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Set theory and abelian groups

Set theoretic methods are the main tools to prove some results on

infinite abelian groups.

Definition

Let G = (G ,+) be an abelian group and κ an infinite cardinal.

• G is free if and only G ∼=
⊕

λ Z.

• G is κ-free iff every subgroup of G of rank < κ is free.

Fact

If G is κ-free, for some infinite κ, then G is torsion-free, i.e.,

every nontrivial element of G has infinite order.
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Compactness in the universe

Theorem (Pontryagin 1934)

Every countable ℵ0-free group is free.

Theorem (Folklore)

If κ is weakly compact, then every κ-free group of cardinality κ is

free.

Theorem (Shelah 1975)

If κ is singular, then every κ-free group of cardinality κ is free.
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A long list of other applications

Other remarkable applications of pure set theory to abelian groups

include:

Undecidability of Whitehead’s problems. (Shelah)

When κ-free implies κ+-free. (Magidor, Shelah)

Consequences of PFA on the classification of ℵ1-separable abelian

groups. (Eklof)

. . .
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How about descriptive set theory?

The last two decades have seen an increasing interest in TFA

groups by descriptive set theorists.

Some natural equivalence relations on TFA groups can serve as

milestones in the hierarchy of analytic equivalence relations.

4



Borel classification

Definition

Suppose that (X ,∼=X ) and (Y,∼=Y) are two standard Borel spaces

with two corresponding equivalence relations. We say that ∼=X is

Borel reducible to ∼=Y iff there exists a Borel φ : X → Y such that

x ∼=X x ′ ⇐⇒ φ(x) ∼=Y φ(x ′).

We can view Borel reducibility in two ways.

• ∼=Y -classes are complete invariants for ∼=X (Borel complexity).

• There is an injection of X/∼=X into Y/∼=Y admitting Borel

lifting (Borel cardinality).
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Why do we bother?

We can form standard Borel spaces of well-known

mathematical structures (e.g., Lω1ω-elementary class of

countable structures, separable Banach spaces, . . . ), and then

• perform a fine analysis of suitable invariants (reals,

countable sets of reals, orbits of group actions, . . . );

• find strong evidence against classification (Borel/not Borel,

turbulence, . . . );

• in a single catch phrase by E.G. Effros:

“Classifying the unclassifiables”.
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The space of countable almost-free groups

Countable torsion-free abelian groups form a proper class but . . .

. . . we only need to work on a small subcategories containing the

skeleton (i.e., one group for each isomorphism class)!

• Let XTFA be the set of all torsion-free abelian groups on N.

• Each group G is identified with a function mG ∈ 2N
3

by

setting

mG (a, b, c) ⇐⇒ a +G b = c, for a, b, c ∈ N.

• XTFA ⊆ 2N
3

is Borel (and closed under isomorphism) so it is

standard Borel.
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• Let XTFA be the set of all torsion-free abelian groups on N.

• Each group G is identified with a function mG ∈ 2N
3

by

setting

mG (a, b, c) ⇐⇒ a +G b = c, for a, b, c ∈ N.

• XTFA ⊆ 2N
3

is Borel (and closed under isomorphism) so it is

standard Borel1.
1In fact, XTFA with the induced topology form a Polish space, since it is Gδ.
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A long-standing conjecture

Conjecture (Friedman-Stanley 1989)

Every isomorphism relation ∼= is Borel reducible to isomorphism
∼=TFA on torsion-free abelian groups.

Theorem (Hjorth 2002)
∼=TFA is not Borel.

Theorem (Downey-Montalban 2008)

∼=TFA is complete Σ1
1 as a subset of XTFA × XTFA.

Theorem (Shelah-Ulrich)

It is consistent with ZFC that every isomorphism is a∆1
2-reducible

to ∼=TFA.
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Bi-embeddability on TFA groups

Definition

A vTFA B iff there exists an injective homomorphism h : A→ B.

A ≡TFA B iff A vTFA B and B vTFA A.

Theorem (C.-Thomas 2019)

Every Σ1
1 equivalence relation is Borel reducible to the

bi-embeddability relation ≡TFA on torsion-free abelian group. Thus

it is strictly more complicated than ∼=TFA.
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Higher descriptive set theory

Many people have developed the generalized version of Borel

classification for higher structures (Friedman, Hyttinen, Kulikov,

Moreno, Motto Ros, . . . ).

Let κ be uncountable such that κ = κ<κ.

Theorem (C. 2018)

Every Σ1
1 equivalence relation on a standard Borel κ-space is Borel

reducible to the bi-embeddability relation ≡κTFA on κ-sized

torsion-free abelian group.

• Obtained before C.-Thomas.

• Proofs are very mach different.
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Ordered TFA groups. Prelude

Let ∼=DAG be the isomorphism relation of torsion-free divisible

abelian groups.

Fact

A torsion-free abelian group is divisible if and only if

A = Q⊕ · · · ⊕Q︸ ︷︷ ︸
rk(A)

.

We have A ∼= B iff rk(A) = rk(B). Thus, ∼=DAG is Borel reducible

to =N.
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Ordered TFA groups. Act I

Let ∼=ODAG be the (increasing) isomorphism relation on ordered

divisible abelian groups.

A group (G ,+, <) is ordered if < is a linear order on G and

x < y =⇒ x + z < y + z .

An ordered group is necessarily torsion-free.

Fact

Every isomorphism relation is Borel reducible to ∼=ODAG.

Theorem (Rast-Sahota 2016)

If T is an o-minimal theory and has a nonsimple type, then ∼=LO is

Borel reducible to isomorphism ∼=T on countable models of T .
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Ordered TFA groups. I act

Theorem (C.-Marker-Motto Ros)

Every Σ1
1 equivalence relation is Borel reducible to ≡ODAG.

Cannot use linear orders but . . .

we can color them!
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Definition

A colored linear order on N is a pair L = (<L, cL) such that <L is

a linear order on N and cL : N→ N. All CLOs on N form a Polish

space.

K vCLO L if and only if there exists f : N→ N such that

• m <K n implies f (m) <L f (n) for every m, n ∈ N;

• cL(f (n)) = cK (n) for every n ∈ N.

K ≡CLO L if K vCLO L and L vCLO K .

Theorem (Louveau, Marcone-Rosendal 2004)

Every Σ1
1 equivalence relation is Borel reducible to ≡CLO.
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Sketch
We produce a reduction from ≡CLO to ≡ODAG.

Fix a set of pairwise nonembeddable countable Archimedean

groups {Hn | n ∈ N}.
Given L = (<L, cL) we define GL as the group of finite support

functions

f : L→
⊔

Hn s.t. f (n) ∈ Hk ⇐⇒ cL(n) = k.

We order GL antilexicographically. For every x , y ∈ GL, we

say x � y iff ∃n ∈ N such that x ≤ ny . Let ≈ be the

symmetrization of �.

`(GL) = GL/≈ is called Archimedean ladder of GL.

When we color `(GL) in the obvious way, `(GL) ∼=CLO L.
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Ordered TFA groups. II act

Consider the (increasing) isomorphism relation ∼=ArGP on countable

Archimedean groups.

Theorem (Hölder)

An ordered group is Archimedean iff it is a subgroup of (R,+).

Thus, every Archimedean group is Abelian.

Fact

φ : A→ B is an increasing homomorphism iff there exists r ∈ R+

such that φ(a) = r · a.

It follows that ∼=ArGp is Borel.

16



Ordered TFA groups. II act

Consider the (increasing) isomorphism relation ∼=ArGP on countable

Archimedean groups.

Theorem (Hölder)
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Potential complexity

Definition

Let E be a Borel equivalence relation on X . The equivalence

relation E+ on XN is defined by

(xn) E+ (yn) ⇐⇒ {[xn]E : n ∈ N} = {[yn]E : n ∈ N}.

Definition (Hjorth-Kechris-Louveau)

Suppose that E is an equivalence relation on a standard Borel

space X . We say that E is potentially in Γ if there exists a Polish

topology τ generating the Borel structure of X such that E is in Γ

in the product space (X × X , τ2).
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An upper bound

Theorem (Hjorth-Kechris-Louveau)

Suppose that E is a Borel equivalence relation on a standard Borel

space, and E is induced by a Borel action of a closed subgroup G of

S∞. Then E is potentially Π0
3 iff E is Borel reducible to (=R)+.
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+ · · ·+︸ ︷︷ ︸
n−2 .
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On the other hand, =+
R is Borel reducible to ∼=ArGp.
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Summary

Analytic equivalence relations

≡TFA,≡ODAG
•

∼=ODAG
•

∼=TFA• ≡LO•

∼=ArGp•Borel

Borel reduction
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Thank you!
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