjar ultrafilters are *P*-points so they might not exist.

It is known that Canjar ultrafilters are *P*-points so they might not exist.

Recall that the filters we are looking for are non-meager *P*-filters.

It is known that Canjar ultrafilters are *P*-points so they might not exist.

Recall that the filters we are looking for are non-meager *P*-filters.

Question

Consider the two statements.

(1) There exists a non-meager P-filter.

(2) There is a filter \mathcal{F} with \mathcal{F}^+ a Menger filter.

Does (1) imply (2)? Does the consistency of (1) imply the consistency of (2)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is known that Canjar ultrafilters are *P*-points so they might not exist.

Recall that the filters we are looking for are non-meager *P*-filters.

Question

Consider the two statements.

(1) There exists a non-meager P-filter.

(2) There is a filter \mathcal{F} with \mathcal{F}^+ a Menger filter.

Does (1) imply (2)? Does the consistency of (1) imply the consistency of (2)?

Question

Is there a space X with no isolated points such that $C_p(X)$ has a Menger remainder?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで